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Abstract

In 1876, Edouard Lucas showed that if an integer b exists such that b»~* = 1 (mod n) and b("~1/q %
1 (mod n) for all prime divisors g of n — 1, then n is prime, a result known as Lucas’s converse of
Fermat’s little theorem. This result was considerably improved by Henry Pocklington in 1914 when he
showed that it’s not necessary to know all the prime factors of n — 1 to determine the primality of n. In
this paper we optimize Pocklington’s primality test for integers of the form ap® + 1 where p is prime,
a < 4(p + 1), k > 1. Precisely, this paper shows that if an integer b exists such that b ! = 1 (mod n
andn + =D/ — 1 then n is prime as opposed to Pocklington’s primality test that imposes the more
stringent hypothesis that n and b™~1/P — 1 pe relatively prime. We also present a conjecture whose
proof will significantly reduce the computations required to determine the primality of these integers.

—
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1. Introduction

The problem of distinguishing primes from composite integers has been of interest to professional and
amateur mathematicians alike for many centuries up to date. A number of primality tests have been
established; Some of these tests such as Lucas’s converse of Fermat’s little theorem, Pocklington
primality test, Proth’s test, Lucas Lehmer test among others determine whether a number is prime with
absolute certainty while others such as Fermat’s Primality test, Miller-Rabin test report a number is
composite or a probable prime. The previous tests depend on the factorizationof n — 1 orn + 1 to
determine the primality of n, more information on these tests can be found in [1], [3], [5], [6]. In this
paper we prove a relatively more efficient primality test for integers n of the form ap* + 1,k > 1, a <
4(p + 1), where p is an odd prime. This test does not require computation of some greatest common
divisors required in Pocklington’s primality test. Much effort is put in determining which positive integers
of this form does the divisibility relation p* | ¢(n) hold from which the optimized test is deduced using
properties of order of an integer. In section 4, we present a conjecture whose proof will significantly
reduce the computations required to determine the primality these integers.

Definition. Let a and n > 1 be relatively prime integers. The order of a modulo n denoted by
ord,a is the least positive integer x such that a* = 1 (mod n).

Theorem 1.1. Leta andn > 1 be relatively prime integers, then a positive integer x is a solution of the
congruence a* = 1 (mod n) if and only if ord,a | x. In particular ord,a | ¢(n).

For comparison with the optimized test, Pocklington’s primality test and one of its variants are stated
here. (See [1] pages 622 - 623), [2] pages 29-30, [4] page 381)
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Theorem 1.2. Pocklington’s Primality Test. Suppose that n is a positive integer withn — 1 = FR
where (F,R) = 1 and F > R. The integer n is prime if there exists an integer b such that (b(*~1/q —
1,n) = 1 whenever q is a prime with ¢ | F and b™"1 = 1 (mod n)

Theorem 1.3. Letn — 1 = ap, where p is an odd prime such that 2p + 1 > /n. If there exists an
integer b for which b™*~1/2 = —1 (mod n) and b%*/? # —1 (mod n), then n is prime.

2. Primes of the formap + 1

In this section, we prove a primality test for integers of the form ap® + 1 with k = 1. Later we will
generalize this test for higher powers of p.

Lemma?2.1l. Letn = ap+ 1, where a is a positive integer and p is an odd prime. If p | ¢(n) then a =
t (mod q) for some prime g = tp + 1.

Proof. Letn = p;%p,% ... p,% be the prime power factorization of n. We have ¢(n) =

P (= D2 (0= D o™ (ke — 1). p | ¢(n) implies p | p; or p | p; — 1 for some i =
1,2,... k. If p|p;thenp|n—ap =1, which is not possible hence p | p; — 1 forsome i = j, p; =

q =tp+ 1forsomet. n =mq =m(tp + 1) = ap + 1. Factoring out p, we have p(a — mt) =m — 1,
plm—1m=sp+1forsomes.n=mqg=(sp+D(tp+1)=(q+t)p+1=ap+1liea=

sq +t =t (mod q). This completes the proof.

Remark. If a =t,wehavea =t (modq),n = q is prime. Since p is assumed an odd prime, we
havet > 2. Ifaiseven,a =t + cq = 4(p + 1). It follows that for all even a < 4 (p + 1), we have

p | ¢(n) if and only if n is prime. Note that the inequality a < 4 (p + 1) is equivalent to 2p + 1 > v/n in
Theorem 1.3.

