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Riassunto.

Scopo della presente tesi ¢ quello di evidenziare le interessanti correlazioni ottenute tra i modelli
matematici di Riemann, Ricci ed Einstein. Sull’unificazione delle forze gravitazionali ed
elettromagnetiche, per quanto riguarda i modelli di Riemann ed Einstein, sulla teoria matematica
dell’elasticita applicata ai fenomeni luminosi, per quanto riguarda il modello di Ricci. In tutti e tre i
modelli si giunge all’unificazione delle due interazioni postulando I’esistenza di un “mezzo”, che
nella moderna visione fisica puo identificarsi con la materia/energia oscura. Per quanto concerne il
modello di Einstein, ¢ il termine cosmologico, contenuto nelle equazioni di campo della relativita
generale, che viene correlato all’energia del vuoto quantistico, quindi all’energia oscura. Viene poi
evidenziato come in tutti e tre i modelli sia possibile ottenere delle interessanti correlazioni con la
teoria di stringa, precisamente con il modello di Palumbo applicato alla teoria di stringa, che mette
in relazione 1’azione di stringa bosonica con quella di superstringa.

Verra anche trattato il tema degli assioni, correlati alla materia oscura ed al modello di Palumbo, e
la loro connessione in teoria di stringa, prendendo spunto dal lavoro di Witten e Svrcek “Axions in
String Theory”.

Evidenzieremo inoltre, nel corso della trattazione, le correlazioni ottenute tra alcune equazioni
inerenti la teoria di stringa ed alcune formule che riguardano la Teoria dei Numeri, precisamente, la
funzione zeta di Riemann, il Numero di Legendre, la serie di Fibonacci, il fattore medio di crescita
delle partizioni, le funzioni modulari ed alcune identita di Rogers-Ramanujan.

Modello di Riemann

Teorema 1.

In ogni punto dello spazio esiste in ogni istante una causa, determinata in grandezza e direzione
(forza d’accelerazione), che ad ogni punto ponderabile 1i presente comunica un determinato moto,
uguale per tutti, che si somma geometricamente al moto che gia possiede.

La causa, determinata in base a grandezza e direzione (forza di gravita accelerante), che in base al
Teorema 1 ha luogo in ogni punto dello spazio, viene cercata nella forma dinamica di una “materia
diffusa uniformemente in tutto lo spazio infinito”, quindi si ipotizza che la direzione del moto sia
uguale alla direzione della forza da spiegare in base ad essa e che la sua velocita sia proporzionale
alla grandezza della forza. Questa materia puo dunque essere rappresentata come uno spazio fisico,
1 cui punti si muovono nello spazio geometrico. I due fenomeni, gravitazione e movimento della
luce nello spazio vuoto, sono gli unici che possono essere spiegati semplicemente in base ai moti di
questa materia. Adesso ipotizziamo che il movimento reale della materia nello spazio vuoto sia
composto dal moto che deve essere assunto per spiegare la gravitazione e da quello per spiegare i
fenomeni elettromagnetici.



II moto che deve essere assunto nello spazio vuoto per spiegare 1 fenomeni luminosi
(elettromagnetici) puo essere considerato come composto da onde piane, cioe da moti tali che lungo
ogni piano di una famiglia di piani paralleli (piani ondulati) la forma del moto sia costante.

Ognuno di questi sistemi ondulatori consiste dunque di moti paralleli al piano ondulatorio, che si
propagano lungo la normale al piano ondulatorio con una identica velocita costante ¢ per tutte le
forme di moto (tipi di luce). Siano &,&,,&, coordinate ortogonali di un punto dello spazio per un

tale sistema ondulatorio, la prima normale, le altre parallele al piano ondulatorio; @,,®,,®, le
componenti di velocita ad esse parallele in questo punto, al tempo t; allora si ha:

0w _ 99 _ .

FE dE,

Si ha innanzitutto @, =0. Inoltre, il moto ¢ composto da un moto che procede verso la parte

positiva del piano ondulatorio e da uno che procede verso quella negativa con velocita c. Se @'
sono le componenti di velocita del primo e @' quelle del secondo, le @' rimangono invariate
quando t aumenta di dte &, di cdt, le @' quando t aumentadidte & di —cdt, esiha o= w'+a".
Quindi, le interazioni gravitazionali ed elettromagnetiche possono essere spiegate in chiave unitaria,
facendo riferimento esclusivamente ai moti di una “materia diffusa uniformemente in tutto lo spazio
infinito”, che nella nostra moderna visione fisica pud benissimo identificarsi con 1 moti di un
“mezzo” (da identificarsi con il vuoto quantistico, con il vuoto perturbativo di stringa) che genera
membrane vibranti. Quindi, in termini di teoria di stringa, avremo che 1’azione di stringa bosonica,
quindi I’energia ordinaria e I’energia oscura (quest’ultima collegata alla costante cosmologica) ¢
matematicamente correlata all’azione di superstringa, quindi alla materia ordinaria e alla materia
oscura. Quindi anche in questa tesi, come vedremo, alcune equazioni fondamentali di questa tesi
possono essere ben correlate al modello di Palumbo applicato alla teoria di stringa.

Modello di Ricci

Nella dinamica dei sistemi elastici si considerano oltre alle “forze di massa”, le quali agiscono sugli
elementi di volume, anche delle “forze di superficie”, che si considerano applicate ai diversi
elementi delle superfici, che limitano il mezzo. A queste viene dato il nome di “pressioni” o di
“tensioni” secondo che le loro direzioni vanno dall’esterno verso I'interno del mezzo o viceversa.
Riferiamoci ad un sistema di coordinate generali, per le quali il quadrato dell’elemento lineare dello
spazio assume I’espressione

ds® = erarsdxrdxs =@, (b)

ed indichiamo con X, e P gli elementi dei due sistemi covarianti generatori rispettivamente del

vettore, che rappresenta le forze di massa riferite all’unita di volume e di quello, che rappresenta le
forze di superficie riferite alla unita di area. Si supponga che il mezzo elastico sia in equilibrio sotto
I’azione di quelle forze dopo aver subito una deformazione (u,), cioe dopo che ogni suo punto P

da una posizione primitiva corrispondente ai valori x, delle coordinate ¢ passato alla vicinissima

(x, +u” ) Al punto P si immagini dato un nuovo spostamento per il quale esso passi da questa ad

"+ ou” . Se con dS siindica I’elemento di volume, che si trova intorno a

un’altra posizione x, +u
P, il lavoro fatto per questo spostamento dalle forze di massa applicate a dS avra I’espressione

dSer r&A("). Per 1 punti P delle superfici o, che limitano il mezzo, indicando con do

I’elemento di area do intorno a P, sara da aggiungere a questo il lavoro delle forze di superficie
che avra per espressione dO"ZFP,&t(”. Bisogna infine tener conto del lavoro fatto per lo
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spostamento considerato dalle forze elastiche interne, il quale per ogni elemento di volume dS sara
rappresentato dal prodotto JI1dS, designando con A1 la variazione, che il potenziale elastico IT

del mezzo subisce per gli incrementi Ju'” dati agli spostamenti " .

Concludendo, Ricci afferma che nella teoria meccanica della luce i fenomeni elettromagnetici sono
attribuiti alle vibrazioni di “un mezzo indefinito, elastico ed isotropo”.

Anche le affermazioni di Ricci, come quelle gia trattate del Riemann, possono essere reinterpretate
nel linguaggio della fisica moderna. Un’onda elettromagnetica si propaga attraverso il vuoto. Ma il
vuoto ¢ “pieno” di energia: nel vuoto quantistico, o vuoto perturbativo di stringa, si creano e
annichilano “continuamente” coppie di particelle-antiparticelle. Questa energia del vuoto, inoltre,
puo essere correlata all’energia oscura.

Anche alcune fondamentali equazioni della tesi del Ricci possono, come vedremo, essere
ottimamente correlate con la teoria di stringa, precisamente con il modello di Palumbo.

Modelli di Einstein

Dopo aver descritto 1’azione di Hilbert-Einstein, vengono studiate le equazioni di campo di Einstein
comprensive della costante cosmologica. Quindi vengono descritte alcune applicazioni della teoria
di Kaluza-Klein che vedremo essere ottimamente correlate con il modello di Palumbo applicato alla
teoria di stringa.

Assioni

Infine, vengono evidenziate alcune recenti applicazioni dell’assione in teoria di stringa.

Ricordiamo che I’assione & una ipotetica particella avente una massa pari a circa 107 eV, ossia
circa un decimiliardesimo della massa dell’elettrone. Gli assioni sono strettamente connessi alle
particelle scalari introdotte nella teoria di Peccei-Quinn, le quali si condensano nel vuoto e rompono
la simmetria detta di “Peccei-Quinn”. Ogni volta che particelle scalari si condensano nel vuoto e
rompono una simmetria continua, dovrebbe essere associato ad esse un altro grado di liberta, che si
manifesta come una particella priva di massa: nella teoria di Peccei-Quinn questa particella ¢
I’assione. Una volta che I'universo si sia raffreddato abbastanza perché cominci a diventare
importante 1’interazione forte, il termine nelle equazioni della cromodinamica quantistica che
altrimenti condurrebbe alla violazione della parita della coniugazione di carica, produce interazioni
che rompono esplicitamente la simmetria di Peccei-Quinn. Ne segue che vengono indotte
interazioni fra gli assioni le quali impongono alla produzione di un assione reale un costo in termini
di energia: queste interazioni finiscono col dare all’assione una massa, mentre in precedenza ne era
stato privo.

Poiché queste particelle sono create inizialmente dalla meccanica quantistica in una configurazione
di energia minima, € non attraverso un processo termico, cio significa che in tempi molto antichi
esse dovettero comportarsi in modo non relativistico, persino quando la temperatura del bagno di
radiazione superava di gran lunga la loro massa. Questa ¢ la principale richiesta che si deve
soddisfare perché la materia oscura sia “fredda”, cosi che una fluttuazione iniziale di densita non
abbia alcun problema a collassare per effetto della gravita al tempo giusto. Questo fatto riveste
notevole importanza: significa che non si richiede che la materia oscura fredda sia costituita da
particelle pesanti. Purche siano consentiti meccanismi di produzione non termica, come in questo
caso, la gamma di possibilita ¢ molto pilu ricca: gli assioni sono un esempio primario di questa
nuova liberta.

