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Summary 
This paper explores how the ring current model of an electron – or of matter-particles in general – 

relates to Louis de Broglie’s λ = h/p relation and rephrases the theory in terms of the wavefunction as 

well as Schrödinger’s wave equation for an electron in free space. In the process, we argue that the 

latter is relativistically correct because the ½ factor does not stem from the ½ factor in the non-

relativistic kinetic energy equation but from the concept of the (relativistic) effective mass of the 

pointlike charge inside of the electron, which it acquires from zipping around near or at lightspeed.  

Contents 
De Broglie’s wavelength and the Compton radius ....................................................................................... 1 

De Broglie’s dissipating wavepacket ............................................................................................................. 3 

The wavefunction, the wave equation and Heisenberg’s uncertainty ......................................................... 5 

The wavefunction and (special) relativity ..................................................................................................... 8 

The geometric interpretation of the de Broglie wavelength ...................................................................... 12 

What is the nature of the centripetal force? .............................................................................................. 16 

 

  

mailto:jeanlouisvanbelle@outlook.com


1 
 

De Broglie’s wavelength, elementary particles,  
the wavefunction and relativity 

De Broglie’s wavelength and the Compton radius 
De Broglie’s ideas on the matter-wave are oft-quoted and are usually expressed in de Broglie’s λ = h/p 

relation. However, there is remarkably little geometric or physical interpretation: what is that 

wavelength, exactly? The relation itself is easy enough to read: λ goes to infinity as p goes to zero. In 

contrast, for p = mv going to p = mc, this length becomes the Compton wavelength λ = h/p = h/mc. This 

must mean something, obviously, but what exactly?  

Mainstream theory does not answer this question because the Heisenberg interpretation of quantum 

mechanics essentially refuses to look into a geometric or physical interpretation of de Broglie’s relation 

and/or the underlying concept of the matter-wave or wavefunction which, lest we forget, must 

somehow represent the particle itself. In contrast, we will request the reader to think of the 

(elementary) wavefunction as representing a current ring.  

To be precise, we request the reader to think of the (elementary) wavefunction r = ψ = a·eiθ as    

representing the physical position of a pointlike elementary charge – pointlike but not dimensionless1 – 

moving at the speed of light around the center of its motion in a space that is defined by the electron’s 

Compton radius a = ħ/mc. This radius – which effectively doubles up as the amplitude of the 

wavefunction – can easily be derived from (1) Einstein’s mass-energy equivalence relation, (2) the 

Planck-Einstein relation, and (3) the formula for a tangential velocity, as shown below: 

E = m𝑐2

E = ℏω
} ⇒ m𝑐2 = ℏω

𝑐 = 𝑎ω⟺ 𝑎 =
𝑐

ω
⟺ ω =

𝑐

𝑎

} ⇒ m𝑎2ω2 = ℏω⟹ m
𝑐2

ω2
ω2 = ℏ

𝑐

𝑎
⟺ 𝑎 =

ℏ

m𝑐
 

This easy derivation2 already gives a more precise explanation of Prof. Dr. Patrick R. LeClair’s 

interpretation of the Compton wavelength as “the scale above which the particle can be localized in a 

particle-like sense” 3, but we may usefully further elaborate the details by visualizing the model (Figure 

1) and exploring how it fits de Broglie’s intuitions in regard to the matter-wave, which is what we set out 

 
1 The non-zero dimension of the elementary charge explains the small anomaly in the magnetic moment which is, 
therefore, not anomalous at all. For more details, see our paper on the electron model. 

2 It is a derivation one can also use to derive a theoretical radius for the proton (or for any elementary particle, 
really). It works perfectly well for the muon, for example. However, for the proton, an additional assumption in 
regard to the proton’s angular momentum and magnetic moment is needed to ensure it fits the experimentally 
established radius. We shared the derivation with Prof. Dr. Randolf Pohl and the PRad team but we did not receive 
any substantial comments so far, except for the PRad spokesman (Prof. Dr. Ashot Gasparan) confirming the 
Standard Model does not have any explanation for the proton radius from first principles and, therefore, 
encouraging us to continue our theoretical research. In contrast, Prof. Dr. Randolf Pohl suggested the concise 
calculations come across as numerological only. We hope this paper might help to make him change his mind! 

3 Prof. Dr. Patrick LeClair, Introduction to Modern Physics, Course Notes (PH253), 3 February 2019, p. 10. 

https://vixra.org/pdf/2003.0094v2.pdf
https://vixra.org/pdf/2003.0144v7.pdf
http://pleclair.ua.edu/PH253/Notes/compton.pdf
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to do in this paper.4  

 

Figure 1: The ring current model of an electron 

Of course, the reader will, most likely, not be familiar with the ring current model or – using the term 

Erwin Schrödinger coined for it – the Zitterbewegung model and we should, therefore, probably quote 

an unlikely authority on it so as to establish some early credentials5: 

“The variables [of Dirac’s wave equation] give rise to some rather unexpected phenomena 

concerning the motion of the electron. These have been fully worked out by Schrödinger. It is 

found that an electron which seems to us to be moving slowly, must actually have a very high 

frequency oscillatory motion of small amplitude superposed on the regular motion which 

appears to us. As a result of this oscillatory motion, the velocity of the electron at any time 

equals the velocity of light. This is a prediction which cannot be directly verified by experiment, 

since the frequency of the oscillatory motion is so high and its amplitude is so small. But one 

must believe in this consequence of the theory, since other consequences of the theory which 

are inseparably bound up with this one, such as the law of scattering of light by an electron, are 

confirmed by experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, 

December 12, 1933) 

Indeed, the dual radius of the electron (Thomson versus Compton radius) and the Zitterbewegung 

model combine to explain the wave-particle duality of the electron and, therefore, diffraction and/or 

interference as well as Compton scattering itself. We will not dwell on these aspects of the ring current 

electron model because we have covered them in (too) lengthy papers before. Indeed, we will want to 

stay focused on the prime objective of this paper, which is a geometric or physical interpretation of the 

matter-wave.  