Theorem 2.1. Letn = ap + 1 where a is even and p is an odd prime with a < 4(p + 1). If there exists
a positive integer b such that b*~* = 1 (mod n) and b® # 1(mod n) then n is prime.

Proof. We will show that if n is composite and b™~1 = 1(mod n) then b% = 1(mod n). Assume n is
composite and b™~! = 1(mod n). From Theorem 1.1, ord,,b | ¢(n). Therefore if p | ord, b we have

p | $(n) and from lemma 2.1 we know n is prime, a contradiction because n is assumed composite hence
we must have p t ord,, b, equivalently (ord,, b, p) = 1. From Theorem 1.1, we also note that
ord,b|n—1=ap. ord,b | ap and (ord, b, p) = 1 imply ord,,b | a and from Theorem 1.1,

b® = 1 (mod n). Consequently if b™ 1 = 1(mod n) and b* # 1(mod n) then we know n is prime.

Remark. A slightly more efficient primality test is obtained by replacing the hypothesis b™~ 1 =
1 (mod n) with 5®™~D/2 = +1 (mod n).

Example 2.1. Suppose we want to test whether 547 = 42 - 13 + 1 is prime. Using fast modular
exponentiation techniques, it can be verified that 2546 = 1(mod 547) and 2*2 = 475 % 1(mod 547)
and from Theorem 2.1, 547 is prime.

Using Pocklington’s primality test, 547 = 21 - 26 + 1. Taking b = 2, there’s need to further verify that
(242 — 1, 547) = 1 and (2273 — 1,547) = 1 which takes more steps compared to the previous test.

Alternatively, Theorem 1.3 can be used to show n = 547 is prime. The advantage of Theorem 2.1 over
Theorem 1.3 is if n is prime, any randomly chosen positive integer b < 547 is guaranteed to satisfy



b=D/2 = +1 (mod n) unlike b™~1/2 = —1 (mod n) with 50% chance. However, showing that
b%/? £ —1 (mod n) is slightly more efficient compared to showing that ¢ £ —1 (mod n).

From Theorem 1.2, we note that the largest integer n such that b* = 1 (modn) isn=b*—-1,b > 1.
Setting the integern > b* -1 i.,e n=ap+1>b*—1,p > (b*—2)/a . It follows that if p >

(b® — 2)/a, then b* £ 1 (mod n). Furthermore if 5™~ = 1 (mod n) and a < 4(p + 1), from Theorem
2.1 we know n is prime. We state this result as a corollary.

Corollary 2.1. Letn = ap + 1 where a is even and p is an odd prime witha < 4(p + 1). If
b > 1 is a positive integer relatively prime to n and p > (b% — 2)/a then b™ ! = 1 (mod n) if and only
if nis prime.

Example 2.2. Taking b = 2 and a = 2, we compute (b* — 2)/a = (2% — 2)/2 = 1. Setting the prime
p > 2, Corollary 2.2 tells us that if n = 2p + 1 then 2"~ = 1 (mod n) if and only if n is prime i.e. p is
a Sophie Germain prime if and only if 227 = 1 (mod 2p + 1).

If we take b = 2 and a = 6, we have (2° — 2)/6 = 31/3 < 11. Takingp > 11 andn = 6p + 1, we
have 2"~1 = 1 (mod n) if and only if n is prime.

On the other hand; To testn = 6p + 1, p > 11 using Pocklington’s primality test; In addition to checking
the congruence b™~1 = 1(mod n), there’s need to verify that (b® — 1, n) = 1. If b = 2, we have to
verify that (63, n) = 1 unlike Corollary 2.1 for which this step is not necessary.

As noted earlier, using Theorem 1.3 to shown = 6p + 1, p = 11, is prime has 50% chance of working
for a randomly chosen base b thus Corollary 2.1 is the most efficient primality test for alln = ap + 1,
with the prime p > (b® — 2)/a.

Remark. We can make use of the full potential of Lemma 2.1 by noting that if ¢ is a positive
integer, n = ap + 1, and n is composite for all integers a < c then for all a < 2¢p + ¢ + 2, we have

p | ¢(n) if and only if n is prime thus improving the upper bound of a in Theorem 2.1 from 4(p + 1) to
2cp + ¢ + 2. Taking p = 19, it can be verified that n is composite for all a < 10. It follows that for all
a < 392, if there exists an integer b such that b*~1 = 1 (mod n) and b* # 1(mod n) then n is prime.