Vedremo come anche alcune equazioni di quest’ultima tesi, siano ottimamente correlabili con il
modello di Palumbo applicato alla teoria di stringa.

Riemann’s Model [1]



1. Gravitation and Electromagnetism.

1.1 Motion from whom rise only gravitational phenomena.

The gravitational strength is defined in each point from the potential function V, whose partial

differentials a_V oV oV are the components of the gravity strength.
x,  Ox, ax3
When all the attraction bodies are inside of a finite space and r denote the infinite distance from a
V. dV 9V e aV
point of this space, then r—,r——,r—— are infinitesimal. If @—=u, we have that
ox,  Ox, oOx, X

dV =u,dx, +u,dx, + u,dx,. The, we have the following conditions:

%_%:0’ %_%:0, %_%:0 (1.1)
ox, Ox, ox, ox, ox, O,

(aul N ou, 8u3

dx,dx,dx, = —4mdm , (1.2
ox, ox, 8x3j e (12)

ru, =0, ru,=0, ru;=0, per r=o. (1.3)
Inversely, also the quantities u are equal to the components of the gravity strength when satisfy
these conditions, because the conditions (1.1) comprises the possibility of a function U, whose

differential is equal to  dU =u,dx, +u,dx, +u,dx,, hence the partial differentials U =u and
X

the remaining give U =V +cost.

1.2 Motion from whom rise only electromagnetic phenomena.

From (a) we have that:

(a—“’+ca—“’jdr 0. (M—caﬂjm 0. (1.4)

a 9 o 9
v 8 0 ,0'0 9w v ,9'0" 2w ,0'w
= , = = d h = 1.5
o7 " C3Ea S ar e Cagar © ag Mdbence Sr=ciger. (1)

From these equations, we have the following symmetric:

dw, Jw, Jo, 0’ 82w 820) ’w
+ + = , (1.6)
dg, 95, 0g; ot 08 ag o

that, with the original coordinates system become :
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X, X, X3

These equations are good for each wave passing for the point (xl,xz,x3) to the time t, and
consequently also for the motion composed from the sum of these.

1.3 Motion from whom rise gravitational and electromagnetic phenomena.

From the conditions found for u and w, we have the following conditions for v, therefore the
motion’s laws of the matter in the vacuum space:

—=0, (1.8
ox, Ox, Ox, (1.8)
o2 -c2for +o7 +o2 )| 22— D5 g, (p2-c2(o? 407 a2 )| 2P ]g
' ’ A ox,  ox, ' ’ A\ ox,  ox,
2 232 2 2 ) 9V 9,
(02=c2(02 +02 +92 )) 22 -T2 |-, (1.9)
‘ ? *Nox, ox

hence:

9’ —cz(axl2 +0x; +8x32{(av2 _av3j+(8v3 - avl]+(avl _ ﬂzo. (1.10)

ox, ox, ox, 0x, ox, o,

These equations denote that the motion of a material point derive always only from the motions of
the neighbouring parts of space and time. The equation (1.8) denote the assertion that in the motion
of matter the density is unchanged, because

dv, dv, OJv,
ox, OJx, Ox,

the quantity of matter that “run” in the spatial element dx,dx,dx,, in the temporal element dr,

jdxldxzdx3dt, (1.11) that consequently to this equation is equal to 0, give

thence the quantity of matter inside in it is constant. The conditions (1.9) are similar to the condition
that the total differential dW is equal to

aw = (92 =@ +982 +92 v dx, +vydx, +vidx,). (1.12)
Now (02 - cz(ail +0; +0, )w,dx, + w,dx, +w,dx,)=0, (1.13)  and consequently
aw =02 —c*(0% +02 +92 Nudx, +u,dx, +uydx,)= (02 —c>(@2 +92 +2° Jav, (1.14)

0%V
2

or, because (92 +92 +92 JdV =0, dW=d (1.15)

1.4 Expression for the laws of the motion of matter and of the gravity strength effect on the
motion of ponderable bodies.




The laws of these phenomena can be express with the condition that the change of the integral
d on, on.) (on, o\ (om, onm )
—jz( ”lj _e|| D O | | 9 9T O OT g g dde +
ox, Ox, ox, Ox, ox, Ox,

+ v( gx’g dx,dx,dx, + 471’dmjdt +or| dmZ(

j dt (1.16)

for fixed conditions bound is 0. In this expression both first integrals are extended to the whole
geometrical space, the other integrals are extended to the ponderable material elements.
Furthermore, this expression arise from the relations (1.1), (1.2), (1.9) and (1.10).

.. 0 : :
Therefore, the quantities a—n(: v) are equal to the components of the velocity of motion of matter,
t

and V is equal to the potential for t time in the point (x1 s Xy, X3 ).
Now, for the expression (1.16) equal to zero and inverting the sides, we obtain:

—IV( K dxldxzdx3+47rdedt+27[IdmZ[ j dt =
2 2 2
:_Iz(anlj . l(anz_amj +(an3_amj +(am_an2j }xldxzdxﬁt:
ox, ox, ox, oJx, ox, ox,
vo 1 14

_Id26x'\/_|:_@_§gﬂpg Tr(Gﬂvaa)f(¢)__gﬂ aﬂwv¢j|:

j J-dlox\/ Ge 2‘I’[R+4a @8”(1)——‘H‘ —ﬁT QF| )} (1.17)
g

0

Therefore, this expression, for the Palumbo’s model applied to the string theory, can be related,
with regard the left-hand side, to the bosonic string action, with regard the right-hand side, to the
superstring action. The sign minus indicates the expansion force: i.e. the Einstein cosmological
constant.

Ricci’s model [2]

2. Theory of elesticity applied to the electromagnetics phenomena deriving from the vibrations
of an indefinite elastic and isotropic ‘“‘diffuse substance”.

For the application of the principle of virtual velocities, we have the equations of the elastic
stability, in the following form:

[l1+3 x P& s+ [aoy P&, =0, 22)
N o

where S is the space regarding the elastic substance, and o are the surfaces that limit it.
Now, we compute the variation OIl. For the general expression of elastic potential

= (rs) &~ (tu)
-2l = Z,m, ¢ rs,tu; ¢, we have



AT=-Y g £ (2.3)

Putting

e = 4

9,
and considering ¢ ,, distinct from ¢ ,» 1f the index p and q are distinct, we have
M0 ==%" ¢"rf , (2.5)
from (2.5) we have that the II'”” are a “double system symmetric controvariant”. We have also
A=) T8, (2.6) hence, for 2, =u, +u,,
Al=3 N, . (2.7)

Remembering the expression for derivative covariant

ou
= -> a, u”, (2.8) thatfor u,=Y a,u” become
q

Upy =

0
u .
U, = ,(apr o +aq,,pu”)J, (2.9) for these, we obtain

q

)
du,, = Z;(apr ag; + aqr’p&z(”]. (2.10)  Therefore, we have

()
aP,H(”’”asLdS+ [a H“””&t(')dSJ. (2.12)
N

qt,p

Al = zpqt(am I +a, ,ou" jan) , (2.11) and thence

xq N

dS:—juqlaqq Cosﬁfcha, (2.13) changing u with u-v, we

a axq
obtain
[u2as =~[uv,fa,, cosit,do - v e o (2.14)
s Ox, : S\/; ox,
Putting u=a, 1", v=0u", we obtain:
oou" ou” 9

a TP 22 s =—[1"a u® Ja  cosiz do—[———aa 1" JS, (2.15

,S[ pt axq l pt aq q _! \/E axq( pt )d ( )
and thence:



a axq

st -3, [ 8,17 Ja, cosiit,do, (2.16)

da

for the relationships: E)xp “=a,, +a,,, (2.17a)

q
(pq)
foras ==Y | &(’)(H(’”’)aw +%a(€—nw)]ds -3 [ &, 07 [a, cosit,do. (2.17b)
N S a X >

q

Now, for the expression for derivative controvariant, we have the following relations:
o =3 @0 s 0 (@ £ a0 ) (2.18) from these and from
- h ax v hv,w ’ :
h
. dlog Ja
z .a( )asv w =
swW > ax

Z amH(”“) a(”’)H(”)aw Z
su gst 3

(rsu) _ Z (Pq) z
Zrm arta“"H qu Pq Pt

, (2.19) we obtain

(\/_H(rq))

, (2.20)

(\/_qn(pq))

q

2.21)

In conclusion, we obtain:
[ords =-[dsy &,y a1 -[doy &> 1" [a, cosit,do, (2.22)
s s o
the eq. (2.2) become:
[asy &, (x? =% a0 )+ [doy &, (PP -F T [a, cosit, )=0. (2.23)
s o
This equation must be satisfied for arbitrary values of du, and is equal to
X =% a0, (2.24)
that must be satisfied in the S space and are defined “indefinite equations” and to
PP =% T [a, cosit,, (2.25)

that must be satisfied on the surfaces o, that bound S, and are defined “boundary equations”. If,
f (x1 Xy, Xy ) =0 is the equation of the surfaces o, and

1/ COs A, —ai, the egs. (2.25) can be written also

q
1
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P(p) _ H(M) 2.26
Af z axq - (2.26)

The eqs. (2.24) and (2.26) for the “duality principle” can be written also

(2.27) P !