Before we proceed, we must note the momentum of the pointlike charge – which we denote by p in the 

illustration – must be distinguished from the momentum of the electron as a whole. The momentum of 

 
4 We will analyze de Broglie’s views based on his paper for the 1927 Solvay Conference: Louis de Broglie, La 
Nouvelle Dynamique des Quanta (the new quantum dynamics), 5th Solvay Conference, 1927. This paper has the 
advantage of being concise and complete at the same time. Indeed, its thirty pages were written well after the 
publication of his thesis on the new mécanique ondulatoire (1924) but the presentation helped him to secure the 
necessary fame which would then lead to him getting the 1929 Nobel Prize for Physics. 

5 For an overview of other eminent views, we refer to our paper on the 1921 and 1927 Solvay Conferences. 

http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html
http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html
https://vixra.org/pdf/2005.0046v3.pdf
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the pointlike charge will always be equal to p = mc.6 The rest mass of the pointlike charge must, 

therefore, be zero. However, its velocity give its an effective mass which one can calculate to be equal to 

meff = me/2.7 

Let us now review de Broglie’s youthful and/or not-so-youthful intuitions.8 

De Broglie’s dissipating wavepacket   
The ring current model of an electron incorporates the wavelike nature of an electron: the frequency of 

the oscillation is the frequency of the circulatory or oscillatory motion (Zitterbewegung) of the pointlike 

electric charge. Hence, the intuition of the young Louis de Broglie that an electron must have a 

frequency was, effectively, a stroke of genius. However, as the magnetic properties of an electron were, 

by then, not well established and this may explain why Louis de Broglie is either not aware of it or 

refuses to further build on it.9  

Let us have a closer look at his paper for the 1927 Solvay Conference, titled La Nouvelle Dynamique des 

Quanta, which we may translate as The New Quantum Dynamics. The logic is, by now, well known: we 

think of the particle as a wave packet composed of waves of slightly different frequencies νi.10 This leads 

to a necessary distinction between the group and phase velocities of the wave. The group velocity 

corresponds to the classical velocity v of the particle, which is often expressed as a fraction or relative 

 
6 We consciously use a vector notation to draw attention to the rather particular direction of p and c: they must be 
analyzed as tangential vectors in this model. 

7 We may refer to one of our previous papers here (Jean Louis Van Belle, An Explanation of the Electron and Its 
Wavefunction, 26 March 2020). The calculations involve a relativistically correct analysis of an oscillation in two 
independent directions: we effectively interpret circular motion as a two-dimensional oscillation. Such oscillation 
is, mathematically speaking, self-evident (Euler’s function is  geometric sum of a sine and a cosine) but its physical 
interpretation is, obviously, not self-evident at all! 

8 We must quality this remark. Louis de Broglie was, obviously, a youthful genius but he does trace his own ideas 
on the matter-wave back to the time of writing of his PhD thesis, which is 1923-1924. Hence, he was 32 years old 
at the time, not nineteen! The reader will also know that, after WW II, Louis de Broglie would distance him from 
modern interpretations of his own theory and modern quantum physics by developing a realist interpretation of 
quantum physics himself. This interpretation would culminate in the de Broglie-Bohm theory of the pilot wave. We 
do not think there is any need for such alternative theories: we should just go back to where de Broglie went 
wrong and connect the dots. 

9 The papers and interventions by Ernest Rutherford at the 1921 Conference do, however, highlight the magnetic 
dipole property of the electron. It should also be noted that Arthur Compton would highlight in his famous paper 
on Compton scattering, which he published in 1923 and was an active participant in the 1927 Conference itself. 
Louis de Broglie had extraordinary exposure to all of the new ideas, as his elder brother – Maurice Duc de Broglie – 
had already engaged him scientific secretary for the very first Solvay Conference in 1911, when Louis de Broglie 
was just 19 years. More historical research may reveal why Louis de Broglie did not connect the dots. As 
mentioned, he must have been very much aware of the limited but substantial knowledge on the magnetic 
moment of an electron as highlighted by Ernest Rutherford and others at the occasion of the 1921 Solvay 
Conference. 

10 We invite the reader to check our exposé against de Broglie’s original 1927 paper in the Solvay Conference 
proceedings. We will try to stick closely to the symbols that are used in this paper, such as the nu (ν) symbol for the 
frequency. 

http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html
http://digitheque.ulb.ac.be/fr/digitheque-instituts-internationaux-de-physique-et-de-chimie-solvay-iipcs/conseils-internationaux-de-physique-solvay-numerises-par-lulb/index.html
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velocity β= v/c.  

The assumption is then that we know how the phase frequencies νi are related to wavelengths λi. This is 

modeled by a so-called dispersion relation, which is usually written in terms of the angular frequencies 

ωi = 2π·νi and the wave numbers ki = 2π/λi.11 The relation between the frequencies νi and the 

wavelengths λi (or between angular frequencies ωi and wavenumbers ki) is referred to as the dispersion 

relation because it effectively determines if and how the wave packet will disperse or dissipate. Indeed, 

wave packets have a rather nasty property: they dissipate away. A real-life electron does not.  

Prof. H. Pleijel, then Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of 

Sciences, dutifully notes this rather inconvenient property in the ceremonial speech for the 1933 Nobel 

Prize, which was awarded to Heisenberg for nothing less than “the creation of quantum mechanics”12: 

“Matter is formed or represented by a great number of this kind of waves which have somewhat 

different velocities of propagation and such phase that they combine at the point in question. 

