The Special Functions and the Proof of the Riemann's Hypothesis

M. SGHIAR msghiar21@gmail.com Presented to:

Université de Bourgogne Dijon, Faculté des sciences Mirande, Département de mathématiques . Laboratoire de physique mathématique, 9 av alain savary 21078, Dijon cedex, France Tel: 0033669753590

Abstract: By studying the (§) function whose integer zeros are the prime numbers, and being inspired by the article [2], I give a new proof of the Riemann hypothesis.

Résumé: En étudiant la fonction (S) dont les zéros entiers sont les nombres premiers, et en m'inspirant de l'article [2], je donne une nouvelle preuve de l'hypothèse de Riemann.

I- INTRODUCTION

The Riemann's hypothesis [2] conjectured that all nontrivial zeros of ζ are in the line $x=\frac{1}{2}$.

In this article, the study of the sghiar's function (S) which I introduced and whose integer zeros are the prime numbers inspired me to use the function Gamma Γ . And miraculously a proof similar to that used in [2] allowed me to give a short and elegant proof of the Riemann Hypothesis.

In order not to recall everything, I suppose known - among others - the functions zeta ζ , Gamma Γ : $z \mapsto \int_0^{+\infty} t^{z-1} e^{-t} dt$ and their properties (See [3] and [4]).

II- THE PROOF OF THE RIEMANN **HYPOTHESIS:**

Theorem 1 (The Riemann hypothesis) All non-trivial zeros of ζ are in the line $x=\frac{1}{2}$.

Lemma 1

$$0 < Re(z) < 1 \Longrightarrow |\int_{0}^{+\infty} \frac{t^{z-1}}{e^t - 1} dt| \neq 0$$

It suffices to prove that $Re(\int_0^{+\infty} \frac{t^{z-1}}{e^t-1} dt) \neq 0$ or

 $Im(\int_0^{+\infty} \frac{t^{z-1}}{e^t-1} dt) \neq 0$ Let z=x+iy, by change of variable, and by setting $t^{x-1}=e^u$, we deduce :

$$-Re(\int_{0}^{+\infty} \frac{t^{z-1}}{e^{t}-1} dt) = \int_{-\infty}^{+\infty} \frac{e^{u}}{e^{e^{\frac{u}{x-1}}}-1} cos(y\frac{u}{x-1}) \frac{1}{x-1} e^{\frac{u}{x-1}} du$$

Note:

As $\frac{e^u}{e^{e^{\frac{u}{x-1}}}-1}cos(y\frac{u}{x-1})\frac{1}{x-1}e^{\frac{u}{x-1}}$ is zero for $u_k=$ $(2k+1)\frac{\pi}{2}\frac{x-1}{y}$, $k\in\mathbb{Z}$ and oscillates increasing in amplitude because $g(u)=\frac{e^u}{e^{e^{\frac{u}{x-1}}}-1}\frac{1}{x-1}e^{\frac{u}{x-1}}$ is de-

creasing with u, we deduce that: $\int_{u=(2k+1)\frac{\pi}{2}}^{u=(2(k+2)+1)\frac{\pi}{2}\frac{x-1}{y}}\frac{e^u}{e^{e^{\frac{u}{x-1}}}-1}cos(y\frac{u}{x-1})\frac{1}{x-1}e^{\frac{u}{x-1}}du \text{ is different from 0 and its sign does not depend on }$ $k \in 2\mathbb{Z}$) (we have the same result if $k \in 2\mathbb{Z} + 1$):

Because: $\int_{u=(2k+1)\frac{\pi}{2}}^{u=(2(k+2)+1)\frac{\pi}{2}\frac{x-1}{y}} \frac{e^u}{e^{e^{\frac{u}{x-1}}}-1} cos(y\frac{u}{x-1})\frac{1}{x-1}e^{\frac{u}{x-1}}du = \int_{u_k}^{u_{k+2}} g(u)cos(y\frac{u}{x-1})du = \int_{u_k}^{u_{k+2}} g(u)cos(y\frac{u}{x-1})du = \int_{u_{k+1}}^{u_{k+1}} g(t)cos(y\frac{t}{x-1})dt + \int_{u_{k+1}}^{u_{k+2}} g(u)cos(y\frac{u}{x-1})du = \int_{u_{k+1}}^{u_{k+2}} cos(y\frac{u}{x-1})(g(u) - g(u-\tau))du \text{ where } \tau = \frac{\pi}{y} \text{ (it is found by chan-} cost the integral}$ ging the variable $u = t + \tau$), and so the integral $\int_{u=(2k+1)\frac{\pi}{2}}^{u=(2k+2)+1)\frac{\pi}{2}\frac{x-1}{y}} \frac{e^u}{e^{e^{\frac{u}{x-1}}}-1} cos(y\frac{u}{x-1})\frac{1}{x-1}e^{\frac{u}{x-1}}du$ is different from 0 and its sign does not depend on $k \in 2\mathbb{Z}$) (we have the same result if $k \in 2\mathbb{Z} + 1$).