_ (su) -
Xr—zma I1 i Af

T, f©, (2.28)

rsu °

(ps) ai
ox

p

because ) = Zpa

For homogeneous and isotropic “diffuse substances”, the elastic potential is given by

211 = (2B— A)®* —2BI, (2.29) (with A and B constants) being, in general coordinates,

— (rs) — (pr) ,(qs)
0= zrsa ., I= quma a’{ ¢, . From these, we have

99 _ e i=2§<“>, oo = ol =(2B- A)@a—®—Ba—I (2.30)

o, 9, g, ¢, 9¢,
hence I =(2B-A)@a" —2B{", (2.31)  from whose derivatives one obtain
" =(2B-A)a"™ 0" —2BL "™ . (2.32)
The egs. (2.27) e (2.28) for elastics homogeneous and isotropic “diffuse substances”, become

X, =(2B-A)®,-2B) a“{,, . (2.33) P,.:A—lf{(ZB A@aaf -2BY ¢, f‘”}, (2.34)

r
1

If we have in the space a system of orthogonal coordinates, whose expression ds” of the space is

ds’ = Hldx] + H;dx; + H;dx., then, the general equations of the elastic stability for the
homogeneous and isotropic “diffuse substances” are

X,=(2B-A)®, -2B) —gm,(z 33a) P, —é{(ZB A @ 232 Lgﬂ o } (2.34b)

S X

1

If the orthogonal coordinates x,,x,,x, coincide with a system of cartesian orthogonal coordinates

¥, Y,,Yy; putting the coefficients H, =1 we obtain the equations of the elastic stability for an
arbitrary substance:

, (2.35) P=3TI, %, (2.36)
s n



where n denote the normal to the surfaces ¢ that bound the substance. While, the eqs. (2.33) and
(2.34), for the homogeneous and isotropic “diffuse substances” are:

X,=-40,+280, - ¢, ). @31 P =(2B- A)@% ~2BY ¢, aay L (2.38)
N o n N b n
Because
2 2
0=y M, g, =0 a T
s dy, dy, 0y,dy, 9, Wy

we have also

X, = _Aa_®+23(%_%
ayf+2 ayH-l

5, j , (2.40)

dy du A 9y,
P=2B-A)@®——-2B] —+ e =1L (241
t ( ) an ( an ﬂt+l an Il'lH-Z an ( )

From the indefinite equations of the elastic stability, we obtain the following equations of motion:

() o’u"” (pq)
X" -p=53 =4, 17" . (242)

In cartesian orthogonal coordinates, we have the following indefinite equations of the elastic
motion:

L. (2.43)

q

Al
X, - p2 .

2
u,
or’ _Zq 0

With regard the propagation of rectilinear displacements for plane waves, the indefinite equations of
the motion of elastic substance, if the elastic potential IT have the most general expression, putting
Il =—-P and, supposing null the external strengths, and the substance homogeneous and of density
p =1, for the egs. (2.43), become:

0%u
or*

. 9 dP
L = . (244)
ZI: ay, 9¢,,

Thence, we obtain from the (2.23), (2.40) and (2.41) the following expression:

jdszp&d{— A§—®+ 23(%—8"—“2]} -
N

yr ayt+2 ayt+1

dy ou dy dy
=—|d ou |2B—A)®—L--2B| — o2 _ “L1].(2.45
l GZp p |:( ) an ( al’l + lur+l an :ut+2 al’l jj| ( )
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The left-hand side of this expression give the strength of mass (matter, electromagnetic field),
therefore is related to the superstring action, while the right-hand side give the strengths of surfaces
(gravity strength), therefore is related to the bosonic string action. Then, for the Palumbo’s model
applied to the string theory, we have that the eq. (2.45) is related to the expression:

. - 2
!2’1(120 J'dmx\/ze_zq’[R+4aﬂCI>a”CI>—%‘H3‘2 _z_gTrquZF)} -

2 R 1 vo 1,
=—Jd x@{‘@—gg”pg 7610 Gpo ) (9)- 6" 3ﬂ¢8v¢] (2.46)

Einstein’s models [3]

3. The Hilbert-Einstein action.

The equations of the gravitational field, the Einstein’s equations, can be written in the following
form:

1 871G
R/W _EgﬂvR = o

T, . (3.1)

Here g, represent the metric tensor of the gravitational field, R, the Ricci’s tensor and 7, the

energy-momentum tensor.

From the egs. (3.1) having the source T,,,

Furthermore, the eqgs. (3.1) are non-linear equations in g, .

it is possible to obtain the metric of the space-time.

The Einstein’s equations (3.1) can be obtained from a variational principle. The action of the
gravitational field, the Hilbert-Einstein action, is:

S, =———[d*xJ-g(MR), (3.2)

167G

where g is the determinant of g, and R is the scalar curvature,

R=g""R  =g" —ar/fv ——ar5p+l“al"p -Trere 3.3)
8 w = 8 ox” o uv=op oviup |\

The variation to fixed bulk of the integral (3.2) is
5J-d4x1/— gR = .[d4x1/— gR,, %" +J.d4xR§1/— g +J-d4x1/— gg" R, . (3.4)

Now, we have that J,/— g :

1 1 og
Od—g =——— o =— ——&". (3.5
2\— ¢ & 2\—-g agﬂvé‘g
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The derivative dg/dg*" is the algebraic complement of g**. Because the elements of the inverse

matrix of g, thatis g, , are the algebraic complements of g*” divided for g, hence

l agv , (3.6) we have agv
g 9g” dg”

1
-8 =-2\-88,&". 33)

=88 > (3.7) and the (3.5) become

g,uv:

Replacing this expression in the eq. (3.4), we obtain:
S[d*xy-gR=[d"x - ( gw j5gﬂ” +[d'xJ-gg" R, . 39

If the Ricci’s tensor R, is a function of g, through the Christoffel’s symbols, we obtain that the
second term in eq. (3.9) is a surface term that can be neglected. Then, we have

S[d*x(-gR=[a* x\/_[ ——gm, j5g’“’ (3.10)

From the principle of stationary action

&, 167G
for the eq. (3.10), we have

1
Ry =2 8wR=0. (3.12)

This is the Einstein’s equation of gravitational field without sources .
Now we consider a source of energy represented from a generic field ¢ . The action of ¢ is

S, :%Id“xRL, (3.13)

where L is the Lagrangian density. Putting equal to zero the variation of S, with respect to ¢ we

obtain the equations of motion for the field ¢ . The variation of S, with respect to g*”, is

NI B T G =

g ? 30,8

(3.14)

Introducing the tensor 7, defined by

12



L ) o)

W g ”aa

the (3.14) can be written

:_jd xyJ-gT,,&" . (3.16)

The total action of the system constituted from the field ¢ and from the gravitational field g, is

3
S=5,+5, :—ﬁjd4xﬁR+%J‘d4x\/§L. (3.17)

The interaction between the two fields is incorporated in the second term. For the (3.10) and (3.16),
we obtain that the stationary condition for S is

&= [a \/_{

1 1 )
[ v _EgﬂVRj+_T/tv:|5g,u =0, (3.18)

167G 2c

and from this we obtain the Einstein’s equations in presence of sources,

1 8ﬂG
R, 2g/wR

. (3.19)

The tensor 7, is therefore the energy-momentum tensor of the field described from the Lagrangian

L. This tensor is symmetric. Now, we see the interaction between the electromagnetic field and the
gravitational field. Here, the action is:

§S=S,+S,, =-———[d* \/_R——jd x-gF, F,b8"g" , (3.20)

167G 167G

Now, because

o/~ 9y — 9
(’\/_g em)_ ﬁLem+E£+$:__rgaﬁ em_\/_F Fpﬁg (3 21)

agaﬁ - agaﬁ

for T;/,;Z’ we have, using the (3.15),

en =2 oW-st,) 1 FVFﬂVgaﬁ—iF F/, (322)

N 167~

and this is effectively the symmetrized energy-momentum tensor of the electromagnetic field.
Indeed, the expression for the energy-momentum tensor of the electromagnetic field is:

13



T =—$F“”F; +éF”“Fpgg‘”’. (3.23)

4. Einstein’s equations with cosmological constant and theoretical models with time dependent
dark energy.

Einstein’s equations with cosmological constant [4]

Einstein’s equations, which determine the dynamics of the space-time, can be derived from the
action:

jRJ_dx+jL (9,001- gd*x, (4.1)

167zG

where L, is the Lagrangian for matter depending on some dynamical variables generically denoted
as ¢ . (We are using units with ¢ = 1.) The variation of this action with respect to ¢ will lead to the
equation of motion for matter (5Lm /8¢)=0, in a given background geometry, while the variation

of the action with respect to the metric tensor g, leads to the Einstein’s equation

1
R, _Egzk

=87GT, , (4.2)

where the last equation defines the energy momentum tensor of matter to be 7, = Z(élm /5™ )

Let us now consider a new matter action L' =L —(A/82G) where A is a real constant. Equation
of motion for the matter (3L, /d¢)=0, does not change under this transformation since A is a
constant; but the action now picks up an extra term proportional to A

IR\/_d x+I(L ——j\/_ x_—j(R—zA)\/;d“Hijﬁd“x, 4.3)

16ﬂG

and equation (4.2) gets modified. This innocuous looking addition of a constant to the matter
Lagrangian leads to one of the most fundamental and fascinating problems of theoretical physics.
The nature of this problem and its theoretical backdrop acquires different shades of meaning
depending which of the two forms of equations in (4.3) is used.

