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1. Introduction 

A previous paper demonstrated that one can already derive the results of the Special Theory 
of Relativity (SR) on the basis of Newton’s Laws 1). To do this, one must only assume the 
existence of the universe and apply Mach’s principle as well as accept the fact that inert and 
gravitational mass are equal (weak principle of equivalence). A further paper crystalized that, 
even solely on this physical basis, gravitational waves exist 2). The propagation velocity of 
these waves is determined by the gravitational impact of all the masses of the universe and 
seems to be identical with the (“vacuum”) light velocity. It is therefore self-evident to 
investigate whether light could be considered as causative for the excitation of these 
gravitational waves, and if so, how the propagation of light would be determined by its 
interaction with gravitational waves. Obviously, this investigation would be related to earlier 
attempts of establishing a theory for the unification of gravitation and electromagnetism, so 
called “classical unified field theories”. First, papers were published by Mie (1912)3) and 
Reichenbächer (1916)4), even before General Relativity (GR) was formulated. Subsequent 
papers were based on the mathematical framework of GR and followed different paths of 
extending differential geometry, e.g. Weyl (infinitesimal geometry)5), Kaluza (five-dimensional 
cylindrical world)6), Eddington (affine geometry, and later “E-frames”)7), Einstein (variational 
principle and presumed space-time manifold)8), Schrödinger (pure-affine theory)9). All of 



2 
 

these theories show a high degree of abstraction, and they were not successful because 
they were hard to connect with the physical phenomena they intended to describe. At 
present, classical unified theories are practically not pursued. The present research focusses 
on creating a quantum theory of gravity and unifying this with the other fundamental theories. 
Just a few days ago, a completely different approach was published by Wolfram based on 
discrete mathematics and computer simulations of abstract relations between abstract 
elements forming “hypergraphs” 10). 

The theory presented here does not claim to establish a general theory for the unification of 
gravitation and electromagnetism. It aims only to investigate the relationship between 
gravitational and electromagnetic waves. But this paper will demonstrate that this relationship 
shows some fundamental correlations on which a general theory may be based. When 
establishing our theory, we neither follow the actual paths of unified theories nor do we follow 
the aforementioned classical attempts. The latter are all based on abstract mathematical 
constructions. In a sense, one could characterize this kind of research as “mathematical 
engineering”. We will explicitly not follow these efforts. Instead, we will rely on the (surprising) 
results of the papers 1) and 2), which are solely based on Newton’s laws and Mach’s principle. 
Our goal is to avoid abstract mathematical constructions as much as possible and to base all 
considerations and calculations on a few and well-known physical laws. 

2. Relationship between Gravitational Waves and Light 

Light, or any electromagnetic impacts, or even electromagnetic phenomena are not 
contained at all in the theory developed in 1) and 2). But, of course, these phenomena play an 
important role with bodies moving inside the universe. This is because a major part of the 
universe consists of matter that holds mass as well as electric charge, and it is in the plasma 
state to a prevailing degree. In particular, if we are to consider large-scale (cosmic or 
collective) oscillations of masses, we have to pay attention to the plasma properties of the 
universe.  

For the further consideration of a possible interaction between light and gravitational waves, 
we start with the assumption that any arbitrary light beam can be described by a 
superposition of plane waves, i.e. by a wave package formed by such plane waves. The 
same also applies to the gravitational waves as described in 2): Due to the linearity of the 
equations (2.20 a, b) in 2), a gravitational “wave beam” can also be formed by the 
superposition of plane waves. Therefore, the investigation of the interaction between a light 
beam (confined in space and time) and a similarly confined gravitational beam can be based 
on an investigation of the interaction between plane light waves and plane gravitational 
waves. We will take this assumption as the basis for the subsequent considerations. 