In general, Theorem 2.1 can be used to test all integers of the form ap + 1 without an upper bound on a.
From Lemma 2.1, if a # t + sq for all primes q = tp + 1 and all integers s > 1 then p | ¢(n) if and only
if n is prime. Therefore, if there exists an integer b such that b~ = 1 (mod n) and b% % 1(mod n) then
n is prime. This makes Theorem 2.1 more versatile compared to Theorem 1.3 when generating primes of
the form ap + 1.

3. Generalization of Theorem 2.1 for higher powers of p

In this section we generalize the primality test presented in Theorem 2.1 for higher powers of p. Using a
similar argument presented in the proof of Lemma 2.1, it can be shown that if n = ap® + 1, where a
and k are positive integers, p is a prime with a < 4(p + 1) then p* | ¢(n) if and only if n is prime. It
follows that if n is composite and b™~1 = 1(mod n), the highest power of p in ord,, b is less than p* so

k-1

that p%" = p(™~1/P = 1(mod n). We proceed to give a detailed proof.



Lemma3.l. Letp, v, k; s;,q;,1<i<vbepositive integers, k; < k, < - < ky,, q; = s;p"i + 1,
n=[1%,q;. Then n = pZi=1ki . [[%_, s; + Mp + 1 for some integer M. Furthermore if v > 2, thenn =
plisikl [TV s; + Mp*1*tkz + 3V s, pki + 1 for some integer M.

Proof. We will use proof by induction. First, we prove the general case v = 1; For the base case, v = 1;
1

q; =s;pfr +1 =p2i1=1ki-1_[sl-+0-p+1

i=1

S
Il
e

v

Assumen = 1_[ qi = pZTi]=1’“' . Hsi + Mp + 1 for some integer v > 1.

i=1 i=1
Forv+1, 1<k;<--<ky.;

v (Sv+1pkwr1 + 1) [l{-1q: = (5v+1pk”+1 + 1)(192]"7:1 ki [l}-1si + Mp + 1)

n= i=1 qi =
v+1 v
= pIEik. Hsi + MpSyaDRvH1 + Sypqpfort + pRisakl l_[si +Mp +1
i=1 i=1

v+1 z
pEitit. 1_[ si+p <Msv+1pk”+1 + Sppppfon Tt 4 plimakict. 1_[ si+ M ) +1

i=1 i=1

If v > 2; for the base case v = 2 we have;

2
n= Hqi = (510" 4+ 1)(sop%2 + 1) = sys,p* %Kz 4+ 5p*1 + s,p%2 + 1

2

2
= pLizaki. nsi + 0 - pkitke +Zsl-pki +1

i=1 i=1

Now assume it holds forsomev > 2,1 <k; <k, < - < k,;

n—l_[q = pli- 1"‘-1_[s + Mpkatke +ZS pki+1

= i=1

Forv+1, 1Sk1£k2£SkUSkv+1,

v+1 v
n_nql _(S‘U+1p v+1+1)nql = (Sv+1p v+1 +1)<p21 1k11_[5i+Mpk1+k2 +zsipki+1>

i=1 i=1
v+1 v
v+1 4, v .
— ki k kq+k ki+k k . ki
= plizt K. | |Si+sv+1p ve1Mpkitke 4 E Spr1Siprithvr 45, pkver 4 pLima kL | |5i
i=1

i=1 i=1



v
+ Mpkitkz 4 Z sipFi+1

i=1

v+1 v v
= piiiKi 1_[ 5 + pkatke (MSV+1pkv+1 n Z 5y p; pRithoea=(aatks) 4 pSE kim(kaths) 1_[ s+ M)

i=1 i=1 i=1
v+1 v
+Zspkl+1, ki +Kyey = ko 4y, Zkiz ky + k.
i=1 i=1
v+1 v+1
n = piiiki 1_[3 + M'pkitke 4 Z sipfi+1
i=1 i=1

Lemma3.2. Letn =ap®+ 1, aand k are positive integers, p is an odd prime and a < p. If
p¥ | ¢(n) then n is prime.