The first interpretation, based on the left-hand side of equation (4.3), treats A as the shift in the
matter Lagrangian which, in turn, will lead to a shift in the matter Hamiltonian. This could be
thought of as a shift in the zero point energy of the matter system. Such a constant shift in the
energy does not affect the dynamics of matter while gravity — which couples to the total energy of
the system — picks up an extra contribution in the form of a new term Q, in the energy-momentum

tensor, leading to:

i 1 i i i i A i i
R! —EdkR=87zG(Tk +0); 0 =50 =0 (44)
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The right-hand side in equation (4.3) can be interpreted as gravitational field, described by the
Lagrangian of the form L, (1/G)R —2A), interacting with matter described by the Lagrangian
L, . In this interpretation, gravity is described by two constants, the Newton’s constant G and the

cosmological constant A . It is then natural to modify the left-hand side of Einstein’s equation and
write (4.4) as:

R —%5;R—§,§A _8AGT! . (4.5)

In this interpretation, the spacetime is treated as curved even in the absence of matter (Tik =0) since
the equation R, —(1/2)g, R—Ag, =0 does not admit flat spacetime as a solution.
The action principle for gravity in the presence of a cosmological constant

1 1 A
A=——[(R-2A\-gd*x= @jRﬁd“x—%jﬁd“x, (4.6)

167G

can be thought of as a variational principle extremizing the integral over R, subject to the condition
that the 4-volume of the universe remains constant. To implement the constraint that the 4-volume
is a constant, one will add a Lagrange multiplier term which is identical in structure to the second
term in the above equation. Hence, mathematically, one can think of the cosmological constant as a
Lagrange multiplier ensuring the constancy of the 4-volume of the universe when the metric is
varied.

Several people have suggested modifying the basic structure of general relativity so that the
cosmological constant will appear as a constant of integration. One simple way of achieving this is
to assume that the determinant g of g, is not dynamical and admit only those variations which

obeys the condition g“’d¢_, =0 in the action principle. This is equivalent to eliminating the trace
part of Einstein’s equations. Instead of the standard result, we will now be led to the equation

R; —ié‘,ﬁR = SﬂG[T,f —ié‘,ﬁTj, (4.7)

which is just the traceless part of Einstein’s equation. The general covariance of the action,

however, implies that 7;” =0 and the Bianchi identities (R,i —§§,§RJ =0 continue to hold.
These two conditions imply that d,R = —872Gd,T requiring R +82GT to be a constant. Calling this

constant (—4A) and combining with equation (4.7), we get
R —%S;R _5'A=87GT, (48)

which is precisely Einstein’s equation in the presence of cosmological constant. In this approach,
the cosmological constant has nothing to do with any term in the action or vacuum fluctuations and
is merely an integration constant. Like any other integration constant its value can be fixed by
invoking suitable boundary conditions for the solutions.
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Now, we consider a system consisting of the gravitational fields g, , radiation fields, and a scalar
field ¢ which couples to the trace of the energy-momentum tensor of all fields, including its own.
The “zeroth order” action for this system is given by

AV =4, +AY +AY

grav int radn 4

(4.9)

where
i
grm - (1671' ),f \/_d X = J-A\/_d X, A;()) :§I¢ ¢i\/;d4X,
AW =n[Tf (919, - gd"x, (4.10)
therefore'

[Ry=gd*x- jA\/_dx+ [9'0-ed x+n[Tr(p1 g = gd"x+ A, . (411

(16%G)

Here, we have explicitly included the cosmological constant term and 7 is a dimensionless number

which “switches on” the interaction. In the zeroth order action, T represents the trace of all fields
other than ¢. Since the radiation field is traceless, the only zeroth-order contribution to T comes

from the A term, so that we have T =4A . The coupling to the trace is through a function f of the
scalar field, and one can consider various possibilities for this function. The constant ¢, converts ¢

to a dimensionless variable, and is introduced for dimensional convenience.
To take into account the back-reaction of the scalar field on itself, we must add to T the contribution

T, = —¢'¢, of the scalar field. If we now add T, to T in the interaction term Alnt further modifies
T¢’k . This again changes T,. Thus to arrive at the correct action an infinite iteration will have to be

performed and the complete action can be obtained by summing up all the terms. The full action ca
be found more simply by a consistency argument.
Since the effect of the iteration is to modify the expression for A, and A,, we consider the

following ansatz for the full action:

Ry-gd'x~[aly JAY— gd*x+ jﬁ (@)’ o —gd'x+A,,. 4.12)

ik

Here a(¢) and B(p) are functions of ¢ to be determined by the consistency requirement that they
represent the effect of the iteration of the interaction term. The energy-momentum tensor for ¢ and
A is now given by

T* = alp)Ag" +/3(¢){¢‘¢k —%g"kw%] (4.13)

=4a'(¢)A—,B(¢)¢i¢i. The functions a(¢) and B(#) can now be
determined by the consistency requirement

- JaloIA=gd s+ [ Blol'o = gd'x=

so that the total trace is T

tot
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=—jAJ_dx+ [o'0-gd*x+n[T, f(p19,-gd’x. (4.14)

Using 7,, and comparing terms in the above equation we find that

1o

alg)=[+4nr 1", Blo)=l+2nf]". 4.15)

Thus the complete action can be written as

e LS P

jM J-gd'x+A,, . (4.16)

" 161G 1+ 2nf

14f

The action in (4.16) leads to the following fields equations,
Ry~ g, R=-87G| f0) 99"~ "0, |+ " alp)g, + Ty | @17)
ik 2 ik 2 o 8ﬂG ik ik :

1 B(9)

A 20 4
2ﬁ(¢)¢¢ (4.18).

Do+ 817G B(9)

Here,E| stands for a covariant d’Lambertian, 7,/ is the stress tensor of all fields with traceless

stress tensor and a prime denotes differentiation with respect to ¢. In the cosmological context, this
reduces to

/! A SUx2)
vy oG (1+4nf )
a’+k_82GI1 ¢* A 1 p

a> 3 |21+2nf  8aG (1+47f)

¢+—¢ e’

. (4.20)

It is obvious that the effective cosmological constant can decrease if f increases in an expanding
universe. The result can be easily generalized for a scalar field with a potential by replacing A by
V(@). This model in conceptually attractive since it correctly accounts for the coupling of the scalar

field with the trace of the stress tensor.
Theoretical models with time dependent dark energy
The distribution of matter in the universe is homogeneous and isotropic at sufficiently large scales.

The assumption of isotropy and homogeneity implies that the large scale geometry can be described
by a metric of the form

dr*
1—kr?

ds? = dt* —a*(1)dx? = dt* —a* (1) r2(d6” +sin” @dg?)|, @.21)
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in a suitable set of coordinates called comoving coordinates. Here a(r) is an arbitrary function of
time (called expansion factor) and k =0,f1. Defining a new coordinate ) through

X = (r, sin”' r,sinh ™ r) for k = (O,+1,—1) this line element becomes
ds> =di* —adx® = di”> — a*(t)\dy® + 2 (¢ )ad8” +sin® &dg?)], (4.22)

where S, (y)=(y.sin g,sinh ) for k =(0,+1,~1). The line element in terms of [a, ;(,6’,¢] or
2. 2.6.0] is:

2
ds® = H™ (a)[@j _aldi = - |22 (2)dz? - ax?], (4.23)
a (1+z2)

where H(a)=(a/a), called the Hubble parameter, measures the rate of expansion of the universe.
The following equation

p; = p,(a, )(&j exp{— 3[@ W, (5)}, (4.24)
a a

a,

determines the evolution of the energy density of each of the species in terms of the functions
w,(a). This description determines p(a) for different sources but not a(r). To determine the latter

we can use one of the Einstein’s equations:
371G

) k
2 - P, (a)—?. (4.25)

H*(a)=
@)="7="32

This equation shows that, once the evolution of the individual components of energy density p, (a)

is known, the function H(a) and thus the line element in equation (4.23) is known.
The simplest model for the universe is based on the assumption that each of the sources which
populate the universe has a constant w, ; then equation (4.25) becomes

dz a 3(1+w,-) k
—=HY Q|2 ——, (4.26
ezely] e

where each of these species is identified by density parameter €, and the equation of state
characterized by w,. The most familiar form of energy densities are those due to pressure-less
matter with w, = 0 and radiation with w, = (1/3).

The term (k/ az) in equation (4.26) can be thought of as contributed by a hypothetical species of
matter with w=—(1/3). Hence equation (4.26) can be written in the form

a-z a 3(l+w,~)
4 ngg,.(—()j , @427)
i a

2
a
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with a term having w, = —(1/3) added to the sum. Let & =3(1+ w) and Q(a) denote the fraction of

the critical density contributed by matter with w=(&/3)—1. In the continuum limit, equation
(4.27) can be rewritten as

H® = H; [daQ(a)e™, (4.28)

where (a/ ao)z exp(g). Let us divide the source energy density into two components: yoB (a),

which is known from independent observations and a component p, (a) which is not known and
where “X” is the unknown dark energy component. From (4.25), it follows that

S py 0= aNi-0la): - 0la)= 2 a2

Taking a derivative of In p, (a) and using (4.24), it is easy to obtain the relation

1 d 2(\.3
w, (a)z—gdlnaln[(l—Q(a))H (a)a’]. @.30)

Note that the value w # 0 is a clear indication of a dark energy component which is evolving.
A simple form of the source with variable w are scalar fields with Lagrangians of different forms,
of which we will discuss two possibilities:

1/2

Ly =50.0°0-V(0): L, =v(oli-0,0]". @31

Both these Lagrangians involve one arbitrary function V(¢). The first one, L_. , which is a natural

quin >
generalisation of the Lagrangian for a non-relativistic particle, L =(1/2)4* —=V/(g), is usually called
“quintessence”. When it acts as a source in Friedman universe, it is characterized by a time
dependent w(r) with

y C1-(vi?)

= —y- (4.32
T relrg)

1., Ll
pq(t)—5¢ +V; P,,(t)—2¢ v

The stress tensor for the tachyonic scalar field can be written in a perfect fluid form
T, =(p+ pu'u, — pd., (4.33)

with

9,9 V(9) ;
U, =——=—: p=——ot . p=-V(pW1-0'® ¢, (4.34) thence
\/al¢ai¢ 1_al¢ai¢

1= -y T 2 vl ima s 439

,/1—8”;1’)8,.;/) al¢ai¢
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The remarkable feature of this stress tensor is that it could be considered as the sum of a pressure
less dust component and a cosmological constant.
In the cosmological context, the tachyonic field is described by:

—1/2 1/2

=vii-¢]"; P =v[-9]": w,=¢"-1. (4.36)
Now, we assume that the universe has two forms of energy density with p(a)= Linown (a)+ Py (a)
where p,,,.. (@) arises from any known forms of source (matter, radiation,...) and Py (a) is due to a

scalar field. When w(a) is given, one can determine the V(@) using either (4.32) or (4.36). For
quintessence, (4.32) along with (4.29) gives

3H?*(a)

9*(a)= p(1+w)= 1-0)1+w); 2V(a)=p(l-w)= (1-0)1-w). (4.37)

3H(a )(
817G
For tachyonic scalar field, (4.36) along with (4.29) gives

=0 Via)=pw)” =2 g) e asg)

Given Q(a),w(a) these equations implicitly determine V(¢). Combining (4.30) with either (4.37) or
(4.38), one can completely solve the problem.