As in paper 2), we start with the perception of the universe as a lattice of mass points. We 
then have to calculate the motion of all these mass points under the impact of 
electromagnetic as well as of gravitational waves. This problem was investigated extensively 
within the framework of plasma physics. We are using and are following here the methods as 
described by Shen 11). (To prevent misunderstandings: Our consideration has nothing to do 
with the so-called “plasma cosmology” or the “plasma universe” of Alfven (1966), which 
contain matter and antimatter 12), or with the so-called “electric universe” that can be found 
repeatedly in the internet). 
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The nature of plasma in the universe is very different, depending on its location. There are 
very hot plasmas with high densities, but also very cold ones with very low densities. 
Accordingly, they must be described by quite different physical theories. Very thin plasmas 
must be described by a so-called single particle model. For plasmas with high densities, we 
must apply a description within the framework of fluid dynamics. In the following, we restrict 
ourselves to the consideration of only one model, namely the single particle model, which is 
applicable to plasmas with low densities. We hope that with this approach alone the 
fundamental properties can be understood. At the end of chapter 2, we will then also briefly 
go into the circumstances with very dense plasmas. 

We start with these assumptions:  

1) A certain part of the universe is in a plasma state. The plasma properties are the 
same in each volume element and can be described by the single particle model.  

2) When averaging over sufficiently large volume elements, the plasma can be 
considered as electrical neutral. There are also no electric currents between these 
elements, provided there are no external forces.  

3) Due to gravitational forces between the volume elements, gravitational waves are 
possible. This could be a result of transversal “disc oscillations” as described in 2). We 
choose the coordinate system in such a way that the propagation vector of these 
waves shows in the x-direction.  

The following gravitational force is acting on the volume element j of the n-th disc (see 2) 
(2.11) or rather (2.19)): 

          Kn,z,j = Kn,n+1,z,j  + Kn-1,n,z,j  = G 
୫౤ౠ୫౤శభ,ౠ

ୟయ  (s୬ାଵ,୨ − s୬,୨) + G 
୫౤ౠ୫౤షభ,ౠ

ୟయ  (s୬ିଵ,୨ −  s୬,୨).        (2.1) 

Therein we have already neglected the nonlinear terms. Now we set: 

                                        mn,j = mn+1,j = mn-1,j = mj = ρ a ΔFj 

whereas ΔFj stands for the area of the disc element j of the disc n (in the y-z-plane). The 
distance (in the x-direction) between adjacent discs is again denominated by a.  

With the abbreviation s(n) = s୬ାଵ + s୬ିଵ  −  2s୬ we can write (2.1) in the following form:  

                    Kn,z,j = G mj ρ 
ୟ

ୟయ
 ΔFj (s୬ାଵ + s୬ିଵ − 2s୬) = G mj ρ

ଵ

ୟమ
 ΔFj s

(n).                           (2.2) 

According to Shen 11) the power (2.2) causes a drift of the ionized masses m୬,୨± , which are 

part of the total mass mnj , and this is in opposite directions for plus and minus. The drift 
velocity for a charge q is given in each case by 11):  

                                                 𝐯୬୨±= 
୫౤,ౠ±

୯
 
𝐠౤ౠ ୶ 𝐁౤ౠ

୆౤ౠ
మ  ,                                              (2.3) 

wherein the vector 𝐠୬୨ is defined by 

                                                    𝐠୬୨ = G ρ 
ଵ

ୟమ
 ΔFj s

(n) ez .                                                   (2.4) 
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𝐁୬୨ is the vector of a magnetic flux density, which is assumed to be present inside the 

volume element j of the disc n. We know that there are magnetic fields practically 
everywhere in the universe, but we have little knowledge of its spatial distribution and its 
direction. Of course, these are also dependent on the movements of the charged particles in 
the universe. Therefore, we cannot assume that they are impressed to a volume element j, 
rather they are the result of a self-consistent solution of a higher-level investigation of the 
total system. But we can assume a magnetic flux density (of unknown strength) 𝐁୬୨ to exist in 

any volume element. Then, a drift current density will be caused there, given by 11)  

                                                    𝐣୬୨= n୬୨q (𝐯nj++ 𝐯୬୨ି ),                                                   (2.5) 

where n୬୨ is the number of carriers within the volume element j of the equator disc n.  

