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Abstract 

  

In SunQM-4, to build a full-QM deduced Solar system’s 3D probability density map with time-dependent orbital 

movement, we developed a non-Born probability (NBP) method. In the current paper, we showed that NBP is directly 

proportional to the wave function (rather than Born probability’s conjugated-squared wave function). For a cos(x) wave 

function, its NBP is simply to lift-up wave function by one to make its min =0, and then divided by two to make its max =1, 

so its NBP = [1 + cos(x)]/2. The trigonometric formula [1 + cos(x)]/2 = [cos(x/2)}^2 revealed that for a planet doing orbital 

movement in Solar system, its NBP ground state is n=1, and its Born probability ground state is n = 1/2. We showed that 

NBP is valid not only for {N,n} QM’s nLL QM state, but also for the 1D infinity deep square potential well QM, for the 

circular 1D QM, and for the plane wave QM. NBP demonstrates more direct and intuitive physical meaning than that of Born 

probability. In contrast to that Born probability is only for the standing wave function, NBP is for a uni-directional traveling 

wave function (which naturally includes the linearly combined two opposite-directional traveling waves, or a standing wave). 

Therefore, Born probability is possible merely a special case of (the more generalized) NBP. With NBP, we may explain the 

flute sound wave (an air mass density vibration) mechanics directly as the 1D quantum mechanics! This may significantly 

change our view on QM and its application on our daily-life-world’s (Newtonian) physics. The planet formation through 

accretion is also discussed by using NBP. 

 

 

Introduction 

 

The SunQM series research articles [1] ~ {16] have demonstrated that the formation of Solar system (and planet-moon 

system) was governed by its {N,n} QM. In SunQM-4 [17], we showed that the full-QM deduction of Solar system’s 3D 

probability density map with orbital movement needs to use non-Born probability (NBP) rather than the traditional Born 

probability. Since the NBP concept severely violates the traditional QM’s rule, in the current paper, we try to find more 

evidence to support that NBP is a correct method. Note: for {N,n} QM nomenclature as well as the general notes for {N,n} 

QM model, please see SunQM-1 section VII. Note: Microsoft Excel’s number format is often used in this paper, for example: 

x^2 = x2, 3.4E+12 = 3.4*1012, 5.6E-9 = 5.6*10-9. Note: The reading sequence for SunQM series papers is: SunQM-1, 1s1, 

1s2, 1s3, 2, 3, 3s1, 3s2, 3s6, 3s7, 3s8, 3s3, 3s9, 3s4, 3s10, 3s11, 4, and 4s1. Note: for all SunQM series papers, reader should 

check “SunQM-4s7: Updates and Q/A for SunQM series papers” for the most recent updates and corrections. Note: Because 

the topic of this paper is too controversial and I could be very wrong, "a citizen scientist of QM" is added under author's 

name. 

 

 

I.   Applying the non-Born probability (NBP) calculation to the 1D infinity deep square potential well QM (1D∞QM)  

 

 In SunQM-4, we were forced to define a non-Born probability (abbreviated as “NBP”) as: 1) it is for a uni-

directional traveling matter wave (in contrast to Born probability’s standing matter wave), 2) its probability directly 

proportional to the wave function, or |ψ|^2 ∝ ψ (in contrast to Born probability’s conjugated-squared |ψ|^2), and 3) it is 

calculated as to lift-up the wave function to make min =0 (rather than negative), and then times ½ to make the max =1 (see 
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SunQM-4’s eq-52). If NBP is correct, then it must be able to explain all QM’s probability, including 1D infinity deep square 

potential well QM (here we abbreviated it as “1D∞QM”)’s probability. So in this section, we will explain how to use NBP 

for 1D∞QM. 

 

 

I-a.   1D infinity deep square potential well can be used to represent a circular 1D orbit. 

 

First let’s review (from eq-1 through eq-4, and Figure 1) the known QM result of a particle in a 1D∞QM. As shown 

in Giancoli’s text book (page 1031, eq-38-13, and eq-38-14), its QM state energy is  

 

𝐸𝑛 = 𝑛
2 ℎ2

8𝑚′𝑙′𝑛
2          eq-1 

where m’ is the particle’s mass, and l’ is the potential well’s width. Or 

 

𝐸𝑛 = 𝑛
2𝐸1          eq-2 

 

where E1 is the ground state’s state energy 

 

𝐸1 =
ℎ2

8𝑚′𝑙′𝑛
2          eq-3 

 

and its wave function is  

 

𝜓𝑛 = √
2

𝑙′
sin (

𝑛𝜋

𝑙′
𝑥)         eq-4 

 

Figure 1 (a, b, c, from left to right) shows the plotted result of a particle in a 1D∞QM as QM state energy, wave function and 

probability density. 

 

 
Figure 1 (a, b, c, from left to right). The QM result of a particle in an infinitely deep square well potential. 1a, QM state 

energy; 1b, wave function; 1c, probability density. 

 

 

In 2015, after many tries, I realized that the circular 1D orbital standing waves (of de Broglie’s matter wave) in 

Bohr’s model can be perfectly represented by the standing waves in a 1D∞QM shown in Figure 1. Or, in other words, the 

QM of Bohr model and the QM of an infinitely deep square well potential are equivalent! Figure 2 shows the detailed 

explanation. First, we need to introduce two quantum numbers here: the quantum number n is used only for the r-dimension, 

and the quantum number j is used only for the φ-dimension. For Bohr model, n ≡ j, and each n can have only one j (see 

Figure 2a). However, for a 2j (j=1,2,3…) divisible planet model, n can be not equal to j, and each n can have countless j(s) 

(see Figure 2b, and also see sections after section I-a). 
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Figure 2a (left). Demonstration of circular 1D matter waves for Bohr model (n ≡ j, each n can have only one j). 

Figure 2b (right). Demonstration of circular 1D matter waves for a 2j divisible planet model, n ≠ j, and each n can have 

countless j(s), only showed n=3 with j=1, 2, 3, and n=2 with j=1, 2, 3. 

 

In Figure 3a, a circular 1D de Broglie matter wave in Bohr model with φ dimension quantum number j (=n) = 3 is 

displayed. Let us define that at point A (φ=0), the wave amplitude =0. Notice that for a de Broglie matter wave in Bohr 

model with any n number (n =j =1, 2, 3, …), the point B (φ=π) always has the wave amplitude =0. So both points A (φ=0) 

and B (φ=π) are always the wave nodes for any n (even or odd) in Bohr model. Imagine that we can pull point B away from 

point A, and make the AB circle line become an AB straight line, then a circular orbit traveling wave become a straight-line 

traveling wave which bounces back at points A and B. This is exactly the standing wave shown in Figure 3b (where j = 1, 2, 

and 3 modes are presented). From this, we can easily calculate the width of the (re-modeled) infinity deep potential well, l’ = 

π * rn. We can see that Figure 3b is a typical 1D infinity potential well’s QM. The major difference between Figure 3b and 

Figure 1b is, in Figure 3b, the bouncing back standing wave opposites its amplitude at the wall (see the red arrows), while in 

Figure 1b, it is not clear the bouncing back standing wave opposites its amplitude at the wall or not. 