Now we consider quintessence. Here, using (4.30) to express w in terms of H and Q, the potential
is given implicitly by the form

I _aHQ'

v(a)_lmGH(l Q){6H+2H - } (4.39)
| da dinH* 1"

‘”(")‘[m} [~ { 0-(1-0) na} . (4.40)

where Q(a)=[87Gp,. (a)/3H(a)).

Similar results exists for the tachyonic scalar field. For example, given any H(¢), one can construct
a tachyonic potential V(¢) so that the scalar field is the source for the cosmology. The equations
determining V(¢@) are now given by:

_cda( aQ  2aHY" C3H [ 2aH a@ )"
¢(a)_jaH(3(1—Q) 3H] . (4.41) V—SnG(l Q)(1+3 - —3(1_Q)] . (4.42)

Equations (4.41) and (4.42) completely solve the problem. Given any H(r), these equations
determine V(¢) and ¢@(r), and thus the potential V(g).

5. Kaluza-Klein theories and their applications. [5]

Kaluza unified electromagnetism with gravity by applying Einstein’s general theory of relativity to
a five-, rather than four-dimensional spacetime manifold.
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The Einstein equations in five dimensions with no five-dimensional energy-momentum tensor are:

A

G, =0, (5.1)
or, equivalently:
R, =0, (52

where G ,,=R,, —R3,, /2 is the Einstein tensor, R,, and R= 3 ,,R"® are the five-dimensional
Ricci tensor and scalar respectively, and g ,, is the five-dimensional metric tensor. These equations
can be derived by varying a five-dimensional version of the usual Einstein action:

1 oy A 74
—|Ry—&d xdy, (5.3
16nGI gd xdy, (5.3)

S=-

with respect to the five-dimensional metric, where y = x* represents the new (fifth) coordinate and

G is a “five-dimensional gravitational constant”. The absence of matter sources in these equations
reflects the Kaluza’s first key assumption (i), inspired by Einstein: the universe in higher
dimensions is empty.

The five-dimensional Ricci tensor and Christoffel symbols are defined in terms of the metric
exactly as in four dimensions:

A A Ac Ac AD Ac AD Ac
RAB - aCFAB _aBFAC +FABFCD _FADFBC ’ FAB -

804805 +958p1 —0p8as). (5.4)

N | —

Note that, aside from the fact that tensor indices run over 0 — 4 instead of 0 — 3, all is exactly as it
was in Einstein’s theory: this is the second key feature (ii) of Kaluza’s approach to unification. In
general, one identifies the o -part of §,, with g, (the four-dimensional metric tensor), the a4 -

part with A, (the electromagnetic potential), and the 44-part with ¢ (a scalar field). A convenient
way to parametrize things is as follows:

N gaﬁ+K2¢2AaAﬁ Kp*A,
(gAB)—( KA, ” . (5.5)

If one then applies the third key feature (iii) of Kaluza’s theory (the cylinder condition), which
means dropping all derivatives with respect to the fifth coordinate, then one finds, using the metric
(5.5) and the definitions (5.4), that the af -, @4 -, and 44-components of the five-dimensional field

equation (5.2) reduce respectively to the following field equations in four dimensions:

2 .2 1 . aa 2 43 "
Gaﬁ:K2¢ TaEﬁM _E[Va(aﬁ¢)_gaﬁl:l¢ ]’ \ Faﬁ:_3 ¢F D¢:K4¢ FaﬁFﬁ’ (5.6)

off °

where G, =R,, —Rg,;/2 is the Einstein tensor, T,' =g,FsF”/4—FJF, s the

electromagnetic energy-momentum tensor, and F,, =d,A; —d ;A,. There are a total of 10+4+1 =

15 equations, as expected since there are fifteen independent elements in the five-dimensional
metric (5.5).
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If the scalar field ¢ is constant throughout spacetime, then the first two of eqs. (5.6) are just the
Einstein and Maxwell equations:

G,y =87G¢°T,;", VF,, =0, (57)

where we have identified the scaling parameter x in terms of the gravitational constant G (in four
dimension) by:

Kk=4J7G . (5.8)

This is the result originally obtained by Kaluza and Klein, who set ¢=1. The condition
¢ =constant is, however, only consistent with the third of the field equations (5.6) when
F,F¥ =0.

Using the metric (5.5) and the definitions (5.4), and invoking the cylinder condition not only to drop
derivatives with respect to y, but also to pull I dy out of the action integral, one finds that eq. (5.3)

contains three components:

— off a¢a¢
s =—[a* \/_;z{ F3K2¢j(59)

167zG 4

where G is defined in terms of its five-dimensional counterpart G by:
G=G/|dy, (5.10)

and where we have used equation (5.8) to bring the factor of 162G inside the integral. If one takes
¢ = constant, then the first two components of this action are just the Einstein-Maxwell action for
gravity and electromagnetic radiation (scaled by factors of ¢ ). The third component is the action for
a massless Klein-Gordon scalar field. The fact that the action (5.3) leads to (5.9), or — equivalently —
that the source-less field equations (5.2) lead to (5.6) with source matter, constitutes the central
miracle of Kaluza-Klein theory. Four-dimensional matter (electromagnetic radiation, al least) has
been shown to arise purely from the geometry of empty five-dimensional spacetime. The goal of all
subsequent Kaluza-Klein theories has been to extend this success to other kinds of matter.

If one does not set ¢ = constant, then Kaluza’s five-dimensional theory contains besides
electromagnetic effects a Brans-Dicke-type scalar field theory, as becomes clear when one
considers the case in which the electromagnetic potentials vanish, A, =0. This is acceptable in

some contexts, for example, in early-universe models which are dynamically dominated by scalar
fields. Neglecting the A -fields, then, eq. (5.5) becomes:

0

5. )=| 8 O]. 5.11
(gAB) ( ¢2 ( )

With this metric, the field equations (5.2), and Kaluza’s assumptions (i) — (ii1) as before, the action
(5.3) reduces to:
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= jd x\-gRo. (5.12)

167G

This is the special case @ =0 of the Brans-Dicke action:

=—[a* \/_( wa%”j S, (5.13)

167G ¢

where @ is the dimensionless Brans-Dicke constant and the term S, refers to the action associated

with any matter fields which may be coupled to the metric or scalar field.
Now we take the five-dimensional metric:

g’AB - g'AB = ng’AB’ (5.14)

where Q° >0 is the conformal (or Weyl) factor, a function of the first four coordinates only
(assuming Kaluza’s cylinder condition). The four-dimensional metric tensor is rescaled by the same

factor as the five-dimensional one (g,; — &'45 = ngaﬁ), and this has the following effect on the

four-dimensional Ricci scalar:

R > R'= Q‘Z(R+6D§'2'Q

j. (5.15)

A convenient parametrization is obtained by making the trivial redefinition ¢° — ¢ and then

introducing the conformal factor Q° = ¢, so that the five-dimensional metric reads:

) — 41/3 gaﬁ+K2¢AaAﬁ Kma 5.16
(gAB) ) ( K¢4ﬁ & j, (5.16)

Then, we have the following conformally rescaled action instead of eq. (5.9) above:

s'=-[a* xﬁ(

+— ¢Fv |aﬁ+ 128 w ¢
167G 4 6K ¢

j (5.17)

where primed quantities refer to the rescaled metric (ie., 9'“ ¢ = g'¥ 9 ;9), where G and x are

defined as before. The gravitational part of the action then has the conventional form, as desired.
The Brans-Dicke case, obtained by putting A, =0 in the metric, is also modified by the presence

of the conformal factor. One finds (again making the redefinition ¢*> — ¢ and using Q* =¢~'")
that the action (5.12) becomes:

§'=—[a* x\/_g( R, L 970, ¢j (5.18)

167G 67 ¢

In terms of the “dilaton” field o = Ing ,OIf O = Lln @, this action can be written:
(\/glc) 3k
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s'=-[a* H(

+— 8‘“0‘8 aj (5.19)

which is the canonical action for a minimally coupled scalar field with no potential.

Klein assumed that the fifth coordinate was to be a lengthlike one (like the first three), and assigned
it two properties: (1) a circular topology (S l); and (2) a small scale. Under property (1), any
quantity f(x, y) (where x = (xo,xl,xz,x3) and y = x*) becomes periodic; f(x,y)= f(x,y+27mr)
where 1 is the scale parameter or “radius” of the fifth dimension. Therefore all the fields can be
Fourier-expanded:

gaﬁ x y Zgaﬁ zm/r , Aa(.x, y): ZAéﬂ)(x)ein}'/r , ¢(x’ y): Z¢(ﬂ)em}’/r , (5.20)

n=—oo n=—oo n=—oo

(n)

where the superscript refers to the nth Fourier mode. Thanks to quantum theory, these modes

carry a momentum in the y-direction of the order |n|/ r. This is where property (2) comes in: if r is

small enough, then the y-momenta of even the n = 1 modes will be so large as to put them beyond
the reach of experiment. Hence only the n = 0 modes, which are independent of y, will be
observable, as required in Kaluza’s theory.