Such a system of waves forms a crest which propagates itself with quite a different velocity from 

that of its component waves, this velocity being the so-called group velocity. Such a wave crest 

represents a material point which is thus either formed by it or connected with it, and is called a 

wave packet. […] As a result of this theory on is forced to the conclusion to conceive of matter as 

not being durable, or that it can have definite extension in space. The waves, which form the 

matter, travel, in fact, with different velocity and must, therefore, sooner or later separate. 

Matter changes form and extent in space. The picture which has been created, of matter being 

composed of unchangeable particles, must be modified.” 

This should sound very familiar to you. However, it is, obviously, not true: real-life particles – electrons 

or atoms traveling in space – do not dissipate. Matter may change form and extent in space a little bit – 

such as, for example, when we are forcing them through one or two slits13 – but not fundamentally so!14 

 
11 The concept of an angular frequency (radians per time unit) may be more familiar to you than the concept of a 
wavenumber (radians per distance unit). Both are related through the velocity of the wave (which is the velocity of 
the component wave here, so that is the phase velocity vp): 

𝑣p  =  ν𝑖 · λ𝑖  =
ω𝑖

2π
∙
2π

k𝑖
=
ω𝑖

k𝑖
  

12 To be precise, Heisenberg got a postponed prize from 1932. Erwin Schrödinger and Paul A.M. Dirac jointly got 
the 1933 prize. Prof. Pleijel acknowledges all three in the introduction of his speech: “This year’s Nobel Prizes for 
Physics are dedicated to the new atomic physics. The prizes, which the Academy of Sciences has at its disposal, 
have namely been awarded to those men, Heisenberg, Schrödinger, and Dirac, who have created and developed 
the basic ideas of modern atomic physics.” 

13 The wave-particle duality of the ring current model should easily explain single-electron diffraction and 
interference (the electromagnetic oscillation which keeps the charge swirling would necessarily interfere with itself 
when being forced through one or two slits), but we have not had the time to engage in detailed research here. 

14 We will slightly nuance this statement later but we will not fundamentally alter it. We think of matter-particles 
as an electric charge in motion. Hence, as it acts on a charge, the nature of the centripetal force that keeps the 
particle together must be electromagnetic. Matter-particles, therefore, combine wave-particle duality. Of course, it 
makes a difference when this electromagnetic oscillation, and the electric charge, move through a slit or in free 
space. We will come back to this later. The point to note is: matter-particles do not dissipate. Feynman actually 
notes that at the very beginning of his Lectures on quantum mechanics, when describing the double-slit 

https://www.nobelprize.org/prizes/physics/1933/ceremony-speech/
https://www.feynmanlectures.caltech.edu/III_01.html#Ch1-S4
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We should let this problem rest for a while. Let us briefly look at a related but somewhat different topic: 

the wave equation. 

The wavefunction, the wave equation and Heisenberg’s uncertainty 
With the benefit of hindsight, we now know the 1927 and later Solvay Conferences pretty much settled 

the battle for ideas in favor of the new physics. At the occasion of the 1948 Solvay Conference, it is only 

Paul Dirac who seriously challenges the approach based on perturbation theory which, at the occasion, 

is powerfully presented by Robert Oppenheimer. Dirac makes the following comment: 

“All the infinities that are continually bothering us arise when we use a perturbation method, 

when we try to expand the solution of the wave equation as a power series in the electron 

charge. Suppose we look at the equations without using a perturbation method, then there is no 

reason to believe that infinities would occur. The problem, to solve the equations without using 

perturbation methods, is of course very difficult mathematically, but it can be done in some 

simple cases. For example, for a single electron by itself one can work out very easily the 

solutions without using perturbation methods and one gets solutions without infinities. I think it 

is true also for several electrons, and probably it is true generally : we would not get infinities if 

we solve the wave equations without using a perturbation method.” 

However, Dirac is very much aware of the problem we mentioned above: the wavefunctions that come 

out as solutions dissipate away. Real-life electrons – any real-life matter-particle, really – do not do that. 

In fact, we refer to them as being particle-like because of their integrity⎯an integrity that is modeled by 

the Planck-Einstein relation in Louis de Broglie’s earliest papers too. Hence, Dirac immediately adds the 

following, recognizing the problem: 

“If we look at the solutions which we obtain in this way, we meet another difficulty: namely we 

have the run-away electrons appearing. Most of the terms in our wave functions will correspond 

to electrons which are running away15, in the sense we have discussed yesterday and cannot 

correspond to anything physical. Thus nearly all the terms in the wave functions have to be 

discarded, according to present ideas. Only a small part of the wave function has a physical 

meaning.”16 

In our interpretation of matter-particles, this small part of the wavefunction is, of course, the real 

electron, and it is the ring current or Zitterbewegung electron! It is the trivial solution that Schrödinger 

had found, and which Dirac mentioned very prominently in his 1933 Nobel Prize lecture.17 The other 

part of the solution(s) is (are), effectively, bizarre oscillations which Dirac here refers to as ‘run-away 

electrons’. With the benefit of hindsight, one wonders why Dirac did not see what we see now.18 

 
experiment for electrons: “Electrons always arrive in identical lumps.”  

15 This corresponds to wavefunctions dissipating away. The matter-particles they purport to describe obviously do 
not. 

16 See pp. 282-283 of the report of the 1948 Solvay Conference, Discussion du rapport de Mr. Oppenheimer. 

17 See the quote from Dirac’s 1933 Nobel Prize speech in this paper. 

18 One of our correspondents wrote us this: “Remember these scientists did not have all that much to work with. 
Their experiments were imprecise – as measured by today’s standards – and tried to guess what is at work. Even 
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When discussing wave equations, it is always useful to try to imagine what they might be modeling. 

Indeed, if we try to imagine what the wavefunction might actually be, then we should also associate 

some (physical) meaning with the wave equation: what could it be? In physics, a wave equation – as 

opposed to the wavefunctions that are a solution to the wave equation (usually a second-order linear 

differential equation) – are used to model the properties of the medium through which the waves are 

traveling. If we are going to associate a physical meaning with the wavefunction, then we may want to 

assume the medium here would be the same medium as that through which electromagnetic waves are 

traveling, so that is the vacuum. Needless to say, we already have a set of wave equations here: those 

that come out of Maxwell’s equations! Should we expect contradictions here? 