Proof. Letn = p;%1p,% ... p,% be the prime power factorization of n, v > 1. ¢(n) =

P (=D (=D ™ (o — D p* ™ (o — Dp® 7 (2 —

1) ... p,%" 1 (p, — 1). A similar argument as in Lemma 2.1 shows that p* |(p; — D (p, — 1) ... (p, — 1).
We can group the primes p; into two sets A and B where A is the set of all primes p; for whichp | p; — 1,
B contains all primes p; for which p f p; — 1. Set A is non empty while set B may or may not be empty.
A={q1,q2 -, qu} 1 <u <v. Therefore n = Qq,1 ¢, ... q,,”» where Q = 1 if set B is empty
otherwise Q > 1. Let the highest power of p that divides ¢; — 1 be p*i,i =1,2,...,u, 1<k; <k. q; =
s; - p¥i + 1. We must have s; > 1 otherwise g; > 2 is even. Note that p(n) < ap* < p - pk = p**!
therefore p*** t ¢p(n). It follows that k; + k, + -+ k,, = k. Assume k; < k, < -+ < ky,.

bz—l

n=0Qq"q;" ..q," = Qq:" 1, L, gy gy = Q' qaGs gy Q' = 1.

n=Q’-ﬁqi=Q’-ﬁ(si-p"i+1)=Q’<p"-ﬁsi+Mp+1>
i=1 i=1

=1
for some integer M, the last equality obtained from Lemma 3.1
u
n=Q’(pk-1_[si+Mp+1)=apk+1
i=1
Factoring out p;
u
p (apk—l — lek—l . Hsl _ QIM) — QI _ 1
i=1
plQ —1.1f Q">1,thenp< Q' —1<(Q’
u
n:Q’<Pk'nSi+Mp+1)>Q'pk > p-pk =pk+t

i=1

a contradiction because n = ap® + 1 < p*(a + 1) < p*** hence we must have Q' = 1. Q' = 1 implies
set B is empty and n is square free henceu = v. If v = 1,thenn = q, isprime. If k =1, then k; +
ky+--+k,=1,v=1andnis prime. Assume k = 2 and v = 2. From Lemma 3.1,



v v

nzpk-l_[si+Mpk1+k2 +25ipki+1=apk+1

i=1 =1
v v
ap” = p* - nsi + Mpkitka 4 Z s;pki
i=1 i=1
There’s a positive integer h suchthatky =k, = =k, < kpy1 < kpyo < . <ky,, 1 < h< v

Dividing all terms by p** we have;
v
apk2+"'+kv = pk2+"'+kv . nsi + Mpkz +5,+8;+ - +s,+ Sh+1pkh+1—k1 4ot Svpk"_kl
i=1
v
plsitsy++sp, p<s;+s,+-+s, =< nsi
i=1
v v v
n =p"-nsi + Mp'atka +Zsip""i +1 >p""-1_[si >pk.p=pt,
i=1 i=1 i=1

a contradiction therefore v = 1, n = g,. This completes the proof.

Remark. As illustrated in Lemma 2.1, we note that if a is even, we have p* | ¢(n) if and only if n
is prime for all a < 4(p + 1). From experimental results, if k is large, there’s a possibility of
strengthening the hypothesis of Lemma 3.2 such that if n = ap® + 1, a <, p is an odd prime, then

pl*/21 | ¢(n) if and only if n is prime. A more rigorous proof should be able to establish this or even
stronger results. To motivate further research on this conjecture, we will prove in the next section using
the concepts of that section that if n = ap? + 1, a < p and if an integer b exists such b®~* = 1 (mod n)
and b® # 1(mod n) then n is prime. This is a considerable improvement in comparison to Pocklington’s
primality test that requires that the integer b satisfies b»~! = 1 (mod n) and (b%? — 1, n) = 1. Much
more efficient primality testing is possible assuming this conjecture is true.

Theorem 3.1. Letn = ap® + 1, a and k are positive integers, p is an odd prime, a < 4(p + 1). If there
exists an integer b such that b»~! = 1 (mod n) and b™~D/P £ 1(mod n) then n is prime.

Proof. Assume n is composite and b™~* = 1 (mod n). From Theorem 1.1, ord,b |n — 1 = apk.
Since (a, p*) = 1, we have ord,,b = d,d,, d; | a, d, | p*, d, = pt. From Lemma 3.2, we must have
0<t<k-—1hence d,| p*'. ord,b =d;d,|a-p*1. It follows from Theorem 1.1 that p(*~1/P =
be*™* = 1 (mod n). Consequently if b1 = 1 (mod n) and b™~D/? % 1(mod n) then we know n is
prime.

Example 3.1. Totest 727 = 6 - 112 + 1 for primality; Using fast modular exponentiation, it can be
shown that 26 1% = 1 (mod 727) and 261! = 590 % 1 (mod 727). Therefore, from Theorem 3.1, 727
is prime.