 

 
 

Figure 3 (a, b, c, d, from left to right). Bohr model’s circular 1D orbit wave function ψ(n=3) (Figure 3a, left) is remodeled in 

a 1D∞QM (Figure 3b, middle-left, n=3, j=1, 2, 3). The real time changing of standing waves are shown in Figure 3c. The 

corresponding probability function |ψ|^2 is shown in Figure 3d (right) with 2j of peaks. The red arrows are the traveling 

directions of waves. The quantum number n is for r-dimension and j is for φ-dimension. For Bohr model, j ≡ n. But for a 

generalized model, j is independent of n. 

 

 

To prove that Bohr model’s circular orbit wave (Figure 3a) can be remodeled in a 1D∞QM (Figure 3b), let us re-

calculate Bohr model’s hydrogen atom energy transition by using the remodeled 1D∞QM. After applying the known 
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conditions rn = a0 *n^2, and l’n = π * rn = π * a0 * n^2, where a0 is the Bohr radius, the QM state energy of 1D∞QM (eq-1) 

becomes 

 

𝐸𝑛 = 𝑛
2 ℎ2

8𝑚′𝑙′𝑛
2 = 𝑛2

ℎ2

8𝑚′(𝜋𝑎0𝑛
2)2
=

ℎ2

8𝑚′(𝜋𝑎0𝑛)
2      eq-5 

 

This En is a positive value and has En → ∞ at n → 0. In Bohr model’s hydrogen, the electron’s En (see the original Bohr 

model formula in Giancoli’s book, eq-37-14a, and copied here as eq-6)  

 

𝐸𝑛 = −(
𝑍2𝑒4𝑚′

8𝜀0
2ℎ2

) (
1

𝑛2
)         eq-6 

 

has a negative value and En = 0 at n = ∞. This is because 1D∞QM’s energy eq-1 correlates to the {N,n} QM’s φ-1D-

diemensional QM (see SunQM-4’s eq-20), while Bohr QM’s energy correlates to the 3D-dimensional QM (see SunQM-4’s 

eq-21). So in eq-5 we need to replace the En by 0 - En, or the corrected En is 

 

𝐸𝑛 = −
ℎ2

8𝑚′(𝜋𝑎0𝑛)
2         eq-7 

 

In Table 1, we used 1D∞QM’s eq-7 to re-calculate Bohr mode’s orbit energy for n= 1, 2, and 3 (shown in column 3). When 

comparing to the classical calculation eq-8 (combined with rn = a0 * n^2, shown in column 4), 

 

𝐸𝑛 = −
1

2
(

1

4𝜋𝜀0
)
𝑍𝑒2

𝑟𝑛
         eq-8 

 

or the calculation from the original Bohr model formula eq-6 (shown in column 5), they all showed the same result. Of cause, 

the calculated photon emission wave length is also the same between the 1D∞QM re-modeled result and the experimental 

result (see Table 1’s bottom part). This clearly proved that Bohr model’s 1D circular orbit wave (Figure 3a) can be remodeled 

in a 1D∞QM (Figure 3b). 

 

Table 1. Demonstration of Bohr model result can be calculated by using a 1D∞QM. 

 
Note: column 5 lost the negative sign due to Microsoft Excel (v2007 & v2019)’s software bug. 

 

 

Furthermore, by using 2π *a0 = λn=1, and h / λn = pn , and pn = m’ * vn , we are able to deduce the particle version of 

Bohr’s model from a 1D∞QM state energy formula eq-7: 

 

𝐸𝑛 = −
ℎ2

8𝑚′(𝜋𝑎0𝑛)
2 = −(

1

2𝑚′) (
ℎ

2𝜋𝑎0
)
2

(
1

𝑛2
) = −(

1

2𝑚′) (𝑝𝑛=1)
2 (

1

𝑛2
) = −(

1

2
)𝑚′𝑣1

2 (
1

𝑛2
) = 𝐸1 (

1

𝑛2
)  eq-9 

 

where E1 = -(1/2)* m’ * v1^2. 

n=

En = - h^2 / 

[8m(π a0 n)^2]

En = -1/2 * 

(1/4πε0) *Ze2/rn

En = - [Z^2 * e^4 * m /(8 

* ε0^2 *h^2)] / n^2

En=1 1 -2.18E-18 -2.18E-18 2.18E-18

En=2 2 -5.45E-19 -5.45E-19 5.45E-19

En=3 3 -2.42E-19 -2.42E-19 2.42E-19

 λ2→1=c/f =hc / (E2-E1),  (nm) 121.50

 observed H-atom λ2→1= (nm) 121.57

 λ3→1=c/f =hc / (E3-E1),  (nm) 102.52

 observed H-atom λ3→1= (nm) 102.57

 λ3→2=c/f =hc / (E3-E2),  (nm) 656.10

 observed H-atom λ3→2= (nm) 656.3
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Note: Although I made above deduces independently in 2015 ~ 2016, I will not be surprised that if some other 

scientists had already published the similar result many years ago (because this is a 100 years old subject). If so, readers 

please inform me so that I can cite those publications (probably in SunQM-4s7). Sorry I am only a citizen scientist of QM, 

don’t know much about the history that beyond what the general QM text books mentioned. Note: on 4/9/2020, I accidently 

found wiki “Particle in a ring”, and it shows that circular 1D QM has been solved by other scientists (although no 

citation/source has been listed). The method used is very different than that of mine, so I decided to present my result as is. 

Now let’s discuss a little bit more on the probability curves in Figure 1c and Figure 3d. At j=3, Figure 1c shows 

there are 3 peaks in the potential well from x = 0 to x = +l’. In the QM theory of a particle in a 1D infinity deep potential 

well, this means that the probability of finding this particle in the well is spread more in the 0 to +l’ range, rather than at the 

center position (which is l’/2). It does not mean that this single particle is divided into three pieces. Similarly, Figure 3d’s j=3 

shows that there are 2j=6 peaks in the φ-dimension from 0 to 2π (or from -π to +π). It also means that the probability of 

finding this particle in the circular is spread more evenly in the whole circle, rather than that the particle itself is divided into 

6 pieces. However, if we are not bound with the traditional QM’s explanation, Figure 3d’s j=3 mode does can be explained as 

there are j = 3 (but not 2j =6) objects in the 1D circular orbit (see section II for details). 