By using the note above :

Let $f(u) = \frac{e^u}{e^{\frac{u}{x-1}} - 1} cos(y \frac{u}{x-1}) \frac{1}{x-1} e^{\frac{u}{x-1}}$, and $u_k = (2k+1) \frac{\pi}{2} \frac{x-1}{y}$, $k \in \mathbb{N}$

$$-Re\left(\int_{0}^{+\infty} \frac{t^{z-1}}{e^{t}-1} dt\right) = \lim_{u_{k} \to +\infty} \int_{-\infty}^{u_{k}} f(u) du$$

If $\int_{-\infty}^{u_l} f(u) du \ge 0$: So:

- Either $f'(u_l) \geq 0$ (f increasing in the vicinity of

In this case : $-Re(\int_0^{+\infty} \frac{t^{z-1}}{e^t-1} dt) = \int_{-\infty}^{u_l} f(u) du + \int_{u_l}^{u_{l+1}} f(u) du + \sum_{k \in 2\mathbb{N}} \int_{u_{k+l+1}}^{u_{(k+2)+l+1}} f(u) du \ngeq 0$

- Or either $f'(u_l) \leq 0$ (f decreasing in the vicinity

In this case : $-Re(\int_0^{+\infty} \frac{t^{z-1}}{e^t - 1} dt) = \int_{-\infty}^{u_l} f(u) du + \sum_{k \in 2\mathbb{N}} \int_{u_{k+l}}^{u_{(k+2)+l}} f(u) du \ngeq 0$

Similarly:

If $\int_{-\infty}^{u_l} f(u) du \le 0$:

- Either $f'(u_l) \geq 0$,

In this case : $-Re(\int_0^{+\infty} \frac{t^{z-1}}{e^t-1} dt) = \int_{-\infty}^{u_l} f(u) du + \sum_{k \in 2\mathbb{N}} \int_{u_{k+l}}^{u_{(k+2)+l}} f(u) du \nleq 0$ - Or either $f'(u_l) \leq 0$,

In this case: $-Re(\int_0^{+\infty} \frac{t^{z-1}}{e^t - 1} dt) = \int_{-\infty}^{u_l} f(u) du + \int_{u_l}^{u_{l+1}} f(u) du + \sum_{k \in 2\mathbb{N}} \int_{u_{k+l+1}}^{u_{(k+2)+l+1}} f(u) du \nleq 0$

Proof of the theorem

We know ([3,4]) that :

$$\zeta(z)\Gamma(z) = \int_0^{+\infty} \frac{t^{z-1}}{e^t - 1} dt$$

As $\Gamma(z+1) = z\Gamma(z)$, then:

$$\zeta(z)(z-1)\Gamma(z-1) = \int_0^{+\infty} \frac{t^{z-1}}{e^t - 1} dt$$

But the gamma function also checks the Legendre duplication formula [3]:

$$\Gamma(z) \Gamma\left(z + \frac{1}{2}\right) = 2^{1-2z} \sqrt{\pi} \Gamma(2z).$$

So:

$$\Gamma(z-1) \; \Gamma\left(z-\frac{1}{2}\right) = 2^{3-2z} \; \sqrt{\pi} \; \Gamma(2z-2).$$

And we deduce:

That we declate:
$$\zeta(z)(z-1)2^{3-2z} \qquad \sqrt{\pi} \qquad \Gamma(2z-2) = \Gamma\left(z-\frac{1}{2}\right) \int_0^{+\infty} \frac{t^{z-1}}{e^t-1} dt$$
 If $\zeta(s)=0$ with s a non trivial zero of ζ , then,

by symmetry of the zeros about the critical line $Re(z) = \frac{1}{2}$, we can assume that $s = \frac{1}{2} - \alpha + i\beta$ with $0 \le \alpha \le \frac{1}{2}$ (because it is known that any nontrivial zero belongs to the critical strip : $\{s \in \mathbb{C} : s \in \mathbb{C$ 0 < Re(s) < 1)

But from the Euler's reflection formula : $\Gamma(1$ $z)\Gamma(z) = \frac{\pi}{\sin(\pi z)}, \forall z \notin \mathbb{Z}$, we have $\Gamma\left(s - \frac{1}{2}\right) \neq 0$, so by tending z towards s and by using the lemma 1, we will have $|\Gamma(2s-2)| = |\Gamma(-1-2\alpha+i2\beta)| = +\infty$, and consequently we deduce that :: $|\Gamma(-1-2\alpha)| =$ $+\infty$

The study of Gamma -See Figure 1 - Shows that the only possible case is $-1 - 2\alpha = -1$, so $\alpha = 0$.

Theorem 2 The sghiar's function and the prime numbers:

Let
$$\mathfrak{S}(z) = \zeta(-\frac{\Gamma(z)+1}{z/2}).$$

if $z \in \mathbb{N}^*$ then $\mathfrak{S}(z) = 0 \iff z$ is a prime number

Figure 1 – Gamma function

Proof

It follows from Wilson's theorem [1] - which assures that p is a prime number if and only if $(p-1)! \equiv -1$ mod p - and the fact that the trivial zeros of ζ are $-2\mathbb{N}^*$.

III- Conclusion:

The Gamma function Γ and the Mertens function M are closely linked to the Riemann zeta function ζ.

What is curious is that by the same techniques the Mertens function allowed the proof of the Riemann hypothesis in [2], and the gamma function allowed also in this article a simple, short and elegant proof of the Riemann hypothesis.

IV- Acknowledgments:

I want to thank everyone who contributed to the success of this article

V- References

- [1] Roshdi Rashed, Entre arithmétique et algèbre: Recherches sur l'histoire des mathématiques arabes, journal Paris, 1984.
- [2] M. Sghiar. The Mertens function and the proof of the Riemann's hypothesis, International Journal of Engineering and Advanced Technology (IJEAT), ISNN :2249-8958, Volume- 7 Issue-2, December 2017
- [3] https://en.wikipedia.org/wiki/Gamma_ function.
- [4] https://en.wikipedia.org/wiki/Riemann_ zeta_function.