We hope not, of course⎯but then we cannot be sure. An obvious candidate for a wave equation for 

matter-waves in free space is Schrödinger equation without the Coulomb term19: 

∂ψ

∂t
= ⅈ

ℏ

2meff
∇2ψ =

∂ψ

∂t
= ⅈ

ℏ

m
∇2ψ 

What is meff? It is the concept of the effective mass of an electron which, in our ring current model, 

corresponds to the relativistic mass of the electric charge as it zitters around at lightspeed.20  

This is interesting! The question now is: are we talking one wave or many waves? A wave packet or the 

elementary wavefunction? Let us first make the analysis for one wave only, assuming that we can write 

ψ as some elementary wavefunction ψ = a·eiθ = a·ei·(k(x−ωt). Now, two complex numbers a + i·b and c + i·d 

are equal if, and only if, their real and imaginary parts are the same, and the ∂ψ/∂t = i·(ħ/m)·∇2ψ 

equation amounts to writing something like this: a + i·b = i·(c + i·d). Remembering that i2 = −1, you can 

then easily figure out that i·(c + i·d) = i·c + i2·d = − d + i·c. The ∂ψ/∂t = i·(ħ/m)·∇2ψ wave equation 

therefore corresponds to the following set of equations21: 

• Re(∂ψ/∂t) = −(ħ/m)·Im(∇2ψ) ⇔ ω·cos(kx − ωt) = k2·(ħ/m)·cos(kx − ωt) 

• Im(∂ψ/∂t) = (ħ/m)·Re(∇2ψ) ⇔ ω·sin(kx − ωt) = k2·(ħ/m)·sin(kx − ωt) 

It is, therefore, easy to see that ω and k must be related through the following dispersion relation22: 

 
my physics professor in 1979 believed Schrödinger’s equation yielded the exact solution (electron orbitals) for 
hydrogen.” Hence, perhaps we should not be surprised. In light of the caliber of these men, however, we are. 

19 For Schrödinger’s equation in free space or the same equation with the Coulomb potential see Chapters 16 and 
19 of Feynman’s Lectures on Quantum Mechanics respectively. Note that we moved the imaginary unit to the 

right-hand side, as a result of which the usual minus sign disappears: 1/i = −i. 

20 See Dirac’s description of Schrödinger’s Zitterbewegung of the electron for an explanation of the lightspeed 
motion of the charge. For a derivation of the m = 2meff formula, we refer the reader to our paper on the ring 
current model of an electron, where we write the effective mass as meff = mγ. The gamma symbol (γ) refers to the 
photon-like character of the charge as it zips around some center at lightspeed. However, unlike a photon, a 
charge carries charge. Photons do not. 

21 We invite the reader to double-check our calculations. If needed, we provide some more detail in one of our 
physics blog posts on the geometry of the wavefunction. 

22 If you google this (check out the Wikipedia article on the dispersion relation, for example), you will find this 
relation is referred to as a non-relativistic limit of a supposedly relativistically correct dispersion relation, and the 
various authors of such accounts will usually also add the 1/2 factor because they conveniently (but wrongly) 

https://www.feynmanlectures.caltech.edu/III_toc.html
https://vixra.org/pdf/2003.0094v2.pdf
https://vixra.org/pdf/2003.0094v2.pdf
https://readingfeynman.org/2017/10/12/further-explorations-of-the-geometry-of-the-wavefunction/
https://en.wikipedia.org/wiki/Dispersion_relation


7 
 

ω =
ℏk2

m
=
ℏ𝑐2k2

E
 

So far, so good. In fact, we can easily verify this makes sense if we substitute the energy E using the 

Planck-Einstein relation E = ħ·ω and assuming the wave velocity is equal to c, which should be the case if 

we are talking about the same vacuum as the one through which Maxwell’s electromagnetic waves are 

supposed to be traveling23: 

ω =
ℏk2

m
=
ℏ𝑐2k2

E
=
ℏ𝑐2k2

ℏω
=
𝑐2k2

ω
⟺
ω2

k2
=
(2π𝑓)2

(2π λ⁄ )2
= (𝑓λ)2 = 𝑐2⟺ 𝑐 = 𝑓λ 

We know need to think about the question we started out with: one wave or many component waves? 

It is fairly obvious that if we think of many component waves, each with their own frequency, then we 

need to think about different values mi or Ei for the mass and/or energy of the electron as well! How can 

we motivate or justify this? The electron mass or energy is known, isn’t it? This is where the uncertainty 

comes in: the electron may have some (classical) velocity or momentum for which we may not have a 

definite value. If so, we may assume different values for its (kinetic) energy and/or its (linear) 

momentum may be possible. We then effectively get various possible values for m, E and p which we 

may denote as mi, Ei and pi, respectively. We can, then, effectively write our dispersion relation and, 

importantly, the condition for it to make physical sense as: 

ω𝑖 =
ℏk2

m𝑖
=
ℏ𝑐2k𝑖

2

E𝑖
=
ℏ𝑐2k𝑖

2

E𝑖
=
ℏ𝑐2k𝑖

2

ℏω𝑖
=
𝑐2k𝑖

2

ω𝑖
⟺
ω𝑖
2

k𝑖
2 = 𝑐

2⟺ 𝑐 = 𝑓𝑖λ𝑖 

Of course, the c = fiλi makes a lot of sense: we would not want the properties of the medium in which 

matter-particles move to be different from the medium through which electromagnetic waves are 

travelling: lightspeed should remain lightspeed, and waves – matter-waves included – should not be 

traveling faster.  