 

 

I-b.   Using non-Born probability (NBP) to explain the 1D infinity deep potential well QM (1D∞QM) 

 

 Figure 3b showed that a standing wave is made of two equal but opposite traveling waves. The rightward (+x) 

traveling wave can be written as 

 

ψrightward ∝ sin [
2π

λ
(x − vt)] = sin(kx − ωt) = sin(jx − ωt)     eq-10 

 

where wave number k = 2*π/λ, angular frequency/velocity ω = 2*π*f, and v = λ*f (see Douglas C. Giancoli, Physics for 

Scientists & Engineers with Modern Physics, 4th ed. 2009, eq-15-10b, and eq-15-11). The last step in eq-10 is because in 1D 

infinity deep potential well, k = j (see Figure 3). The leftward (-x) traveling wave can be written as 

 

ψleftward ∝ sin(jx + ωt)         eq-11 

 

So that the sum of eq-10 and eq-11 gives the time-dependent standing wave changes (as sown in Figure 3c): 

 

ψStandingWave = ψrightward +ψleftward ∝ sin(jx − ωt) + sin(jx + ωt) = 2 sin(jx) cos(ωt)  eq-12 

 

The last step used the trigonometric sum-to-product identity 

 

sin(a) + sin(b) = 2 sin [
(a+b)

2
] cos [

(a−b)

2
]       eq-13 

 

Eq-12 can be treated as a spatial (of x) wave sin(j*x) with its amplitude is modulated by a time factor cos(ω * t). An 

illustrative plot of eq-3 is shown in Figure 3c (with relative amplitude value). 

Born probability explanation: For a 1D∞QM’s ψ = sin(j*x) matter wave function (see Figure 1b), its Born 

probability density function is |ψ|^2 = [sin(j*x)]^2 (see Figure 1c). Using the standard trigonometric formula  

 

[cos(φ 2⁄ )]2 = 
1+cos(φ)

2
         eq-14 

or  

[sin(φ 2⁄ )]2 = 
1−cos(φ)

2
         eq-15 

 

We then have  
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|ψ|2 ∝ [sin(jx)]2 =
[1−cos(2jx)]

2
        eq-16 

 

non-Born probability (NBP) explanation: In NBP, the probability directly proportional to the wave function, or 

|ψ|^2 ∝ ψ = sin(j*x - ω * t). A normalized probability value has to be between 0 and 1, with minimum value = 0 and 

maximum value = 1. Therefore we need to lift up sin(j*x - ω * t) curve to 1 + sin(j*x - ω * t) to make its minimum =0, and 

then divide it by two to make its max =1. So it become 

 

|ψrightward|NBP
2

=
[1+sin(jx−ωt)]

2
        eq-17 

 

and 

 

|ψleftward|NBP
2 =

[1+sin(jx+ωt)]

2
        eq-18 

 

The total NBP for the two opposite traveling waves (equals to a standing wave) is the sum of eq-17 and eq-18,  

 

|ψ|NBP
2 ∝

[1+sin(jx−ωt)]

2
+

[1+sin(jx+ωt)]

2
= 1 + sin(jx) cos(ωt)     eq-19 

 

Again, sin(j*x) *cos(ω * t) in Eq-19 can be treated as a spatial wave sin(j*x) with its amplitude is modulated by a time factor 

cos(ω*t). When integrating F(x,t) = sin(j*x) *cos(ω * t) with ∫ F(x,t) d(j*x) for the whole x range from 0 to 2π, it equals to 

zero, meaning at any time t, the averaged whole x range (from 0 to 2π)’s probability |ψ(x)x-averaged-NBP|^2 = 1. When 

integrating F(x,t) = sin(j*x) *cos(ω * t) with ∫ F(x,t) d(ω * t) for the whole ω * t range from 0 to 2π, it also equals to zero, 

meaning at any position x, the averaged whole time period (ω * t  from 0 to 2π)’s probability |ψ(t)t-averaged-NBP|^2 = 1. An 

illustrative plot of eq-12 and eq-19 is shown in Figure 4. 

 

 
 

Figure 4a (left). Illustration of standing waves in 1D∞QM (with j=1, 2, 3) described by eq-12. 

Figure 4b (middle). Illustration of NBP for the standing waves in 1D∞QM (with j=1, 2, 3) described by eq-19. 

Figure 4c (right). Illustration of unidirectional NBP in a circular orbit (with j=1, 2, 3). 

 

Discussion of 1D∞QM’s or circular 1D QM’s NBP in section I-b: 

 

1)  NBP can be used to explain a circular orbit based 1D∞QM. Notice that for j = odd number in Figure 4b, to make the 

averaged NBP=1, we need to count-in the backward NBP from φ=π to φ=2π besides from φ=0 to φ=π.  
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2)  For 1D∞QM, the NBP function form (eq-19) is significantly different than the Born probability function form (eq-16):  

NBP curve’s peak is fatter that Born probability curve’s peak. The advantage of NBP is obvious: it can calculate a circular 

orbit’s unidirectional traveling wave’s probability density (see Figure 4c) while the Born probability can only be used for a 

standing wave (or a combined two opposite-directional traveling waves). 

 

3)  Comparing Figure 4c to Figure 3d, we see that for a planet that is doing circular orbital movement, because it must have a 

single mass (or probability) peak in a circular orbit, when using NBP, we need to use n=j=1 as the ground state. This is 

because at n=1, NBP equals to the lifted sin(x) wave and it has only one probability (or mass) peak. However, when using 

Born probability, we need to use n=1/2 as the ground state. This is because at n=1, Born probability [sin(x)]^2 produces two 

peaks in a circle, while only n=1/2 ’s Born probability [sin(x/2)]^2  will produce a single probability peak in a circle. The 

trigonometric relationship in eq-14 and eq-15 exactly reflect this relationship between NBP and Born probability! Now we 

can explain what is the meaning of eq-15 (which it is used in eq-16). Here we use eq-14 instead of eq-15 for the explanation 

(because it is more intuitive). [cos(x/2)]^2 in the left side of eq-14 means a wave function cos(x) ’s Born probability (so it is 

|ψ|^2) calculated at the ground state (so it is n=1/2, or equivalent to cos(x/2) ), and the right side is the NBP that equals to the 

wave function cos(x) itself (meaning n=1), although it is transformed as lift up the wave function cos(x) (by adding 1) to 

make the min =0, and then scale down the amplitude (by dividing 2) to make the max =1, so it ends as (1 + cos(x))/2. So the 

physical meaning of eq-14 is: it switches a ground state (n=1/2) Born probability into a ground state (n=1) NBP. The same 

explanation is applicable to eq-15 (although a little bit more complicated, see eq-43’s explanation). This transformation is 

applicable not only to cos(x) or sin(x) wave, but also to cos(j*x) and sin(j*x) waves (like we did in eq-16, and also see 

section II). Notice that eq-14 relationship has also been used in SunQM-4. This is also the exact physical meaning of 

Φ(φ)equivalent and |Φ(φ)equivalent|^2 mentioned in SunQM-4’s eq-12 and eq-13. 