The expansion of fields into Fourier modes suggests a possible mechanism to explain charge
quantization. The simplest kind of matter is a massless five-dimensional scalar field ¥(x,y). Its

action would have a kinetic part only:
S, = —jd4xdy1/— 200 . (5.21)

The field can be expanded like those in eq. (5.20):

p(xy)= S e’ (522)

n=—o0

When this expansion is put into the action (5.21), one finds (using eq. (5.16)) the following result,
analogous to eq. (5.9):

—(Idy)Zj'd“x\/;Ha“ + imfla jl/?(”)(aa L jlﬁ(”) —n—ZZV?(")Z} . (5.23)

r or

From this action one can read off both the charge and mass of the scalar modes l/?(”). Comparison

with the minimal coupling rule 9, — d, +ieA, of quantum electrodynamics (where “e” is the
electron charge) shows that in this theory the nth Fourier mode of the scalar field ¥ also carries a
quantized charge:
nk -2 n\167G
g, ="Xlp[ay]"? = (5.04)
r 7’\/5
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where we have normalized the definition of A, in the action (5.17) by dividing out the factor

(¢I a’y)m, and made use of the definitions (5.8) and (5.10) for k¥ and G respectively. As a

corollary to this result one can also come close to predicting the value of the fine structure constant,
simply by identifying the charge ¢, of the first Fourier mode with the electron charge “e”. Taking

ry¢ to be on the order of the Planck length / , = JG , one has:

=4. (5.25)

4 _WiexG 1JG
4r

4

The possibility of thus explaining an otherwise “fundamental constant” would have made
compactified five-dimensional Kaluza-Klein theory very attractive.

We note that the result of the expression (5.25), i.e. 4, expression related to the egs. (5.8), (5.9) and
(5.10), is connected with some expressions concerning the mean increase factor of the partition
function p(n), the Legendre constant “c” = 1,08366 , related to the prime numbers and, indirectly, to
the Riemann zeta function, and the ° aurea” section and ‘“‘aurea” ratio, related to the Fibonacci’s
numbers. In fact, we have the following expressions:

%[(1,375)“ +(1,375)° ]: % -8,48934=4.2 (5.26)

[(c)” + i (c)} = [(1,08366)” + i(l,08366)} =3,919058 + 0,077404 = 3,996462 = 4 (5.27)

2
(5.28).

3
[(\/g * IJ —%%J] = {(1,618033)3 —%(0,618033)} = 4,236060 — 0,206011 = 4,030049 = 4 .

Is very important remember that 1,375=c"-8c=108"-1,01009=1375 and that

c® =1,0836° =1,618. Then “c” is related to the mean increase factor of p(n) and to the Fibonacci’s

numbers.

Furthermore, the eq. (5.28) is connected with two fundamental equations offered from the
mathematician S. Ramanujan [9], also related to the “aurea” section, “aurea” ratio and the partition
function, and precisely the following expressions:

1 1++/5 1 [ f(=q) 1
= JR(@) = , (5.29
JR(@) ( 2 j D= f g H (1+\/§jqn,5+q2n,5 o
2

R(g) = 5ol */_ . (5.30)

2 3+J_ £3(=t) dt
'[f( t1/5)t4/5

Then, we have the interesting connections:
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) w, 2 00\ _a _WieG NG _, _
o x*/_(z{mm a0t j “uT T a7

r -3

_ 11 [fee H | R
R(q) 4"\ f(=4”) (H\qu"’%qz"’s JR(@)
2

e+ */g . (5.31)
3 137 f I (~1) dt
2 \/_ f( tl/S) t4/5
Then, also for the eqs. (5.9) and (5.25) there are very important connections with “c”, p(n), “aurea”

section, “aurea’ ratio, related to the Fibonacci’s numbers, and the Riemann zeta functlon.

Now, also the eq. (5.19) and the expression o = %lnqﬁ are related with Palumbo’s model and
K

with some expression concerning the Riemann zeta function. Indeed, we have the following
connections:

1675 167G 8

S'z—jd4x4/—g'(l+%8“oﬂ'a j Id%x\/_[_—__gﬂp VO-Tr(G/lV pd)f(¢)__ ﬂvaﬂw"¢j|:

=

5 2 g1

X(-G)'"%e ‘2¢{R+48 <I>8”<I>——‘H‘ —iT (rF )} (5.32)

with regard the connection concerning the Palumbo’s model.
Now, we take the Lemma 3 of Goldston-Montgomery theorem [10]. Let f(¢) >0 a continuous

function defined on [O,+oo) o) that f(t)<<log’(t+2). If

1) = | (Sm’“‘j f(u)du=(§+8‘(k)]klog%,then

J() = [ f(dt =1+&)TlogT, (533)

with |€'| small if |€(k)| < & uniformly for <k< %log2 T . If now we take the expression

TlogT

o= %ln ¢, and the eq. (5.33), we have the following connection:
K

J(T):jf(t)dz=(1+e')TlogT:Llw, (5.34)

NETS

26



therefore the connection with the equation concerning the Goldston-Montgomery theorem, related
with the Riemann zeta function.

6. The dimensional reduction process inherent to Kaluza-Klein theories. [6]

Let M(V,,G,z,®) be an m-dimensional C” -differentiable principal fibre bundle defined over the

base space V, , an n-dimensional C"-manifold, and that possesses as structure group the Lie group

G. We will choose an affine connection for the Riemannian manifold M that is metric compatible.
The Christoffel symbols are then given in the chosen local coordinates by

The Riemann’s tensor components follow, in the usual way, from

angﬁ 0 F“ +F;5F§; F;yl“:;

We then construct the Ricci tensor, R = R%

aip’
1 - 1
Rah = Rab (G)+ FyVaFﬂ +5§ dDyfacDﬂébd _Zé dDﬂéahDﬂfcd _ED,M (Dﬂéah )’
1 ai Ci 1 [
Ruv = Rﬂv(vn)_EFﬂoqum é hf dD,uéachébd __D,u(f bDvéah)’
1 s 1 ed o c
Rya :ED F/Aw+ZF,uaaé: dD cd __Cbé:bdD é:cd’

where R(G) and R(V,) refers to the Ricci tensor of G and of V , respectively. From the Ricci

tensor we determine the scalar of curvature, R = 7’5’5 R, s

va 1 a 1 a Ci a
R=RG)+ RV, = Fy P = D,E,DPE" ~2 EE4D, £ D, - D*(E"D,E,,). 6.1

The Hilbert-Einstein-Yang-Mills lagrangian density in m dimensions with a cosmological term is
defined as

m 1 va 1 a
L(HE)YM :V_V(R_zAm):\/_g I/Z[R(G)"‘R(Vn)_ZF/AmFﬂ _ZDﬂé:abDﬂf "+
1 ab gc al
Zf bé dDﬂfabDﬂécd _Dﬂ (f hD,uéab )_ 2Am ]’ (62)

where A, is the cosmological constant in M and ¥, g and & are the determinants of the metrics of
M, V and G, respectively. Since ¥ depends only on xeV, ,R, g, & will only depend on xeV,.

The same happens for the Yang-Mills strength tensor field F. We can then reduce the previous
lagrangian density to a n-dimensional one:
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[ Lisd"x = vol(G) jvn I d'x.

The Einstein-Yang-Mills equations, in the absence of matter fields and considering the
cosmological term, are then the Euler-Lagrange equations of the following action

Slyl=[ d"xJ-y(R-2A,)= [ d"-2&"*(R-24,).

Taking oS =0, one finds
1 B _
(R@B =5V (R—ZA)jé';/”’ =0.

The variations 5}/’3”’3 are not completely arbitrary: they should be in such way that the special form

that was given to 7’5’5 as a composition of the metrics of the submanifolds of the bundle would be
preserved in those variations. If we varies d5 not in order to ¥ but separatively with respect to g, A
and & we get:

Rﬂv_%(R_zAm)gW =0, (63) R,=0, (64) Rab—%(R—ZAm)fab. (6.5)

7. Realistic model within the Kaluza-Klein frame: the Randall-Sundrum model.

Within the Randall-Sundrum model matter fields are located in a particular brane, being only
gravity the one allowed to propagate in the bulk. We will then consider a matter field configuration
as a section of a fibre bundle F, (an f ,Y) defined over a brane V, < M.

The classical action of an Randall-Sundrum scheme will be given by an Hilbert-Einstein term with
a cosmological constant A, in M,b Gibbons-Hawking terms with the respective brane

cosmological constants {A’n }
1

L, and a matter field action of fields located on the branes (we

consider n, =n=m—1) and on the bulk,

S[% gl""’gb’¢]: SHE[7]+SGH [gl""’gb]-l_SBM [gl""’gb’¢]+SM [7’¢] (7.1)

. 1 m
with S, [7]= > [ d"z-y(R-2A,). 12)

1 b
Ay [81"'»8;]]:Fz ¥ d”’x,«/—g,(K’ _A’nl), (7.3)

=17

ny

Sulr.ol= |, d"zL, (¢.94.7), (1.5)

Spm [gl""’gb’¢] = ZJ-V, dnlle;M (¢,a¢,g1), (7.4)

therefore:

Lo Lo o
SIgrvengidl=g 5 [Ld =y (=28, )+ 535, d =g (&' =N, Jo

1
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+ 2], 4" Ly, 9.00.8,)+ [ d"2L, (9.00.7). (7.6)

and where K’ is the trace of the extrinsic curvature of the I brane, that can be written in terms of a
normal vector n' to V,

I _ I
Ko?ﬁ = V&nﬁ, . (7.7
If we take Gaussian normal coordinates to the brane V, , we can simply take
K! = la (7.8)
ap ) 77707” > :

with &, the derivative along the normal coordinate to the brane.

By taking the variation of this action (7.1) with respect to {y, g, },_, .