In the next section, we will show how one relate the uncertainties in the (kinetic) energy and the (linear) 

momentum of our particle using the relativistically correct energy-momentum relation and also taking 

into account that linear momentum is a vector and, hence, we may have uncertainty in both its direction 

as well as its magnitude. Such explanations also provide for a geometric interpretation of the de Broglie 

wavelength. At this point, however, we should just note the key conclusions from our analysis so far: 

1. If there is a matter-wave, then it must travel at the speed of light and not, as Louis de Broglie 

suggests, at some superluminal velocity. 

2. If the matter-wave is a wave packet rather than a single wave with a precisely defined frequency 

and wavelength, then such wave packet will represent our limited knowledge about the 

momentum and/or the velocity of the electron. The uncertainty is, therefore, not inherent to 

Nature, but to our limited knowledge about the initial conditions. 

 
forget to distinguish between the effective mass of the Zitterbewegung charge and the total energy or mass of the 
electron as a whole. 

23 We apologize if this sounds slightly ironic but we are actually astonished Louis de Broglie does not mind having 
to assume superluminal speeds for wave velocities, even if it is for phase rather than group velocities. 
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Let us now look at a moving electron in more detail. 

The wavefunction and (special) relativity 
Let us consider the idea of a particle traveling in the positive x-direction at constant speed v. This idea 

implies a pointlike concept of position: we think the particle will be somewhere at some point in time. 

The somewhere in this expression does not mean that we think the particle itself is dimensionless or 

pointlike: we think it is not. It just implies that we can associate the ring current with some center of the 

oscillation. The oscillation itself has a physical radius, which we referred to as the Compton radius of the 

electron and which illustrates the quantization of space that results from the Planck-Einstein relation.  

Two extreme situations may be envisaged: v = 0 or v = c. However, let us consider the more general case 

inbetween. In our reference frame24, we will have a position – a mathematical point in space, that is25 – 

which is a function of time: x(t) = v·t. Let us now denote the position and time in the reference frame of 

the particle itself by x’ and t’. Of course, the position of the particle in its own reference frame will be 

equal to x’(t’) = 0 for all t’, and the position and time in the two reference frames will be related by 

Lorentz’s equations26: 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

=
𝑣𝑡 − 𝑣𝑡

√1 −
𝑣2

𝑐2

= 0 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

 

Hence, if we denote the energy and the momentum of the electron in our reference frame as Ev and p = 

m0v, then the argument of the (elementary) wavefunction a·ei can be re-written as follows27: 

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 =
1

ℏ
E0

(

 
𝑡

√1 −
𝑣2

𝑐2

−

𝑣𝑥
𝑐2

√1−
𝑣2

𝑐2)

 =
E0
ℏ
𝑡′ 

We have just shown that the argument of the wavefunction is relativistically invariant: E0 is, obviously, 

the rest energy and, because p’ =  0 in the reference frame of the electron, the argument of the 

wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself.  

 
24 We conveniently choose our x-axis so it coincides with the direction of travel. This does not have any impact on 
the generality of the argument. 

25 We may, of course, also think of it as a position vector by relating this point to the chosen origin of the reference 
frame: a point can, effectively, only be defined in terms of other points. 

26 These are the Lorentz equations in their simplest form. We may refer the reader to any textbook here but, as 
usual, we like Feynman’s lecture on it (chapters 15, 16 and 17 of the first volume of Feynman’s Lectures on 
Physics). 

27 One can use either the general E = mc2 or – if we would want to make it look somewhat fancier – the pc = Ev/c 
relation. The reader can verify they amount to the same. 
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Note that, in the process, we also demonstrated the relativistic invariance of the Planck-Einstein 

relation! This is why we feel that the argument of the wavefunction (and the wavefunction itself) is 

more real – in a physical sense – than the various wave equations (Schrödinger, Dirac, or Klein-Gordon) 

for which it is some solution. Let us further explore this by trying to think of the physical meaning of the 

de Broglie wavelength λ = h/p. How should we think of it? What does it represent? 

We have been interpreting the wavefunction as an implicit function: for each x, we have a t, and vice 

versa. There is, in other words, no uncertainty here: we think of our particle as being somewhere at any 

point in time, and the relation between the two is given by x(t) = v·t. We will get some linear motion. If 

we look at the ψ = a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) once more, we can write p·x/ħ as Δ and 

think of it as a phase factor. We will, of course, be interested to know for what x this phase factor Δ = 

p·x/ħ will be equal to 2π. Hence, we write:  

Δ = p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ 

What is it this λ? If we think of our Zitterbewegung traveling in a space, we may think of an image as the 

one below, and it is tempting to think the de Broglie wavelength must be the distance between the 

crests (or the troughs) of the wave.28  

 

Figure 2: An interpretation of the de Broglie wavelength? 

However, that would be too easy: note that for p = mv = 0 (or v → 0), we have a division by zero and we, 

therefore, get an infinite value for λ = h/p. We can also easily see that for v → c, we get a λ that is equal 

to the Compton wavelength h/mc. How should we interpret that? We may get some idea by playing 

some more with the relativistically correct equation for the argument of the wavefunction. Let us, for 

example, re-write the argument of the wavefunction as a function of time only:    

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

E0

√1 −
𝑣2

𝑐2

(𝑡 −
𝑣

𝑐2
𝑣𝑡) =

1

ℏ

E0

√1 −
𝑣2

𝑐2

(1 −
𝑣2

𝑐2
) 𝑡 = √1 −

𝑣2

𝑐2
·
E0
ℏ
𝑡 

We recognize the inverse Lorentz factor here, which goes from 1 to 0 as v goes from 0 to c, as shown 

below.  