 

4)  Notice that in 1D∞QM’s j ≥1 Born probability, we used to use sine wave because it makes the probability = 0 at the wall 

of the well. But for j=1/2, or for NBP, we better to use cosine wave because it is easier to interpret. 

 

5)  Repeat the key explanation of NBP calculation: use a cosine wave function cos(x) to replace sine wave function in 

1D∞QM (because it is equivalent to a circular 1D QM in which sine wave and cosine wave are equivalent), lift-up wave by 

adding one to make min = 0, and dividing by two to normalized max = 1. So cos(x) ’s NBP = [1+cos(x)]/2. Then using eq-14, 

cos(x) ’s NBP = [1+cos(x)]/2 = [cos(x/2)]^2, which means a cos(x) wave’s NBP (at n=1) equals to a cos(x) wave’s Born 

probability at n=1/2. 

 

6)  The comparison of Born probabilities at the ground state n = 1/2 between the 1D∞QM and the harmonic oscillator 

potential well QM will be given in the future study. 

 

 

II.  Multiplier n ’s matter wave cos(n*x), linear combination, and non-Born Prob 

 

 In this section we study how to apply NBP to cos(n*x) kind wave with either multi peaks or a single (wave packet) 

peak. Note: quantum number j is used only in 1D∞QM, quantum number n (and multiplier n’, sometimes also written as n) is 

used in {N,n} QM, quantum number m is used in QM for φ-dimension, and in nLL QM state, m=n-1. However, in this 

section, for discussing the NBP of a cosine wave function, we treat cos(n*x), cos(m*x), or cos(j*x) the same and 

exchangeable. We also treat circular 1D QM and 1D∞QM exchangeable. 

 

 

II-a.  Non-Born Probability explanation for cos(j*x) type multi-peak matter wave in circular 1D QM 

 

 A Solar {N,n//q} QM structure’s nLL orbit can also be treated as a circular 1D orbit in 1D∞QM. An eastward 

traveling wave (here we define that eastward = rightward = positive direction, and westward = leftward = negative direction) 
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can be described by eq-10 in 1D∞QM. For easy explanation, let’s use cosine wave instead of sine wave, so the circular 1D 

QM description of this wave is  

 

ψeastward ∝ cos(jx − ωt)         eq-20 

 

And the circular 1D QM description of this wave’s NBP is (lifting-up the wave function by one, and then dividing by two) 

 

|ψeastward|NBP
2 =

[1+cos(jx−ωt)]

2
        eq-21 

 

Here we use |ψ|^2NBP to distinguish NBP from the traditional Born probability |ψ|^2. Plot eq-21 with j=8 and with either ω * t 

= 0, or ω * t = 1 (in Figure 5a) shows that there are eight NBP peaks moving rightward. We can intuitively depict Figure 8a 

as that there are eight equal-size, equal-mass, and equal distanced objects doing circular orbit movement as shown in Figure 

5b. 

 

   
 

Figure 5a. Plot of (1 + cos(j *x - ω * t))/2, with j = 8 and with either ω * t = 0, or ω * t = 1 shows that there are eight NBP 

peaks moving rightward.  

Figure 5b. The equivalent eight equal-size, equal-mass, and equal distanced objects doing eastward circular orbit movement. 

 

 

The same wave and its Born probability in {N,n} QM’s nLL orbit description has been given in SunQM-3s11’s 

section III-c. However, the NBP in {N,n} QM’s nLL orbit description was only briefly given in SunQM-4’s section I-a. Now 

let’s explain it in details. In{N,n} QM, any object in nLL QM state (doing circular orbital movement) can be described by 

Schrodinger equation’s solution with the φ-dimensional wave (Eigen) function as either exp(imφ) or exp(-imφ). Then (same 

as shown in SunQM-3s11’ eq-31), we can linearly combine these two wave functions to be  

 

Y(𝑙, ±m) =

{
 

 
[Y(𝑙,m) + Y(𝑙, −m)]

2
∝
[eimφ(sin θ)m + e−imφ(sin θ)m]

2
= cos(mφ)(sin θ)m………when m = even

[−Y(𝑙,m) + Y(𝑙, −m)]

2
∝
[eimφ(sin θ)m + e−imφ(sin θ)m]

2
= cos(mφ)(sin θ)m………when m = odd

 

 

            eq-22 

Or simply, 

 

Y(𝑙, ±m) = cos(mφ) [sin(θ)]m        eq-23 

 

where Y(l,m) is the spherical harmonic function, l = m = n-1, and n can either base n or multiplier n’. Because a linear 

combination of a partial differential equation (PDE)’s solution is still a valid solution of this PDE, eq-23 is still a solution of 

Schrodinger equation (although it represents a φ-dimensional standing wave mode). Then the corresponding φ-dimensional 

wave function is 

 

Φ(φ) ∝ cos(mφ)         eq-24 

 

rn X=0 
φ=0

X=π
φ= π
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and the corresponding NBP (which is wave function plus one divide two) is 

 

|Φ(φ)|NBP
2 =

[1+cos(mφ)]

2
         eq-25 

 

Plot eq-25 with m=8 gives similar (but in standing still) curve as in Figure 5a. So now both circular 1D QM (or 1D∞QM) 

description (eq-20 and eq-21) and {N,n} QM nLL orbit description (eq-24 and eq-25) have the similar cosine wave function 

and NBP, and both descriptions are good for the situation in Figure 5b (although one is in standing mode, and one is in 

traveling mode). 

 

 

II-b.  Non-Born Probability explanation for a single-peak in circular 1D QM using a “citizen-scientist level” method 

 

 Then if all eight objects in Figure 5b are accreted to be one object at position φ=0 (or x=0), what is the 

corresponding wave function or NBP? In SunQM-4’s eq-10 we used a “citizen-scientist level method”. Now let’s re-write it 

as 

 

|Φ(φ)|NBP
2 = Φ(φ) ∝ cos(mφ) → eimφ = (eimφ 2⁄ )

2
= (eiφ 2⁄ )

2m
= {[cos(φ 2⁄ ) + i sin(φ 2⁄ )]2}m → {[cos(φ 2⁄ )]2}m =

[
1+cos(φ)

2
]
m

= [
1+cos(φ)

2
]
(n−1)

  

            eq-26 

 

where m = n-1. With the knowledge we just learned, now we can explain the physical meaning of all steps in eq-26. exp(imφ) 

= [exp(imφ/2)]^2 means to switch from NBP (where ground state is n=1, and |ψ|^2NBP = ψ) to Born probability (where 

ground state is n=1/2, and the true |ψ|^2). exp(imφ) = [exp(iφ)]^m means to switch from m number of probability peaks (or m 

objects) to a single probability peak (or one accreted object). The switch of cos(mφ) to exp(imφ) is to make the above power 

index math operation possible, and the back switch is to make NBP a real value. The second last step is to switch NBP from a 

wave function form to a forever positive from (by lifting-up the wave function using eq-14). Note: although eq-26 can be 

written as {[1+cos(φ)]/2}^m =[cos(φ/2)]^(2m), but we don’t want to do it because we want to present NBP as a function of 

its wave function cos(φ). 