Alternatively, we can make use of Pocklington’s primality test to show that 727 is prime. However, as
noted earlier, this test is slightly less efficient compared to the optimized test because the latter requires



that 2611 — 1 should not be a multiple of 727 whereas the former imposes the more strict condition that
2611 — 1 and 727 be relatively prime.

4. Generalization of Lemma 3.2 for am + 1 integers
Generalization of Lemma 3.2 will provide a relatively more efficient primality test for a broader set of
positive integers. Substantial experimental data suggests thatifn =am + 1,a < 4(p + 1), p isthe
least prime divisor of m, then m | ¢ (n) if and only if n is prime

Conjecture 4.1. Let n = am + 1, where a and m are positive integers and let p be the least prime
divisor of m. If a < 4(p + 1) and m | ¢(n) then n is prime.

Remark. In general, if n = am + 1, (a,m) = 1 and we know beforehand that m | ¢ (n) if and
only if n is prime, the factorization of a is not necessary in determining the primality of n using Lucas’s
converse of Fermat’s little theorem. The following theorem demonstrates this.

Theorem 4.1. Letn = am+ 1, where a and m > 1 are relatively prime positive integers such that n is
prime whenever m | ¢(n). If for each prime g; dividing m, there exists an integer b; such that ;" =
1 (mod n) and b; ™"~ /% = 1(mod n) then n is prime.

Proof. From Theorem 1.1, ord,b; | n — 1. Let m = q;%1q,% ... q;* be the prime power factorization
of m. The combination of ord, b; | n — 1 and ord,,b; t+ (n —1)/q; implies q;% | ord, b;. From Theorem
1.1, ord,b; | ¢ (n) therefore for each i, q;% | ¢(n) hence m | ¢ (n). By the hypothesis of Theorem 4.1, n
is prime.

Theorem 4.1 has little practical value on its own but becomes powerful when the integer m is known
beforehand. Assuming the truth of conjecture 4.1, Theorem 4.1 becomes an optimized primality test for
such integers in comparison to Lucas’s converse of Fermat’s little theorem and occasionally relatively
more efficient than Pocklington’s primality test, specifically when (m/p?) < (n/2)(/3 where p is the
least prime divisor of m and p® is the power of p in the prime power factorization of m.

As remarked earlier, experimental results suggest that if n = ap® + 1, a < 4(p + 1), k is large then n is
prime if and only if pt¥/2 | ¢(n). We state this conjecture formally.

Conjecture 4.2. Letn = ap® + 1, a < p where p is an odd prime. If a; is large, the integer m =
pl*/21 divides ¢(n) if and only if n is prime.
Table 1 shows some experimental results supporting the truth of this conjecture. To motivate further

research towards its proof, we prove here the case n = ap? + 1 and justify its importance by showing
that for any positive integer a, there are finitely many pseudoprimes of this form to any base b > 1.

Lemma4.l. Letn=ap?+1,a<p,pisanoddprime. Ifp|¢(n), thenn is prime.

Proof. Letn = p,;%1p,% ... p;, % be the prime power factorization of n. p(n) = p;*~ 1 (p; —

1D p,% 1 (py — 1) ... p% 1 (g — 1). Using a similar argument as in the proof of Lemma 2.1, p | p; —
1forsomei=j. pj=tp+1forsomet.n=mp; =m(tp +1) = ap? + 1. Factoring out p, we have

plap—mt)=m—1, p|m—1,m=sp+1forsomes >0.n=mp; = (sp+ D(tp + 1) = stp® +
(s+tp+1=ap’+1.I1fs>1,weseethatp |s+t,p<s+t<st.n=stp’+(s+t)p+1>



stp® = p - p* = p3, acontradiction because n = ap? < p* therefore s = 0,n = tp + 1 = p;. This
completes the proof.

Theorem 4.2. Letn — 1 =[], p;5 where p; are distinct primes, s; > 1. Letm = [[, p;%,
0 <t; < s; be an integer such that n is prime whenever m | ¢(n). If for each prime p; dividing m, there
exists an integer b; such that ;" * = 1 (mod n) and b; ™" /@" ™) 2 1(mod n) then n is prime.

Proof. Using a similar argument as in the proof of Theorem 4.1, for each i, p;Si=(i=tFD+1 =
p;‘t | ¢(n) hence m | ¢(n). By the hypotheses of Theorem 4.2, n is prime.

Remark. Theorem 4.2 is a strengthening of Theorem 4.1; It does not require that m and (n — 1) /m
be relatively prime. Its considerably more efficient than Theorem 4.1 when t; < s; for some i.