 
28 We have an oscillation in two dimensions here. Hence, we cannot really talk about crests or troughs, but the 
reader will get the general idea. We should also note that we should probably not think of the plane of oscillation 
as being perpendicular to the plane of motion: we think it is moving about in space itself as a result of past 
interactions or events (think of photons scattering of it, for example). 
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Figure 3: The inverse Lorentz factor as a function of (relative) velocity (v/c) 

Note the shape of the function: it is a simple circular arc. This result should not surprise us, of course, as 

we also get it from the Lorentz formula: 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

=
𝑡 −

𝑣2

𝑐2
𝑡

√1 −
𝑣2

𝑐2

= √1 −
𝑣2

𝑐2
∙ 𝑡 

This formula gives us the relation between the coordinate time and proper time which – by taking the 

derivative of one to the other – we can write in terms of the Lorentz factor: 

γ =
1

√1 − 𝑣2 𝑐2⁄
=

1

√1 − β2
=
dt

dτ
 

We introduced a different symbol here: the time in our reference frame (t) is the coordinate time, and 

the time in the reference frame of the object itself (τ) is referred to as the proper time. Of course, τ is 

just t’, so why are we doing this? What does it all mean? We need to do these gymnastic because we 

want to introduce a not-so-intuitive but very important result: the Compton radius becomes a 

wavelength when v goes to c.29 

We will be very explicit here and go through a simple numerical example to think through that formula 

above. Let us assume that, for example, that we are able to speed up an electron to, say, about one 

tenth of the speed of light. Hence, the Lorentz factor will then be equal to  = 1.005. This means we 

added 0.5% (about 2,500 eV) – to the rest energy E0: Ev = E0 ≈ 1.005·0.511 MeV ≈ 0.5135 MeV. The 

relativistic momentum will then be equal to mvv = (0.5135 eV/c2)·(0.1·c) = 5.135 eV/c. We get:   

θ =
E0
ℏ
𝑡′ =

1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 = 0.955
E0
ℏ
𝑡 

This is interesting because we can see these equations are not all that abstract: we effectively get an 

explanation for relativistic time dilation out of them. An equally interesting question is this: what 

 
29 To be precise, the Compton radius multiplied by 2π becomes a wavelength, so we are talking the Compton 
circumference , or whatever you want to call it. 
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happens to the radius of the oscillation for larger (classical) velocity of our particle? Does it change? It 

must. In the moving reference frame, we measure higher mass and, therefore, higher energy – as it 

includes the kinetic energy. The c2 = a2·ω2 identity must now be written as c2 = a’2·ω’2. Instead of the rest 

mass m0 and rest energy E0, we must now use mv = m0 and Ev = E0 in the formulas for the Compton 

radius and the Einstein-Planck frequency30, which we just write as m and E in the formula below: 

m𝑎′2ω′2 = m
ℏ2

m2𝑐2
m2𝑐4

ℏ2
= m𝑐2 

This is easy to understand intuitively: we have the mass factor in the denominator of the formula for the 

Compton radius, so it must increase as the mass of our particle increases with speed. Conversely, the 

mass factor is present in the numerator of the zbw frequency, and this frequency must, therefore, 

increase with velocity. It is interesting to note that we have a simple (inverse) proportionality relation 

here. The idea is visualized in the illustration below31: the radius of the circulatory motion must 

effectively diminish as the electron gains speed.32  

 

Figure 4: The Compton radius must decrease with increasing velocity 

Can the velocity go to c? In the limit, yes. This is very interesting because we can see that the 

circumference of the oscillation effectively turns into a linear wavelength in the process!33 This rather 

remarkable geometric property related our zbw electron model with our photon model, which we will 

not talk about here, however.34 Let us quickly make some summary remarks here, before we proceed to 

what we wanted to present here: a geometric interpretation of the de Broglie wavelength: 

 
30 Again, the reader should note that both the formula for the Compton radius or wavelength as well as the Planck-
Einstein relation are relativistically invariant. 

31 We thank Prof. Dr. Giorgio Vassallo and his publisher to let us re-use this diagram. It originally appeared in an 
article by Francesco Celani, Giorgio Vassallo and Antonino Di Tommaso (Maxwell’s equations and Occam’s Razor, 
November 2017). 

32 Once again, however, we should warn the reader that he or she should imagine the plane of oscillation to rotate 
or oscillate itself. He should not think of it of being static – unless we think of the electron moving in a magnetic 
field, in which case we should probably think of the plane of oscillation as being parallel to the direction of 
propagation. We will let the reader think through the geometric implications of this. 

33 We may, therefore, think of the Compton wavelength as a circular wavelength: it is the length of a 
circumference rather than a linear feature! 

34 We may refer the reader to our paper on Relativity, Light and Photons. 

https://vixra.org/pdf/2001.0345v4.pdf
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1. The center of the Zitterbewegung was plain nothingness and we must, therefore, assume some two-

dimensional oscillation makes the charge go round and round. This is, in fact, the biggest mystery of 

the model and we will, therefore, come back to it later. As for now, the reader should just note that 

the angular frequency of the Zitterbewegung rotation is given by the Planck-Einstein relation (ω = 

E/ħ) and that we get the Zitterbewegung radius (which is just the Compton radius a = rC = ħ/mc) by 

equating the E = m·c2 and E = m·a2·ω2 equations. The energy and, therefore, the (equivalent) mass is 

in the oscillation and we, therefore, should associate the momentum p = E/c with the electron as a 

whole or, if we would really like to associate it with a single mathematical point in space, with the 

center of the oscillation – as opposed to the rotating massless charge.  

2. We should note that the distinction between the pointlike charge and the electron is subtle but 

essential. The electron is the Zitterbewegung as a whole: the pointlike charge has no rest mass, but 

the electron as a whole does. In fact, that is the whole point of the whole exercise: we explain the 

rest mass of an electron by introducing a rest matter oscillation.  