 One way to show how m numbered probability peaks decreased into a single probability peak in eq-26 is to add the 

intermediate steps in that equation (using the citizen scientist level method): 

 

|Φ(φ)|NBP
2 ∝ cos(mφ) → eimφ = (eibφ 2⁄ )

2m b⁄
→ {[cos(bφ 2⁄ )]2}m b⁄ = [

1+cos(bφ)

2
]
m b⁄

  eq-27a 

 

where m is {N,n} QM quantum number in φ-dimension, and b can be any integer between 1 and m that makes m/b equals to 

an integer. For example, let’s set n=17, then m=n-1=16, so b can be 1, 2, 4, 8, 16 (to make m/b equals to an integer). If we 

choose b=1, 4, and 16, then the corresponding m/b=16, 4, and 1, or NBP function = {[1 + cos(φ)]/2}^16, {[1 + 

cos(4*φ)]/2}^4, and [1 + cos(16*φ)]/2. In Figure 6 we plot these three functions with each function’s integration normalized 

to that of the single peak’s {[1 + cos(φ)]/2}^16  integration. It clearly shows how 16 objects (or probability peaks) decreases 

step by step into one object (or peak) with the fixed amount of total mass. 

 Notice that eq-27a can also be deduced as eq-27b: 

 

|Φ(φ)|NBP
2 ∝ cos(mφ) → eimφ = (eibφ)

m b⁄
→ [cos(bφ)]m b⁄ → [

1+cos(bφ)

2
]
m b⁄

  eq-27b 

 

The major difference is: in eq-27b, we directly use NBP’s method cos(x) → [1+cos(x)]/2, while in eq-27a, we first calculate 

Born probability at n=1/2, then using eq-14 to switch Born probability into NBP. So eq-27a and eq-27b demonstrated that 

these two deductions end to the same NBP result. 
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Figure 6. Plot of eq-27 to show how 16 objects (or NBP peaks) decreased step by step into one object (or NBP peak) with the 

fixed amount of total mass. 

 

 

 

II-c.  Non-Born Probability explanation for a single-object in circular 1D QM using a linear combination of NBP 

 

 In SunQM-3s11 section III-c from eq-35 to eq-45, we have deduced a linear combination of cos[(m+ δ)φ)] wave for 

the φ-dimensional wave function and then used it for Born probability calculation. Here we use the same method for NBP 

calculation (note: it had been mentioned briefly in SunQM-4 from eq-12 through eq-16 without much explanation). First, we 

construct a (normalized) linear combination of a group of cos[(m+ δ)φ)] with the integer number m (= n-1) that is deviated by 

a small integer δ (with |δ| << m): 

Φ(φ) ∝  
1

1 + 2δ
∑cos[(m + δ)φ]

+δ

−δ

 

            eq-28 

 

where 1/(1+2* δ) is the normalization factor. When we plot eq-28 at m = 1024 and δ = 36 (shown in Figure 7a), it shows that 

a wave packet is formed beyond many single cos[(m+ δ)φ)] waves, and the envelop of this wave packet (almost) perfectly 

fits to [cos(φ)]^m curve’s one peak at φ=0, or we can write it as 

 

Φ(φ) ∝  
1

1 + 2δ
∑cos[(m + δ)φ]

+δ

−δ

→ [cos(𝜑)]𝑚 

            eq-29 

 

There are two ways to calculate NBP: a) for eq-28, we should calculate NBP as lift-up the wave of eq-28 to make min=0 by 

subtracting its baseline -[cos(φ)]^m (which equivalent to add [cos(φ)]^m), and then dividing by 2 to make max =1: 

 

|Φ(φ)|NBP
2 = {

1

1 + 2δ
∑cos[(m + δ)φ]

+δ

−δ

+ [cos(𝜑)]𝑚} 2⁄  

            eq-30 

 

b) for eq-29, we should calculate NBP as lift-up the wave of eq-29 to make min=0 by adding one to cos(φ) and then dividing 

by 2 to make max =1: 

 

0

1

-3 -2 -1 0 1 2 3

φ

|Φ(φ)|^2 ∝ exp(imφ) probability can form 
either 1 or 4 or 16 peaks 

0.28* (1 + cos(16φ))/2

0.512* [(1 + cos(4φ))/2]^4

[(1 + cos(φ))/2]^16
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|Φ(φ)|NBP
2 = Φ(φ) ∝  

1

1 + 2δ
∑cos[(m + δ)φ]

+δ

−δ

→ [cos(𝜑)]𝑚 = [
1 + cos(𝜑)

2
]

𝑚

 

            eq-31 

 

So eq-31 (in which NBP is calculated by using a more sophisticated math with the linear combination of wave functions) has 

the same form as eq-26 (where NBP is calculated by using a citizen scientist level method). Comparing the plot of eq-30 and 

eq-31 (see Figure 7b), we see that eq-31 kind of NBP curve’s peak is always a little bit fatter than that of eq-30 (eq-30 has the 

same peak width as that of wave packet). This is caused by the wave’s amplitude is compressed to ½ in NBP.  

 

 
Figure 7a. Plot eq-28 at m = 1024 and δ = 36 shows that a wave packet, and its envelop (almost) perfectly fits to [cos(φ)]^m 

curve’s one peak at φ=0. 

 

 
Figure 7b.  Comparing the NBP density curves of eq-31 and eq-30 (ignoring the fake peaks at φ = ±π because those come 

from the [cos(φ)]^m). 

 

 

III.   An alternative (and relative independent) way to prove NBP of |Φ(φ)|^2 * |T(t)|^2 ∝ exp(imφ) * [exp(-

i*ωn,ph*t)]^2 in SunQM-4’s eq-46 (or eq-47) is correct. 