If we write mje for the mass of an electron and Mji for the mass of an ion, we can convert (2.5) 
(using (2.3) and (2.4)):  

                                              𝐣୬୨=  n୬୨ (mje + Mji) 
𝐠౤ౠ ୶ 𝐁౤ౠ

୆౤ౠ
మ .                                (2.6) 

(2.6) describes an electric current density, which is generated by a gravitational oscillation of 
the universe. 

In the following, we assume that the form of the Maxwell equations could be taken as valid 
also for the circumstances to be investigated. We consider them as a mathematical ansatz in 
which, initially, the parameter “c” (the “vacuum” light velocity) is assumed to be 
undetermined. We shall see that this approach will lead to consistent solutions for the system 
of equations and that the parameter “c” is determined by other parameters of the system. 
Based on this foundation, we have to insert the current density (2.6) into the Maxwell 
equations. We are then faced with the problem of finding a self-consistent solution for the 
coupled electromagnetic and gravitational fields (including the field 𝐁୬୨). This is difficult 

enough even for electromagnetic fields alone (keyword: self-field theory) and, therefore, we 
will refrain from establishing a mathematically general valid description within the framework 
of this paper. We are aiming here only to clarify the most fundamental relationship between 
light and gravitational waves in the universe. Therefore, we are looking only for elementary 
particulate solutions. 

We have seen in paper 2) that oscillations of universally expanded discs could lead to 
gravitational wave solutions (see equations (2.21) and (2.29) in 2)). There, we presumed that 
these waves could be excited in some ways. This is to be investigated immediately. But at 
first, we would like to adhere to the concept that these solutions represent (near) plane 
waves, which propagate e.g. in the x-direction being expanded in the y-z-plane until the edge 
of the universe (i.e. practically infinite). If such solutions exist, and the nonlinear fractions 
could be neglected (see 2) equations (2.19) and (2.26)), then we can compose completely 
arbitrary wave packages by superposition (which could also form spatial limited objects).  

Let us now consider light. As solution of the Maxwell equations, one also finds plane waves 
for electromagnetic fields, which can be composed by superposition to arbitrary wave 
packages as well. Insofar, we can attribute physical reality to plane electromagnetic waves, 
which are expanded to infinity perpendicular to their propagation direction. Such waves are 
always acting on the scale of the universe, also in the direction perpendicular to their 
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propagation direction, and therefore, they can also interact with the above mentioned 
universally expanded and oscillating discs: The same power of the electromagnetic field 
components acts on each volume element j of a disc n. Therefore, the same drift current 
density (2.5) is generated in each volume element j, as far as the plasma properties are the 
same in each element j, and also the size of 𝐁୬୨. The latter cannot be presumed, but when 

considering very large distances we can possibly average the value, i.e. substitute Bnj with 
BФ. This is certainly a critical assumption because BФ could approach zero when averaging 
over a large distance. Nevertheless, we will make this assumption here and leave it open for 
future proof.  

The fundamental superposition properties of electromagnetic as well as for gravitational 
waves enable the formation of arbitrary wave packages. Therefore, we will consider solely 
plane waves in the following. We hope that elementary relationships could be found already 
in this way. 

We assume (and we will see immediately that this will be provable) that the propagation of a 
plane electromagnetic wave (i.e. light) will show in the x-direction and will coincide with that 
of a gravitational wave. In this case, all elements j of the oscillating disc n will experience the 
same electrical field strength E and the same magnetic flux density B. With the assumptions 
described above on the plasma properties of each element j within the disc n, we can 
determine for the total current density of such an oscillating disc n:  

                               𝐉(𝐱) = ∑  ୨ 𝐣nj= ∑  ୨  n୬୨ (mje + Mji) 
𝐠౤ౠ ୶ 𝐁Ф 

୆Ф
మ  .                             (2.7) 

Because of our assumption 1) (see page 2), n୬୨ and mje + Mji are equal for all volume 

elements j, and we can use (2.4) to write: 

                                𝐉(𝐱) =  𝐉 =   nn(me + Mi) ∑  ୨  
 ୋ ஡ 

భ

౗మ ୼୊୨ ୱ(౤) 𝐞౰ ୶ 𝐁Ф 

୆Ф
మ  .                       (2.8) 