3. As Dirac duly notes, the model cannot be verified directly because of the extreme frequency (fe = 

ωe/2π = E/h ≈ 0.123×10−21 Hz) and the sub-atomic scale (a = rC = ħ/mc ≈ 386 × 10−15 m). However, it 

can be verified indirectly by phenomena such as Compton scattering, the interference of an electron 

with itself as it goes through a one- or double-slit experiment, and other indirect evidence. In 

addition, it is logically consistent as it generates the right values for the angular momentum (L = 

ħ/2), the magnetic moment (μ = (qe/2m)·ħ, and other intrinsic properties of the electron.35  

We are now ready to finally give you a geometric interpretation of the de Broglie wavelength. 

The geometric interpretation of the de Broglie wavelength 
We should refer the reader to Figure 4 to ensure an understanding of what happens when we think of 

an electron in motion. If the tangential velocity remains equal to c, and the pointlike charge has to cover 

some horizontal distance as well, then the circumference of its rotational motion must decrease so it 

can cover the extra distance. Our formula for the zbw or Compton radius was this: 

𝑎 =
ℏ

m𝑐
=
λ𝐶
2π

 

The λC is the Compton wavelength. We may think of it as a circular rather than a linear length: it is the 

circumference of the circular motion.36 How can it decrease? If the electron moves, it will have some 

kinetic energy, which we must add to the rest energy. Hence, the mass m in the denominator (mc) 

increases and, because ħ and c are physical constants, a must decrease.37 How does that work with the 

 
35 The two results that we gave also show we get the gyromagnetic factor (g = 2). We have also demonstrated that 
we can easily explain the anomaly in the magnetic moment of the electron by assuming a non-zero physical 
dimension for the pointlike charge (see our paper on The Electron and Its Wavefunction).  

36 Hence, the C subscript stands for the C of Compton, not for the speed of light (c).   

37 We advise the reader to always think about proportional and inversely proportional relations (y = kx versus y = 
x/k) throughout the exposé because these relations are not always intuitive. The inverse proportionality relation 
between the Compton radius and the mass of a particle is a case in point in this regard: a more massive particle 
has a smaller size!  

https://vixra.org/pdf/2003.0094v2.pdf


13 
 

frequency? The frequency is proportional to the energy (E = ħ·ω = h·f = h/T) so the frequency – in 

whatever way you want to measure it – must also increase. The cycle time T must, therefore, decrease. 

We write:   

θ = ω𝑡 =
E

ℏ
𝑡 =

γE0
ℏ
𝑡 = 2π ∙

t

T
 

Hence, our Archimedes’ screw gets stretched, so to speak. Let us think about what happens here. We 

get the following formula for the λ wavelength in Figure 2: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=
𝑣

𝑐
∙
h

m𝑐
= β ∙ λ𝐶  

It is now easy to see that, if we let the velocity go to c, the circumference of the oscillation will 

effectively become a linear wavelength!38 We can now relate this classical velocity (v) to the equally 

classical linear momentum of our particle  and provide a geometric interpretation of the de Broglie 

wavelength, which we’ll denote by using a separate subscript: λp = h/p. It is, obviously, different from 

the λ wavelength in Figure 2. In fact, we have three different wavelengths now: the Compton 

wavelength λC (which is a circumference, actually), that weird horizontal distance λ, and the de Broglie 

wavelength λp. It is easy to make sense of them by relating all three. Let us first re-write the de Broglie 

wavelength in terms of the Compton wavelength (λC = h/mc), its (relative) velocity β = v/c, and the 

Lorentz factor γ: 

λp =
ℎ

p
=
ℎ

m𝑣
=
ℎ𝑐

m𝑐𝑣
=

ℎ

m𝑐β
=
λ𝐶
β
=
1

γβ

ℎ

m0𝑐
=
1

γβ
2π𝑎0 

It is a curious function, but it helps us to see what happens to the de Broglie wavelength as m and v both 

increase as our electron picks up some momentum p = m·v. Its wavelength must actually decrease as its 

(linear) momentum goes from zero to some much larger value – possibly infinity as v goes to c – and the 

1/γβ factor tells us how exactly. To help the reader, we inserted a simple graph (below) that shows how 

the 1/γβ factor comes down from infinity (+) to zero as v goes from 0 to c or – what amounts to the 

same – if the relative velocity β = v/c goes from 0 to 1. The 1/γ factor − so that is the inverse Lorentz 

factor) – is just a simple circular arc, while the 1/β function is just a regular inverse function (y = 1/x) 

over the domain β = v/c, which goes from 0 to 1 as v goes from 0 to c. Their product gives us the green 

curve which – as mentioned – comes down from + to 0. 

 
38 This is why we think of the Compton wavelength as a circular wavelength. However, note that the idea of 

rotation does not disappear: it is what gives the electron angular momentum⎯regardless of its (linear) velocity! As 
mentioned above, these rather remarkable geometric properties relate our zbw electron model with our photon 
model, which we have detailed in another paper. 

https://vixra.org/pdf/2001.0345v4.pdf
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Figure 5: The 1/γ, 1/β and 1/γβ graphs 

This analysis yields the following: 

1. The de Broglie wavelength will be equal to λC = h/mc for v = c: 

λp =
h

p
=
h

m𝑐
∙
1

β
= λ𝐶 =

h

m𝑐
⟺ β = 1⟺ 𝑣 = 𝑐 

2. We can now relate both Compton as well as de Broglie wavelengths to our new wavelength λ = β·λC 

wavelength—which is that length between the crests or troughs of the wave.39 We get the following two 

rather remarkable results: 

λp ∙ λ = λp ∙ β ∙ λ𝐶 =
1

β
·
h

m𝑐
∙ β ∙

h

m𝑐
= λ𝐶

2  

λ

λp
=
β ∙ λ𝐶
λ

=
p

h
∙
𝑣

𝑐
∙
h

m𝑐
=
m𝑣2

m𝑐2
= β2 

The product of the λ = β·λC wavelength and de Broglie wavelength is the square of the Compton 

wavelength, and their ratio is the square of the relative velocity β = v/c. – always! – and their ratio is 

equal to 1 – always!  