 

 What we want to do in this section is to use an alternative (and relative independent) deduction to support the non-

Born probability calculation method in SunQM-4’s eq-47 (or eq-46). According to one explanation in wiki “Uncertainty 

principle” section “Wave mechanics interpretation”, and combined with SunQM-4 section-I ’s result, a 1D wave packet can 

be created by using a collection of different n’s plane waves: 

 

Ψ(x, t) = ∑ Ane
i(pnx/ℏ−ωn,pht)

n         eq-32 

 

Because eq-32 is the wave function, not the probability function, so that ωn,ph has to be the wave packet’s phase angular 

frequency/velocity, not the group angular frequency/velocity. For the φ-dimensional only circular 1D wave packet, x should 

be replaced by rn * φ. From Bohr model we have rn = r1 * n^2, vn = v1 /n, and pn * rn = n * ℏ. So in eq-32, the pn * x/ ℏ = pn * 

rn *φ / ℏ = n * ℏ*φ / ℏ = n * φ, then we have 

 

Ψ(φ, t) = Ψ(x = rnφ, t) = ∑ Ane
i(
pnx

ℏ
−ωn,pht)

n = ∑ Ane
i(nφ−ωn,pht)

n     eq-33 

 

From SunQM-4’s eq-40 we have ωn,ph = ωn * n/2, where ωn,ph is the wave packet’s phase angular frequency/velocity, and ωn 

is the wave packet’s group angular frequency/velocity. Then, put into eq-33, we have 

-1

-0.5

0

0.5

1

-3.2 -2.2 -1.2 -0.2 0.8 1.8 2.8

φ

At m±δ = 1024±36, Σ{cos[(m±δ)φ]} 's wave packet closely approaching [cos(φ)]^m curve's φ=0 peak 

Σ{cos[(m±δ)φ]} [cos(φ)]^m

0.0

0.5

1.0

-3.2 -2.2 -1.2 -0.2 0.8 1.8 2.8
φ

At m δ = 1024±36, Σ{cos[(m±δ)φ] 's NBP curve closely to {[1+cos(φ)]/2}^m curve 

{[1+cos(φ)]/2}^m

{Σ{cos[(m±δ)φ]} + [cos(φ)]^m}/2
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Ψ(φ, t) = ∑ Ane
i(nφ−nωnt/2)

n = ∑ Ane
inφe−inωnt/2n       eq-34 

 

This is the circular 1D’s plane wave function. To obtain the probability, again we have to use SunQM-4 section I ’s result, 

that is, its spatial portion’s probability function equals to its wave function |Φ(φ)|^2 = Φ(φ) = exp(i * n * φ), and its time 

portion is squared |T(t)|^2 = [T(t)]^2 = [exp(-i * n *ωn *t / 2)]^2. So for each n,  

 

|Ψ𝑛(φ, t)|𝑁𝐵𝑃
2  ∝ einφ(e−inωnt/2)

2
= ei(nφ−nωnt) = ein(φ−ωnt)    eq-35 

 

Plot the real portion of eq-35 cos[n*(φ - ωn* t)] with n=128 shows a (probability) wave with n=128 cycles evenly distributed 

in φ-dimension’s whole range from -π to -π (see Figure 8a). Then, after sum a spectrum of n(s), 

 

∑ |Ψ𝑛(φ, t)|𝑁𝐵𝑃
2

𝑛 = ∑ ein(φ−ωnt)𝑛         eq-36 

 

we will obtain a (traveling) wave packet with the peak at φ - ωn* t = 0, and with the group angular frequency/velocity = ωn. 

Plot the real portion of eq-36 (as shown in eq-37) with n =128, δ =1 (or δ =6, or δ =36), is shown in Figure 8b (or 8c, 8d),  

 

1

1 + 2δ
∑cos[(n + δ)(φ − ωnt)]

+δ

−δ

 

            eq-37 

 

It shows that as the |δ| value increases, a single (probability) wave packet is gradually formed in φ-dimension from -π to +π 

with its peak at φ - ωn* t = 0, and the envelop of this wave packet is closely resembled by formula [cos(φ)]^n. Then we can 

use NBP’s eq-27b kind transformation to obtain eq-38: 

 

∑ |Ψ𝑛(φ, t)|𝑁𝐵𝑃
2

𝑛 = ∑ ein(φ−ωnt) → [cos(φ − ωnt)]
𝑛 = [

1+cos(φ−ωnt)

2
]
𝑛

𝑛    eq-38 

 

Comparing eq-38 with SunQM-4’s eq-48, there are the same. So (hopefully) we have proved that SunQM-4’s eq-48 is correct 

(by using a relatively independent method). Honestly to say, eq-38’s deduction may not be a mathematically strict deduction. 

But at least this deduction favors (rather than disfavors) SunQM-4’s eq-48.  

 Notice that in eq-36, we cannot make the un-equal equation in eq-39 to become equal. This is because the left side 

of eq-39 is to use linear combination to transform wave into a wave packet (and it is correct), while the right side exp[i* n 

*(φ - ωn* t)] = {exp[i *(φ - ωn* t)]}^n itself is also to transform wave into a wave packet, then the sum makes it double do the 

wave packet transformation, ant it is not correct. 

 

∑ Ane
in(φ−ωnt) ≠𝑛 ∑ An[e

i(φ−ωnt)]
𝑛

𝑛        eq-39  

 

We can apply this calculation to the Solar {N,n} QM structure. For example, in SunQM-4’s eq-80, we can use eq-36 

to represent any planet’s φ-dimensional probability density. For all eight planets, their multiplier n’ > 1E+9, so the sum-range 

from n’ - δ  = n’ - 1E+6 to n’ + δ = n’ + 1E+6 will give fairly good wave packet for the size of this planet. Notice that at n >> 

1, eq-35 is equivalent to SunQM-4’s eq-46 (copied and then approximated as eq-40 here) 

 

|Φ(φ)|2 |T(t)|2 ∝ eimφ [e−i
(
n

2
)ωnt]

2

= ei[mφ−nωnt] ≈ ei[nφ−nωnt]    eq-40 

 

where m = n-1. Also notice that one of the major differences between eq-38 (or eq-36) and SunQM-4’s eq-46 is that there is 

no positive precession n/(n-1) *ωn in eq-38 (or eq-36).   
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 At first we may think |Φ(φ)|^2 * |T(t)|^2 ∝ exp(imφ) * [exp(-i*ωn,ph*t)]^2 in SunQM-4’s eq-46 is very awkward: 

how can a non-squared Φ(φ) (meaning |Φ(φ)|^2 = Φ(φ)) times a squared T(t) ended as a physical meaningful NBP? With the 

above knowledge learned, now we can explain it: after using SunQM-4’s eq-13 (copied here as eq-41)  

 

|Φ(φ)|2 ∝ eimφ = (e
imφ

2 )
2

∝ |Φ(φ)equivalent|
2
      eq-41 

 

the non-squared |Φ(φ)|^2 = Φ(φ) function (a ground state of n=1 under NBP) become a true squared function |Φ(φ)equivalent|^2 

(a ground state of n=1/2 under Born probability). Then |Φ(φ)equivalent|^2 *|T(t)|^2 become the true squared (Born probability) 

function. 

 

 

 

 

 
 

Figure 8a. Plot the real part of eq-35 with t = 0, n=128 shows a (NBP) wave with n=128 cycles evenly distributed in φ-

dimension (from -π to -π). 

Figure 8b, c, d. Plot the real part of eq-36 with t = 0, n = 128, and δ = 1, 6, and 36 shows a (NBP) wave packet is gradually 

formed in φ-dimension (from -π to +π), and its peak is narrowed as δ value increases. 