. ! 1 5
$[7’gl]:J‘Md =Y 22 (Rap 27 sREA m?g j Tdﬁj|§7aﬁ+

YN NS 2]1( (K., —glsk' + A, gaﬁ)+ T, }ég“ﬁ (7.9)

2 &,[r.9] ; 2 8ul88,.0]
where T .= M , (71.10) T, = i 10[ b7 (7.11)

are the m-dimensional stress-energy tensor of the bulk matter fields and the n, dimensional stress-

energy tensor of the matter fields on VnII , we obtain the Einstein equations,

Slye o 1 —f, 1 L

forI=1,...,b.
In order to find a solution we have to solve the Einstein equation

R, —%%BR +A, Y =T, (1.13)
in the space between the branes - the bulk - , and then assure the jump over all the branes,
AR - gL K [+ AL gl = KT, (7.14)
Another way of writing the Israel junction conditions is

AK! +;A’ 8op = (T’ —%T“’ ! j (7.15)
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where AK,; =K, — Ky, (7.16) with K. = lam K.,

z—x",0" )
being the limit taken along the normal n’ to the brane.
Let us consider a 5-dimensional universe of the form M =MxS'/ Z,, where the internal space is a
orbifold with a Z, symmetry. We will consider that there are two four-dimensional branes in this

universe, and by choosing a coordinate ye [O,d ] for the internal space we will suppose that they lie

at the fixed points y = 0 and y = d. In order to find the ground state for this model, we consider the
following action,

[ [d*x j"d dyJ=y(R—2A;)- 245 [ d*x—g" —2A, [ d*x-g j (7.17)

sl ¢*]= 2,1(2

where we have represented the brane at y = 0 by the plus sign and that at y = d by the minus sign.
We will then get the following system of equations,

1 + 1 + + .
Ry = VigR+ 7, =0, (118) and AKG +-Nigiy =0, (7.19) with

AK =%(aygiﬁ(yih)—8},g§ﬁ(yi|¢)), (7.20)

being y*|. the limit taken from both sides of the position of the brane. Since we have chosen

Gaussian normal coordinates for both branes that overlap, we can simply take
gt =7/0).. a2n

The equations can then be written in terms of ¥ only,

5 2 Ayt ].=0. (7.23)

1
Ry VagRH 7,50 =0, (122) 9,7,y L* 3,7

The Randall-Sundrum ansatz is

e—2¢(y)77 0
= @ (7.24
Y ( 0 ) (7.24)

By inserting it in the previous equations, we get for @(y),

=|y/1, (71.25)

with [ = /—Ai (7.26) and for A}, A =%
5

. (7.27)

% | on
Ln>
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We then conclude that the bulk of this model must be a slice of an AdS; geometry, being the

observed universe the brane located at y =y~ =d .

Now we note that the eq. (7.9) can be related to the Palumbo’s model and to the Ramanujan’s
modular function [8]-[9]. Indeed, the Veneziano Model of the Eulero beta function describes the
strong nuclear force. When a string moves in space-time by splitting and recombining, a large
number of mathematical identities must be satisfied. These are the identities of Ramanujan’s
modular function. The KSV (Kikkawa-Sakita-Virasoro) loop diagrams of interacting strings can be
described using modular functions. The “Ramanujan function”, [8] an elliptic modular function that
satisfies the “conformal symmetry”, has 24 “modes” (24 + 2 = 26) that correspond to the physical
vibrations of a bosonic string. Furthermore, when the Ramanujan function is generalized, 24 is
replaced by 8 (8 + 2 = 10), hence, has 8 “modes” that correspond to the physical vibrations of a
superstring.

Ramanujan’s function 7 is defined by the expansion

xﬁ (l—x” )24 = if(n)x” , (7.28)

which is valid for each complex number x such that |x| <l1.

The Ramanujan’s modular function is also related to the Rogers-Ramanujan identity (5.30). Hence,
we have the following interesting connections:

m 1 1 "
&[r.8,1=,d"2/- { ( 5 VaR M, j+5T&45y“ﬂ+
wo [ 1 1 .
+Z’I;:1 V”lld lxl _gl |:_ 2K_2 (Kﬂllﬁ_g;ﬁKI+A1n1géﬁ)+§T;ﬁ}§g ﬁ =

jzijdwx( G)"%e ‘2‘1’{R+4B q)&”(l)——‘H‘ —%T;;QM )}

162G 8 m—pe

51 V5
2, 3+2\/_ [\/_J- t il/tsj

Furthermore, we note that the pure number 24 is connected at some expressions concerning the
aurea ratio ¢ =1,618033 and aurea section ¢ =0,618033, related to the Fibonacci’s numbers, the

“c” = 1,08366 related to the prime numbers and the number F, = 1,375 that is
the mean increase factor of the partition function p(n). Indeed, we have

2 2

= dz"’x\/g[—i—lg””g”’Tr(G G )f(¢)—§g””3,,¢8v¢}:>

. (7.29)

Legendre constant

Recent cosmological observations suggest the existence of a positive cosmological constant A
with the magnitude A(Gh/ c? ) ~107'%. Now, we take the pure numbers 10 and 123, i.e. the base and
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the exponent of cosmological constant magnitude. They are related to “c”, F, , ® and ¢, from the
following expressions:

Fm{(i-Fﬁi-ij-l](zz-52)5123; {(8)— ! -c}-(zz.sz)gm;

! = : 213
Hﬁﬂj_ ! (ﬁ—lj}.(zz.sz)gm. (731)
2 ) 25 2

Also in these cases is very interesting remember that 1,375 = c*-8/c =1,08* -1,009666552 = 1,375

and that ¢®=1,0836° =1,618. Hence, the Legendre constant “c” is related to the mean increase
factor of p(n) and to the aurea ratio and aurea section, ® and ¢.

8. Connections between axions in string theory, dark matter, Palumbo’s model, Riemann zeta
function and Number Theory (Legendre constant, Mean increase factor of p(n), Aurea ratio
@ _and Aurea section ¢@). [7]

The relevant part of the ten-dimensional low energy Lagrangian of the heterotic string, from the
equation

S,u_,,=$jd“’x(—c;)“2 ‘ZC{R+48 CIDB”(I)——‘H‘ ——T QF| )} (8.1)
10 10

is

27 2w 1 1
— R———H/\*H——trF/\*F
zzcm sfcm T VRN T, 427)g 1"
(8.2).

Here R is the Ricci scalar, H the field strength of the two-form field B, and F the E; X E; or SO(32)

curvature. To reduce to four dimensions, we compactify on a six-manifold Z with volume V, . The

four-dimensional spacetime (which might be Minkowski spacetime) we call M. The relevant terms
in the four-dimensional effective action include

_Mz 4 112
—Tde x(-g)""R

_2, (IH/\*HJ, (8.3)
gt I\ 2

sSs

where the four-dimensional reduced Planck mass M , and Yang-Mills coupling g,,, are

V gl
~ (84) and g2, =47 S ®5)

s7s z

M} =4rx

So a,, =g, /47 isgivenby @, =" V . (8.6)

Now we consider the model-independent axion. The Bianchi identity for the gauge-invariant field
strength of H is
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dH =%(trR/\R—trF AF). (8.7)
167

2 2
o L~ K| K,
(The normalization can be extracted from equation H, =dB, -2 @,, 6B, =—2Tr,(AdA,) related
10 810

to eq. (8.1), bearing in mind that our H is / f times the H-field used there). The four-dimensional
component of the B-field can be dualized by introducing a field a that is a Lagrange multiplier for

the Bianchi identity, the coupling being I a(dH + 161

7.[2

(trF AF —trR /\R)j. Including also the B-

field kinetic energy from (8.3), the action is

—2”2Vf jd4leA*H+ja(dH+ lz(trF/\F—trR/\R)j. (8.8)
g1, 2 167

Here H is an independent field variable (which can be expressed in terms of B if one integrates first
over a to impose the Bianchi identity).

As H has integer periods, a should have period 27z . Instead, we integrate out H to get an effective
action for a:

274
8,1 ! 1
S(a):%jd4x(—§aﬂa8”aj+ja o (trF AF —trR AR). (8.9)

Since trF AF =2ktrF AF, we see that for this particular axion, the integer r characterizing the
axionic coupling is equal to the current algebra level k. So we can read off the axion decay constant:

8.1 _ka; M,
21V, 27 N2
F, aM,

a

k 27z«/§

F =

a

(8.10) The axion couplings are proportional to F,/k , which is

. (8.11) If we take @, =1/25, this gives F,/k =1.1x10"GeV .

Gauge instantons at the string scale have action 27 = 27 = 127 , (8.12) by analogy with the

oy, ko,

2

. ) . 8T 27
action of an instanton, thatis [/ =—-=— where &, = g2/ 4r .

4 a;

Model-dependent heterotic string axions arise from zero modes of the B-field on the compact
manifold Z. Let there be n=dim H 2(Z ,R) such zero modes f,.,..., 3, . We normalize them so that

J.C/ B, =06, , (8.13) where the C; are two-cycles representing a basis of H 2(Z ,Z) modulo torsion.

Then we make an ansatz B = %Z B.b;, (8.14) where b, are four-dimensional fields. The factor
T

of 1/27z is included so that the fields b, have periods 27, as is conventional for axions. Set
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Vi = L B ~xB;. (8.15) By dimensional reduction from the B-field kinetic energy in (8.2), the

kinetic energy of the b, fields in four dimensions comes out to be

Y
Siin =T [a'x"23 b0 D;. (8.16)

These modes acquire axionic couplings from the one-loop couplings that enter the Green-Schwarz
anomaly cancellation mechanism. The relevant couplings are

4 2
IB _TrF AFURAR | TrF _(TrF A F) 817
4(275 4! 30 3 900

To proceed further, we consider the E; X E, heterotic string, embedding the Standard Model in the
first Eg, and write tr, and tr, for traces in the first or second E;. The couplings in four dimensions

of the axion modes to 1, F A F' come out to be

mFAF

. (8.18)

trR AR
27[ 44

+2trF AF —tr,F A F}j b,

Using the Bianchi identity (8.7), one can alternatively write these couplings as

—ZjﬁA (trlFAF—ltrRARjj UL
2 16x°

Now, we consider intersecting D-brane models in type IIA string theory. We assume that gauge
symmetry lives on D(3+q)-branes which are extended along the four noncompact dimensions and
wrap a g-cycle Q in the compactification manifold. In Type IIA, one takes a stack of five D6-branes
wrapped around M xXQ where M is the Minkowski space and Q is a compact special Lagrangian
three-cycle in the compact manifold X. The low energy effective supergravity action contains the
gravitational term

zlg s J-gR. (820)

Dimensionally reducing the Einstein action to four dimensions determines the Planck mass

M; = V

. (8.21)

sO8

The low energy action of the RR g-form field C,_, from the following equation

(-G)"|F,..