Theorem 4.3. Letn = ap? + 1, p > ais prime. If an integer b exists such that »”~* = 1 (mod n) and
b® % 1 (mod n) then n is prime.

Proof. From Lemma4.1, p | ¢(n) if and only if n is prime. Because the integer b satisfies the
hypothesis of Theorem 4.2, n is prime.

Remark. From Theorem 4.3, we deduce that for any positive integer a, there are finitely many
pseudoprimes to any base b > 1. This is true because b* # 1 (mod n) for all n > b%.

Table 1 shows the least positive integer k such that n is composite and p* | $(2 - p* +1),p = 3,5, t =
1,2, ...,10. From this table we see that for all k < 146; if 3'°| ¢(2 - 3% + 1) then n is prime. An appeal

to Theorem 4.2 shows that if there exists an integer b such that ™~ = 1 (mod n) and p23° 2
1(mod n), then n is prime.

Similarly, ifn = 2- 5% + 1, k < 101 and if b~ = 1 (mod n) and b25° % 1(mod n), n is prime. This
is a considerable time save compared to Lucas’s converse of Fermat’s little theorem and Pocklington’s
primality test which require computation of b™=1/? mod n.

Table 1: Least values of k such that n is composite and p* | ¢(n), p = 3, 5

pt t= 1 2 3| 4 5 6 71819 |10
n=2-3k+1, k=, 7 119123 (36|37 |63 |72 |77 |77 |146
n=2-58+1, k= 6 | 11|28 | 28 | 31 | 101] 101} 101

Similar to Theorem 4.1, Theorem 4.2 requires that the integer m be known for the theorem to be applied.
Taking m = n — 1, we have Lucas’s converse of Fermat’s little theorem. Note that from Table 1, the
estimate pl*/2] in Conjecture 4.2 is very conservative.

It can be verified that none of the integers in this table is a pseudoprime to base 2. We now turn our
attention to investigating pseudoprimes n of the form ap”* + 1, a < p for which p | ¢(n). From Lemmas
2.1 and 4.1, there are no composites n, k = 1, 2 with the property p | ¢(n). We will therefore focus on
the remaining cases; k > 3.



Table 2 shows the least positive integer a such that n = ap® + 1 is a pseudoprime to base 2 and p | ¢ (n),
p=357..,3k=1,2,..,10.

Table 2: Least values of a such that n = ap® + 1 is a pseudoprime to base 2 and p | ¢(n)

p= 3 5 7 11 13 17 19 23 29 31
k=3, a= 64 184 1404 468 74088 170826 | 658492 | 216 682908 4263580
k=4, a= 110 6408 396 79380 951048 30960 433216 | 519120 > 107 > 107
k=5 a= 192 8832 39940 287560 > 107
k=6, a= 64 13048 1081200 | > 107
k=7 a= 9000 343434 538200 > 107
k=10, a= 11900 > 107

A key observation we make from this table; For all n, we have a > p. Moreover, the least values a grow
rapidly compared to the primes p and integers k.

Conjecture 4.3. There are no Fermat pseudoprimes to the base 2 of the formn = ap* + 1, a <
p, Where p is an odd prime such that p | ¢ (n).

This conjecture has been verified forall p = 3, 5, 7, ..., 31, k < 103 with no counter-examples. It has
also been checked for all odd primes p < 103, k < 10. From Table 2, the least values a grow very
rapidly in comparison to the primes p and integers k. The probability of obtaining an a witha < p is
extremely small. Despite the overwhelming numerical evidence supporting the truth of this conjecture,
there may still be some counterexamples.

Theorem 4.4. Letn = ap® + 1 where p is an odd prime with a < p. If 2*~1 = 1 (mod n) and 2% #
1(mod n) then n is prime.

Proof. From the hypothesis of Theorem 4.4, 2"~1 = 1 (mod n) and assuming the truth of Conjecture
4.3, we have p | ¢(n) if and only if n is prime. Because b = 2 satisfies the hypothesis of Theorem 4.2, n
is prime.

Remark. From Theorem 4.4, we note that for any positive integer a, there are finitely many
pseudoprimes n of the form ap® + 1 to the base 2 where p is an odd prime, a < p and k > 1. Similarly,

for any odd prime p, there are finitely many pseudoprimes of the form ap® + 1, a < p, k > 1. This is
true because 2¢ # 1(mod n) for all n > 2%,

Conclusion.  More research in this direction will produce highly optimized primality tests for integers
satisfying the hypotheses of Theorem 4.2.
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