 

 

IV.   Explanation of the planet accretion using wave function and NBP. 

 

 

IV-a.   The process of wave function’s linear combination can be used to demonstrate how mass in a belt accretes into 

a planet 
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 Figure 8 can be directly used to demonstrate how a planet (represented by Figure 8d) is gradually formed by 

accreting the mass inside a belt (represented by Figure 8a, b, c). We can easily guess out that the reason why the accretion 

causes a belt to form a planet (and not the other way around) is that in the φ-1D dimension, a planet has the lowest QM state 

energy, while a belt has the highest QM state energy. However, as a citizen QM level scientist, I am no able to calculate out 

the state energy for each of four QM states represented by Figure 8. 

 In the case of planet Jupiter, although almost all mass in {2,2}o orbit space has accreted into a single planet Jupiter, 

there is tiny amount of mass (known as the Trojan asteroids, see wiki “Trojan (celestial body)”) still unaccreted. Currently 

there are three major unaccreted mass groups in orbit {2,2}. They are “Greeks” (π/3 ahead of Jupiter in the {2,2} orbit at L4 

position), “Trojans” (π/3 after of Jupiter in the {2,2} orbit at L5 position), and “Hildas” (opposite of Jupiter in the {2,2} orbit 

at L3 position). Then (for the simplest way), we can use the superposition of two QM states to describe Jupiter (at the first 

QM state) and the three unaccreted mass groups (at the second QM state). For the first QM state (the major probability one), 

we still use Figure 8d’s φ=0 peak to represent Jupiter (which equivalents to use eq-38 to represent Jupiter’s wave function or 

NBP). For the second QM state (the minor probability one), we can use Figure 9’s φ= π (minor) peak to represent Jupiter, and 

then use the three major wave packets to represent “Greeks”, “Hildas”, and “Trojans”.  

 

 
Figure 9. Plotting of the real part of eq-35 (as shown in eq-37) with t = 0, n = 128, and δ = -3, 0, and 3 shows three major 

wave packets (or NBP peaks) evenly distributed in φ-dimension (from -π to +π). If assign Jupiter at φ= π, then these three 

major wave packets can be used to describe “Greeks”, “Trojans”, and “Hildas” as shown in the figure. 

 

 

IV-b.   1D∞QM can also be used to show how mass in a belt accretes into a planet 

 

 We can also use 1D∞QM to show how mass in a belt accretes into a planet. For example, using Figure 6 as a 

template, divide an object into 2 pieces, 4 pieces, 8 pieces, …, and calculate out the energy Ej for each quantum state at j=1, 

2, 4, 8, ... (similar as that of eq-1 and Figure 1a, although the formula is completely different). Because E1 < E2 < E4 < E8, it 

can be concluded that the mass accreting process decreases the 1D∞QM state energy while the mass dividing process 

increases the 1D∞QM state energy. Therefore, j=1 is the ground state in which all mass accreted as one object. It sounds easy 

and straightforward, but unfortunately after over three year of trying, I am still not able to deduce out a convincingly correct 

Ej formula (again due to my citizen scientist level math capability).  

 

 

V.   Explanation of an orbital moving planet’s θ-dimensional standing wave’s NBP. 

 

For a planet in Solar {N,n} QM structure doing orbital movement in φ-dimension, we have explained it as the wave 

function exp(+imφ) correlates to planet’s eastward orbital rotation’s ωn,ph, while exp(-imφ) correlates to the westward  orbital 

rotation’s ωn,ph (see SunQM-4’s eq-7). Because for an eastward rotational planet, it can be thought as the westward orbital 

rotation’s ωn,ph =0, so exp(-imφ) ∝ exp[i*ωn,ph,west*t) = exp[i*0*t) = 1 (this is SunQM-4’s eq-7). So we have a good physical 

meaning for the φ-dimension’s NBP calculation |Φ(φ)|^2 ∝ Φ(φ) ∝ exp(imφ) in SunQM-4’s eq-9. Then how to calculate the 

same planet’s θ-dimensional probability in Solar {N,n} QM structure? According to Solar {N,n} QM theory, after > 99% of 

mass quantum collapsed (r-dimensionally) into N-1 super shell, the leftover < 1% mass in N super shell further collapsed in 

θ-dimension to the equator θ = π/2 under nLL QM effect, and then standing still there (not doing the unidirectional movement 

in θ-dimension) since then. It is obvious that a planet (or a belt)’s matter wave in Solar {N,n} QM structure’s θ-dimension is 
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a standing wave Θ(θ) ∝ [sin(θ)]^m, and it seems we should use Born probability |Θ(θ)|^2 ∝ [sin(θ)]^(2m) for calculation (as 

shown in SunQM-3s11’s eq-33). However, we have showed that the correct calculation is the NBP form |Θ(θ)|^2 ∝ 

[sin(θ)]^m (shown in SunQM-4’s eq-50). After learned the knowledge from section-I, now we know that we can use the 

ground state is n=1/2 (rather than n=1) to explain. First, we still need to change the θ-dimensional wave function from sine 

wave to cosine wave Θ(θ) ∝ [sin(θ)]^m = [cos(θ’)]^m, where θ = π/2 – θ’. Then we can have 

 

|Θ(θ)|𝑁𝐵𝑃
2 ∝ cos(θ′)(n−1) ∝ {

1+cos(𝜃′)

2
}
(𝑛−1)

= [cos (
𝜃′

2
)
2

]
𝑛−1

     eq-42 

 

The explanation of eq-42 is: after the first ∝ is the wave function, after the second ∝ is the NBP calculation (the lifted-up 

wave and divided by 2), and last item [cos(θ’/2)]^2 is a standing wave’s Born probability at n=1/2. We can explain 

[cos(θ’/2)]^2 as a standing wave between θ’ = –π/2 and θ’ = +π/2, and its Born probability peak at θ’ = 0 (or θ = π/2 – θ’= 

π/2). Thus, an orbital moving planet’s θ-dimensional standing wave’s NBP (at n=1) can be directly explained as Born 

probability at n=1/2.  

  We also can directly use SunQM-4’s eq-51 (a citizen-scientist level method, copied as eq-43 here) to explain: 

 

|Θ(θ)|𝑁𝐵𝑃
2 ∝ sin(θ)(n−1) = [cos (

𝜋

2
− 𝜃)]

(𝑛−1)

→ [𝑒𝑖
(
𝜋

2
−𝜃)]

(𝑛−1)

= [𝑒
𝑖(
𝜋
2−𝜃)

2 ]

2(𝑛−1)

→ {cos [(
𝜋

2
− 𝜃) /2]}

2(𝑛−1)

=

{[1 + cos (
𝜋

2
− 𝜃)] /2}

(𝑛−1)

= {
[1+sin(𝜃)]

2
}
(𝑛−1)

   

            eq-43 

  

The last item is the NBP calculation (the lifted-up sine wave and divided by 2), then after the second “→” item {cos[(π/2 – 

θ)/2]}^2 is a n=1/2 standing wave’s Born probability (though it is not easy to figure out). So from SunQM-3s11 to SunQM-4, 

|Θ(θ)|^2 changed from =[sin(θ)]^(2m) to =[sin(θ)]^m, the physical meaning is that the planet’s matter wave still in standing 

(or opposite bi-directional traveling), but the ground state changed from n=1 to n=1/2! Or, the ground state at n=1/2 is the 

true reason that causes |Θ(θ)|^2 = Θ(θ) = [Θ(θ)equivalent]^2. 