2 .
+,upICp+1,1s

4K120
18 2q _[2 g+l q+1 +27Z._"Cq N (822)
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where the second term is the coupling of the q form to D(q — 1) branes. The effective action of the
gauge theory living on the D-branes, from the following equation

2 1 p-2 W(p=3)/2 -
=——=(27 a7l s
gDp (2 ,)2 ( ) 8
SYM=——4(2 P j d'x\—gtrF, F*, (8.23)

where the trace is in the fundamental N representation of SU(N). Reducing the gauge action on Q to
four dimensions leads to the action

————[d'x[-gF F*™, (8.24)

g?l?

where we used the normalization of SU(N) generators tr¢“t” = %5 a

The axions come from the ansatz C —L a., o= 1,...,bq (X) (8.25)

q_27l' aa

We included a factor of 1/2x so that a, have period 27z . Substituting this into the RR-field
effective action (8.22) we get the kinetic energy of the axions

S= _%Z Vs yaa0"ay , (8.26)
a.p

where Yop = j , N*@y , (8.27) hence

2ﬂ18 2q
—- H
= Z o qu W, N*@40 ,a,0"a, .

The axions acquire axionic couplings from the D-brane Chern-Simons term,

i, J;,H Tr{exp(waf F,+B, )A Zq: C q} , hence, we have

27

Dimensionally reducing this to four dimensions using the ansatz (8.25) leads to the couplings

irEAF .
g‘ra!aav, (8.29) where r, = IQwa are integers.
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We consider branes wrapping a q-cycle Q with q > 0. We define R to be linear size of X, so that

. 47R° L.
V, =R°.In terms of R, the Planck massis M, = ﬂR . (8.30)  For a generic axion,

§°S8

L Wy N*@, = xR®?? | where x is of order one, so

xR [ xg’
F = =M, = | ,[—, (8.31
‘ \/mg 24 P(Rj 87’ > (831)

where x is a dimensionless number of order one. To estimate the parameters of the compactification
that lead to phenomenologically preferred axion decay constants, we express R and M, =["" in

terms of F,,M , from (8.30) and (8.31):

1/q ) 1/2q 3—ql/q 1/2 ) 3—q/2q
R=i| M| [ 2|y —p| L (2—”j i . (8.32)
\F, kY4 ‘ M, X xg.

The low energy gauge group on N D3-branes at a generic point in X is U(N). The gauge coupling is
fixed by the string coupling (8.23): o.=g,. (833)
The axions are four dimensional fields coming from reduction of the RR zero-form. A harmonic

. a ey -
zero-form 1is just a constant, so we use the ansatz  C, =2—, (8.34) where “a” is a four-
T

dimensional pseudo-scalar field. It follows from the D-brane Chern-Simons coupling (8.28) that the
trF A F . (8.35)

axion has r = 1 coupling to the QCD instanton density I a

The kinetic energy of the RR zero-form (8.22) is easily reduced to four dimensions, giving the
axion kinetic energy

Mg - fa x(——a ad’a j (8.36)

whence the axion coupling constant is / 5 ﬂ); . g— . (8.37)

If we take . =1/25, we get F,=1.1x10"°GeV, which is the same as the axion coupling

parameter of the model-independent axion in weakly coupled heterotic string theory. The shift
symmetry of the axion is explicitly broken by D(- 1)-brane instantons that are located on the D-3
brane worldvolume. These instantons are equivalent the SU(N) gauge theory instantons. Their
action is

1=22_27 _157, (8.37b) for @ =~1/25.

gs aC

On the conifold, there are harmonic two- and three-forms

1
o, :E(g1 Agi+g’ /\g4), o, =g’ Aw,. (8.38)
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Integrating the explicit expressions (8.38) for the harmonic two and three-forms over the cycle
representatives gives

[0 =47, [Lo=87",  (839)  hence L:%(glx\g2+g3/\g4)=4ﬂ' and

2

1
.8’ /\E(gl ng’+g’ ng')=8z

In IIA string theory, we get gauge symmetry by wrapping D6-branes around the small S of the
deformed conifold. If the S* has radius 7,, the gauge coupling is

13
i = 2g i (8.40)

2.3
0

The axions is a four-dimensional scalar b coming from a zero mode of the RR three-form field C;:

s :80)_%22i (8.41) w, is a harmonic three-form on X with a nonzero flux through the
o 2r

vanishing S°. We approximate it by a harmonic form on the cone, which is a pullback of the

harmonic form @, (8.38) on T"'. With the help of (8.39), we normalized the C-field so that the

axion b has period 27 . We find F, from the general formula for the decay constant of an RR-axion

(8.27)
, 1 (1Y _ 3x (R
F; _27z13(87:2j IX(()3/\*0)3—W1I1 =) (8.42)

N

where x is a dimensionless number of order one.
If we assume that the gauge coupling at the string scale is & ,,=1/25, it follows from (8.40) that

1, =1 . Furthermore, for (8.37b), we have: I =2rle;,, =27x/1/25=27x-25=157. But we
already know from our estimate (8.32) that R>>[_, whence it follows that R>>r, and our

approximations are self-consistent. To find the range of the string compactification parameters that
lead to phenomenologically acceptable axion, we express M and R from (8.42) and (8.21), as

1/3 1/6
v - 27, Ry Mo g1,3{3xln(R/ro)} (843)
" \BxIn(R/r) ‘ F, ’ 241

For IOQGeVSFb <10"GeV and x =1, we have 1.4><109GeVSMS <1.8x10"%GeV ,

R 273l . (8.44)

1/3 —
s

8001, >

With regard the Palumbo’s model, if we take the eq. (8.1) related to (8.2) and to the following
equations, we note that this equation is the right-hand side of the fundamental relation of the
Palumbo’s model. Then, we have:
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J-d%x\/g{—i—lg”png’”(G,wGpa )f(¢)—%g”a,,¢av¢}=

:I L dlox(—G)“ze-“’[R+4aﬂq>aﬂcp—%\ﬁ3\2 —;—%’)TQQFZF)} :

hence the connection with the Palumbo’s model.

Correlations with Number Theory. [9]-[11]
Now, we take the pure numbers 73, 157 and 800. These are prime numbers and are related at some
expressions concerning the Legendre constant, the mean increase factor of the partition function

p(n), the “aurea” ratio and the “aurea” section (concerning the Fibonacci’s numbers). Indeed, we
have:

{(0')14 —(o) —%(a)} = [(1,375)” —-(1,375)° —%(1,375)} =73; (8.45)

) + ()" |=](.08366)" +(1.08366)" |= 73; (8.46)

[(@9—(@)2—1(@}{(5 “Hﬁ “jz—l[@j]zn; 8.47)

2 2 2 2

{(0')16 —(o)° +—(0')} = {(1,375)‘6 —(1,375)° +%(1,375) =157; (8.48)

[(c)@—l(c)é =[(l,08366)63—%(1,08366) =157 ; (8.49)

[(¢)10+(¢)7+(q))3+(¢)]: \/§+l 10+ \/§+1 7+ \/§+l 3+ \/g—l =157. (8.50)
2

2 2 2

With regard the pure number 800, we have: 800=32-25=2°.5%, thence the following
expressions:

1

[(1,08366)43 +§(l,08366)} : [(1,08366)40 .

3

(1,08366)} =2°.52 =800; (8.51)

[(1,375)lO +§(1,375)} : [(1,375)“ - (1.375)”2]5 52.2° =800; (8.52)
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Also here, we have the connections with the Rogers-Ramanujan identity. Thence, from the
expressions (8.3)-(8.6),(8.12) and (8.50), we obtain:

_M2 4 12
—TPJ-d x(-g)"”R

zﬂj(l[_],\*[_[j:
gl i\ 2

so8

V541 ! \/§+17 \/§+13 V5 ~ )
:( : j +( > j{ : j+R(q)+1 3+[ ( j T dt} =157; (8.54)
2 \/_ 77)4/5

With regard the pure numbers 800 and 73, we have the following expressions:

V5 +1 + V5+1 L R(g)+ V5 - X
2 2 3 3445 (1 ¢ £3(-1) dtj
1+ CXp) 7_[ 1/5) ,4/5
50 fl-t |
o[V (V511 R(g)+ V5 5 =52.25 2800; (8.55)
2 2 2 N \/_ex(lj»qf(—t)dtj
i P 5 Oﬂ—l‘T) 475 |
SG+1) (1) 1 Rlo)+ J5 73 8.56
2 2 35 (1r, fS(_t)dtj =73. (8.
i P 5 Oﬂ—l‘T) 475 |

Now, from the equation (8.42), we have the following interesting connections:
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1 (1 3x . (R T .
F} = o (QJIX W, A*@, :WH{ZJ = J.O f(e)dr =(1+&)logT =
6 4
= V541 + 541 41 R(g)+ Js X
2 2 3 3+4/5 1 0 f35(~1) dt
I+ 5 exp 75_[0 e s
7 2
X ERD - V541 + 1 R(g)+ V5 Il 2—=2
2 2 2 3445 1o f2(=1) dt )||" s
1+ ) €Xp 75'[0 rless L4I5
G+1) (1) 1 J5
> - —=| Rlq)+ 5 s (8.57)
2 2 3+4/5 1 0 f35(=1) dt
I+ 5 exp 75!0 e 5
for (1+&) =3x/4x*l> and T=R/7,.

Thence, we have obtained new connections with the Lemma 3 of Goldston-Montgomery theorem,
related to the Riemann zeta function, and with the equation concerning the Rogers-Ramanujan

continued fraction.
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