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Abstract

In this paper some properties and the chain rule for the hessian tensor
for combined vector functions are derived. We will derive expressions for
H(T+ L), H(aT), and H(T o L) (chain rule for hessian tensors) and show
some specific examples of the chain rule in certain types of composite
maps.

1 Introduction

Let f: R™ — R. This function takes as input a vector x € R™ and outputs a
scalar f(x) € R. let:

x1

Tn
Then the hessian matrix of this function is defined as:
81111f e axlxnf
H(f) = : :
8znx1f e anznf

We can find the value of each entry of the matrix by the following formula:

Hij = 01,0, f

We can generalize this concept for any map between two vector spaces:

Let V and W be two vector spaces, and let T : V. — W be a function
between them. Let:



Then we define the hessian of this function as:

H=(H(g) - H(gm) )

So this is a third-order tensor. We can denote each component of the tensor
as:

H,y;j = amimjgv

We will explore some properties of this tensor when there is composition of
vector functions.

2 Content

2.1 Linearity

Proposition 1. Let V and W be two vector spaces over a field F, and let
T:V —W /L:V — W be 2 functions between those 2 vector spaces.
Then we have that:

H(T+L)=H(T)+ H(L) (1)
H(aT)=aH(T), a€F (2)
Proof 1.

(1) Let V and W be two vector spaces over a field F, and let T : V —
W L : V — W be 2 functions between those 2 vector spaces. Let’s say that:

t1(x) l(x)
T(x) = and L(x)=
tm () L (x)
we have that:
t1(x) + (%)
(T+L)(x) = :
tim (X) + I (X)

So the components of the hessian tensor for the sum of those functions will
be:

H’Yij(T +L)= a-LZ'LJ (t"/ + l"/) =

axixjt'y + 6112]l’y = H’yij(T) + H"/ij(L)
Thus, H(T + L) = H(T) + H(L).



(2) Let V and W be two vector spaces over a field F, o € F, and let
T :V — W be a function between those 2 vector spaces with:

t1(x)
T)=|
tm(x)
then, we have that:
aty(x)
(aT)(x) = :
atpm (X)

The components of the hessian tensor will be:

H.i(aT) = Oz, (aty) =

aamiwj (t’Y) = aH’ﬂj (T)
Thus, H(aT') = «H(T).

2.2 Composition of functions

We will now deduce a formula for the Hessian tensor of composite functions.

Let V, W, K be vector spaces such that dimV = v,dimW = w and dim K =
k. And let T and L be two functions L : V. — W and T : W — K, Such
that:

t1(x)
T(x) = , xeW
tk(x)
t1(x)
L(x) = : , xeV
(%)
Then we have that T'o L : V' — K such that:
t(L(x))
(ToL)(x)= : , xeV
tr(L(x))
h(x)
because we have that L(x) = we can write an expression for
L (x)

every component of the vector (T o L)(x):



Now we can compute the components for the Hessian tensor:

ll(X)
H’Yij(TOL) = 6wiwjt'y : =

Let’s first evaluate the derivative with respect to ;. We can use the chain

rule to do that. We have:

X1 X
So we have that:
ll (X)
O,y : Zalw L)y, Ly (x)
L (%)
This gives us:
l(x)
O; | Ouity : = Ou [Z Oty (L) a L ()
L (x)

We can use the fact the the partial derivative is linear:

O, Zal L)y, L ] Zax] 1yt (L), s (%))

Using the product rule for partial derivatives we have:



> 0s, (01,1,(L) = (02, [01,t4(L)] O, Ly (X) + 01, ty (L) Loy (X)) =

w w

ZazJ al amll + Zal z x; w(X)

note that 0,1, is the component H,;; of the hessian tensor of L. So we
can rewrite this as:

Zax] (01, £ (L)] O, L ( +Zal )Houij (L)

So we get:

H.,ij(TolL)= Za [0y, +Zal VHuwij(L)  (3)

2.2.1 Specific cases

Let’s now look at some specific cases and see how formula (3) transform under
those certain specific circumstances.

(1) Let’s assume the same things we assumed in 2.2, but this time let’s assume
that L : V — W is linear. He have that:

(170 1) = 3200, 00, (D)0 ha(5) + 3012 s

Because L is linear we have that H(L) = 0 [1], so Hy;;(L) = 0. Because of
this Zw alwtv(L)Hwij (L) =0.

H.,i;(T o L) Za% (01,1 (L)] Oz, L (%)

L can also be written in terms of a matrix because it is linear:

A Aty 1
Awl va Ty
ZU Alvxv
Zv ATy



so, for any ~: Z
x) = ATy
v

If we plug this in the previous equation we get:

7” T © L Z Ou (91 )] ari Z Aoy =
Z 8753' [alw t’Y(L)} Z vaaagqy$u =
Z Ou; [O1,,ty(L)] Z Awvbiv

Where 6;,is the Kronecker delta.
Z va(Siv = Am(Su + Z va(si'u = Awi
v BE)

We can now plug this back in your equation giving us:
> 00, (01,14 (D)] Y Awsbiv = Y AwiOs, [01,t4(L)]

So, if L is a linear map, then:

Hyij(ToL) = Auyis, [01,ty(L)] (4)

w

(2) Now let’s show, unsing formula (4), that H(T o Id) = H(T). Let V be a
vector space such that dimV =wv. Let T:V — V and Id : V — V. Because
1d is linear we have:

H.i;(T o Id) = Zlma% [0, t,(1d)]

l1 (X)
Where I is the v X v identity matrix, and where Id(x) = : . Because

Ly (x)
the defining property of Id is that Id(x) = x then [, = z,, If we make this
substitution on the equation we get:

H.i;(T o Id) ZL,Z@% [0t (x)] =

Z 5viaarj:cvt'y
v



Where §,; is the Kronecker delta.
Z 5viazjr1,t’y = 5’Lla:tjz,t’y + Z 5viazjr1,t’y = a:vizjt'y
v v#£1L

This gives us:

H’yij(T ] Id) = azim].t»y = H’Y’LJ(T)

(3) If welet f,g : R — R, then, because the Hessian matrix and the hes-

sian tensor is a generalization of the second derivative, the formula (3) used to

calculate H(f o g) will give us an expression for the second derivative of (f og).
Formula (3) gives us:

H.i;(T o L) Zazj (01, £ (L)] Oa, Lo ( +Zalw )Howij (L)

If f,g: R — R then the hessian tensor will have conly one component,
making it a constant. so we can get rid of all those indices relative to the
specific component of the tensor we are calculating. The equation will simplify

to:
Zaa £(9)) Ozgu(z Z

Because this are functions are single variable functions we can change the
partial derivatives to normal ones, and we can get rid of the slums because
w € {1}. The equation simplifies further to:

H(o0) = o |52 10)] oot + L F @)

The Hessian of g is simply the second derivative of g:

H(f o9) = 1 | 5:110)] gooto) + 5"

2

L1fad +9"5(0) =91 () + 4" F(9)

Thus giving us: H(f o g) = [¢']* ”(9) + ¢" f'(g). Because the hessian of a
single variable function is the second derivative of that function we get:

(fog) =197 f'(9)+9"f(9)

It’s easy to show that this is true using the chain rule for single variable
functions.
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