 Here is a summary for an orbital moving planet’s NBP: Its φ-dimensional NBP (at the circular 1D QM’s ground 

state n=j=1) describes a uni-directional traveling wave’s probability. Its θ-dimensional NBP (at n=1) describes a bi-

directional traveling wave (or standing wave)’s probability (which equivalents to a Born probability at the 1D∞QM’s ground 

state with n=j=1/2). Its r-dimensional NBP may also be explained as that of θ-dimensional NBP. 

 

 

VI.   An alternative (and independent) way to prove that the NBP’s positive precession n/(n-1) *ωn is correct 

 

 Moved to SunQM-4s4. 

 

 

VII.   NBP shows more direct and intuitive physical meaning than that of Born probability 

 

In NBP, the wave function itself is the probability density function. In Figure 10, we use the 1D air mass density 

wave (e.g., a sound wave in a flute [18]) as the example. Normally the air density = 1.225 kg/m^3. When making a sound 

wave, supposing the air density vibrated at 1.225 ±0.125 kg/m^3 as shown in Figure 10a (Note: sorry that the value of ±0.125 

kg/m^3 is from my pure guess. As a citizen scientist, I don’t know how to calculate the right one. If readers know, please 

teach me). In the classical wave mechanics, we extract the density vibration part (±0.125 kg/m^3) out of the constant 

background density (1.225 kg/m^3) and then represent it as a wave shown in Figure 10b (with the wave amplitude ±1). With 

the new concept of NBP, we can describe this physical phenomenon (an air mass density vibration, or a sound wave) by a 1D 

infinity deep square potential well QM. Then the NBP density of this sound wave is the sound wave itself (see Figure 10c) 
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with minimum probability =0 and maximum probability =1. So now we can understand NBP’s true physical meaning: NBP 

is directly proportional to the wave, so it directly reflects the mass density change (just like a sound wave directly reflects the 

air mass density change)! In this way, NBP shows more direct and intuitive physical meaning than that of Born probability. 

We believe that this should be true not only for mass density, but also for other physical variables (e.g., pressure, 

temperature, even electromagnetic wave’s intensity, etc.).   

A flute sound wave (or an air mass vibration) is a physics phenomenon that exists in our daily-life-world, and in our 

daily-life-world’s length scale. It has been always explained by the Newtonian physics, and it can never be explained by the 

traditional QM. So the discovery of NBP (that directly linked a sound wave mechanics to the quantum mechanics) itself is a 

tremendous leap-forward in QM. If this is correct, then {N,n} QM explains not only the central-force field produced 

(Newtonian) physics (like the Solar system), but also many (if not all) our daily-life-world’s (Newtonian) physics (like a flute 

sound wave, etc.).   

The establish of NBP concept has enormous impact on the QM physics: it allows us to think about the 3D QM wave 

form in the real-world space directly from the 3D space mass distribution. For example, according to NBP, Earth ball’s 3D 

QM wave has ball-like shape, which is |R(1,0)|*Y(0,0)|; The spiral galaxy tells us that the galaxy’s (linearly combined) 3D 

QM wave is spiral shape; Then the Virgo supercluster at the size of {10,1//6}, the largest cosmic structure that is still 

dominated by its gravity force, should also have the (linearly combined) QM 3D wave shape like its mass distribution in 3D. 

(Note: NBP map is mass density map, but may or may not be the wave function map, because NBP may be the linear 

combination of wave functions, not a single one wave function). 

Furthermore, if we believe that NBP should be valid not only for |nLL> QM state, but also for all |n,l,m> QM states, 

then Earth’s global weather change (which is caused by the air mass density, or pressure, or moisture differences between one 

place and another) may also be directly mapped by the (linearly combined) θφ-2D Y(l,m) wave functions. Therefore, in our 

next study (SunQM-4s2), we will use NBP method to study Earth’s atmosphere pattern and its effect on the extreme weather.  

 

 
Figure 10. Illustration of how 1D air mass density vibration (Figure 10a, left) is explained as a wave (Figure 10b, middle), or 

as a NBP (Figure 10c, right) in a 1D infinity deep square potential well QM. 

 

 

VIII.   Is the Born probability merely a special case of (the more generalized) non-Born probability? 

 

In wave mechanics, a standing wave is a special case of (the more generalized) traveling wave. For two opposite 

directional waves that forms standing wave, we can use either Born probability or two NBP to describe. But for a uni-

directional traveling wave, we can only use NBP (but not Born probability) to describe. Therefore, is the Born probability 

merely a special case of (the more generalized) non-Born probability? If this is correct, then there are many QM probability 

explanations need to be re-written. For example, the Double-slit experiment need to use NBP (not Born probability) to 

explain, simply because its wave function is a uni-directional traveling wave, not a (bi-directional) standing wave! 

 

 

Air mass density 
vibration

j = 3

point A
φ = 0 
or x = 0

point B
φ = π
or x = l ‘= πrn

1.350 -
1.225 -
1.100 -

0.000 -

≈≈

m
as

s 
d

e
n

si
ty

 (
kg

/m
^3

)

Air vibration
standing wave

ψ

j = 3

point A
φ = 0 
or x = 0

point B
φ = π
or x = l ‘= πrn

1 -
0 -

-1 --1

W
av

e
 a

m
p

lit
u

d
e

non-Born probability of
Air mass standing wave

|ψ|2 = ψ

j = 3

point A
φ = 0 
or x = 0

point B
φ = π
or x = l ‘= πrn

1.0 -
0.5 -

0 -

P
ro

b
ab

ili
ty



Yi Cao, SunQM-4s1: Is Born probability merely a special case of (the more generalized) non-Born probability (NBP)?      17 
 

Conclusion 

 

 Non-Born probability calculates probability density for a uni-directional traveling (matter) wave, which naturally 

includes the linearly combined two opposite-directional traveling waves (or a standing wave), and its probability is directly 

proportional to the wave function. Born probability only calculates probability density for the standing wave. Therefore, Born 

probability is possibly to be a special case of (the more generalized) non-Born probability. [1 + cos(x)]/2 = [cos(x/2)}^2 

bridges NBP’s ground state n=1 to Born probability’s ground state n=1/2. NBP bridges the sound wave (an air mass 

vibration) mechanics to the quantum mechanics. 
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