This is all very interesting but not good enough yet: the formulas do not give us the easy geometric 

interpretation of the de Broglie wavelength that we are looking for. We get such easy geometric 

interpretation only when using natural units.40 If we re-define our distance, time and force units by 

equating c and h  to 1, then the Compton wavelength (remember: it is a circumference, really) and the 

mass of our electron will have a simple inversely proportional relation: 

 
39 We should emphasize, once again, that our two-dimensional wave has no real crests or troughs: λ is just the 
distance between two points whose argument is the same—except for a phase factor equal to n·2π (n = 1, 2,…). 

40 Equating c to 1 gives us natural distance and time units, and equating h to 1 then also gives us a natural force 
unit—and, because of Newton’s law, a natural mass unit as well. Why? Because Newton’s F = m·a equation is 
relativistically correct: a force is that what gives some mass acceleration. Conversely, mass can be defined of the 
inertia to a change of its state of motion—because any change in motion involves a force and some acceleration. 
We, therefore, prefer to write m as the proportionality factor between the force and the acceleration: m = F/a. 
This explains why time, distance and force units are closely related. 



15 
 

λ𝐶 =
1

γm0
=
1

m
 

We get equally simple formulas for the de Broglie wavelength and our λ wavelength: 

λp =
1

βγm0
=
1

βm
 

λ = β ∙ λ𝐶 =
β

γm0
=
β

m
 

This is quite deep: we have three lengths here – defining all of the geometry of the model – and they all 

depend on the rest mass of our object and its relative velocity only. They are related through that 

equation we found above: 

λp ∙ λ = λ𝐶
2 =

1

m2
 

This is nothing but the latus rectum formula for an ellipse, which is illustrated below.41 The length of the 

chord – perpendicular to the major axis of an ellipse is referred to as the latus rectum. One half of that 

length is the actual radius of curvature of the osculating circles at the endpoints of the major axis.42 We 

then have the usual distances along the major and minor axis (a and b). Now, one can show that the 

following formula has to be true: 

a·p = b2 

 

Figure 6: The latus rectum formula 

The reader can now easily verify that our three wavelengths obey the same latus rectum formula, which 

we think of as a rather remarkable result. We must now proceed and offer some final remarks on a far 

more difficult question. 

 
41 Source: Wikimedia Commons (By Ag2gaeh - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=57428275).  

42 The endpoints are also known as the vertices of the ellipse. As for the concept of an osculating circle, that is the 
circle which, among all tangent circles at the given point, which approaches the curve most tightly. It was named 
circulus osculans – which is Latin for ‘kissing circle’ – by Gottfried Wilhelm Leibniz. Apart from being a polymath 
and a philosopher, he was also a great mathematician. In fact, he may be credited for inventing differential and 
integral calculus.  

https://commons.wikimedia.org/w/index.php?curid=57428275
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What is the nature of the centripetal force? 
We think we have sufficiently demonstrated the theoretical attractiveness of the historical ring current 

model. This is why we shared it as widely as we could. We usually get positive comments. However, 

when we first submitted our thoughts to Prof. Dr. Alexander Burinskii, who is leading the research on 

possible Dirac-Kerr-Newman geometries of electrons43, he wrote us this:  

“I know many people who considered the electron as a toroidal photon44 and do it up to now. I 

also started from this model about 1969 and published an article in JETP in 1974 on it: 

"Microgeons with spin". [However] There was [also] this key problem: what keeps [the pointlike 

charge] in its circular orbit?” 

This question still puzzled us, and we do not have a definite answer to it. It is, in fact, the only remaining 

mystery in quantum physics. What can we say about it? Let us elaborate Burinskii’s point: 

1. The centripetal force must, obviously, be electromagnetic because it only has a pointlike charge to 

grab onto, and comparisons with superconducting persistent currents are routinely made. However, 

such comparisons do not answer this pertinent question: in free space, there is nothing to 

effectively hold the pointlike charge in place and it must, therefore, spin away!  

2. In addition, the analogy with superconducting persistent currents also does not give any unique 

Compton radius: the formulas work for any mass. It works, for example, for a muon-electron, and 

for a proton. The question then becomes: what makes an electron an electron⎯and what makes a 

muon a muon? Or a proton a proton? 

For the time being, we must simply accept an electron is what it is. In other words, we must take both 

the elementary charge and the mass of the electron (and its more massive variant(s), as well as the mass 

of the proton) as given by Nature. In the longer run, however, we should probably abandon an 

explanation of the ring current model in terms of Maxwell’s equations in favor for what it is, effectively, 

the more mysterious explanation of a two-dimensional oscillation. However, we have not advanced very 

far in our thinking on these issues45 and we, therefore, welcome any suggestion that the reader of this 

paper might have in this regard. 

END 

 
43 We will let the reader google the relevant literature on electron models based on Dirac-Kerr-Newman 
geometries here. The mentioned email exchange between Dr. Burinskii and the author of this paper goes back to 
22 December 2018. 

44 This was Dr. Burinskii’s terminology at the time. It does refer to the Zitterbewegung electron: a pointlike charge 

with no mass in an oscillatory motion⎯orbiting at the speed of light around some center. Dr. Burinskii later wrote 
saying he does not like to refer to the pointlike charge as a toroidal photon because a photon does not carry any 
charge. The pointlike charge inside of an electron does: that is why matter-particles are matter-particles and 
photons are photons. Matter-particles carry charge (we think of neutrons as carrying equal positive and negative 
charge). 

45 For some speculative thoughts, we may refer the reader to previous references, such as our electron paper or 
the Annex to our more general paper on classical quantum physics. We calculate the rather enormous force inside 
of muon and proton in these papers and conclude they may justify the concept of a strong(er) force. 

https://vixra.org/pdf/2003.0094v2.pdf
https://vixra.org/pdf/2003.0144v7.pdf