With                              
ଵ

ଶ
 n୬(me + Mi) = mq    und    ∑  ୨  ΔFj = πR଴

ଶ                                       (2.9) 

we find                                 𝐉  =  m୯
ଶ ୋ ஡ ஠ୖబ

మ ୱ(౤) 𝐞౰ ୶ 𝐁Ф 

ୟమ୆Ф
మ  .                                           (2.10a) 

Here we can again introduce the abbreviation b0 (see 1) and 2)), given by b0
2 = 2πρG R଴

ଶ, and 
then: 

                                             𝐉 = m୯
ୠబ

మ ୱ(౤) 𝐞౰ ୶ 𝐁Ф 

ୟమ୆Ф
మ  .                                           (2.10b) 

The relationship between the magnetic flux density, the electric current density and the 
displacement current in vacuum is given by Maxwell’s equation 

                                                 ∇ X B = μ଴ 𝐉 + μ଴ε଴ Ė.                                                       (2.11) 

The question here is what the meaning of μ଴ and ε଴ should be. According to the reflections in 
papers 1) and 2), the perception of a vacuum in the “traditional” form is doubtable, at the least. 
In Maxwell’s theory, the parameters μ଴ and ε଴ are seen as natural constants for the vacuum. 
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We are expressly not following this view, but leave open the respective figures as a start. We 
see the Maxwell equations as an “ansatz” with the still undetermined parameters ε଴ and μ଴. It 
will arise that these will be fixed by the interaction between the electromagnetic and the 
gravitational waves! 

By differentiating (2.11) with respect to time we find  

                                                            ∇ X Ḃ = μ଴𝐉̇  + μ଴ε଴ Ë                                                          (2.12) 

and with another Maxwell equation  

                                               - ∇ X E = Ḃ                                                                         (2.13) 

it follows as usual  

                              - ∇ X (∇ X E) = μ଴ 𝐉̇+ μ଴ε଴ Ë                                                              (2.14) 

or     

                                   ∇(∇𝐄) – ΔE = - μ଴ 𝐉̇ - μ଴ε଴ Ë.                                                       (2.15) 

For the considered volume of an oscillating disc, we assume that it is neutral on average. 

This means ∇𝐄 = 0 and, therefore, eventually:  

                                                  ΔE - μ଴ε଴ Ë     =  μ଴𝐉̇ .                                                      (2.16) 

We now set the electric field vector to show in the y-direction. Then, we arrive at  

                                                  ΔE = 
డమ

డ୶మ E୷ 𝐞୷ ,                               

and we find                                  Ë = 
డమ

డ୲మ E୷ 𝐞୷.                                                                 (2.17) 

Based on the solution of the homogeneous equation, we use the following ansatz for E୷:  

                 E୷ = E଴ଵ (e୧(୩ᇱ୶ିனᇱ୲) + eି୧(୩ᇱ୶ିனᇱ୲)) – i E଴ଶ (e୧(୩ᇱ୶ିன ) - eି୧(୩ᇱ୶ିனᇱ୲)).                   (2.18) 

According to this ansatz, the strength of the electrical field propagates in the x-direction and 
oscillates perpendicular to it in the y-direction, transversely.  

                        
డమ

డ୶మ E୷  = - k‘2 E୷            and              
డమ

డ୲మ E୷ = -ω′ଶ E୷.                              (2.19) 

This is obviously compatible with our assumptions on the oscillation mode of light as related 
to plane gravitational waves formed by oscillating discs. We make the same ansatz for them, 
starting with the homogeneous solution. In this case, the discs oscillate transversely, too (see 
paper 2), equations (2.4) and (2.20)): 

                        sn = s01 (𝑒௜(௞௡ ) + 𝑒ି௜(௞௡௔ିఠ௧)) – i s02 (𝑒௜(௞௡௔ିఠ ) - 𝑒ି௜(௞௡௔ିఠ௧)).            (2.20) 

The amplitudes s01 and s02 are initially undetermined (as well as E01 and E02 in (2.18)). 

For the above defined variable s(n), we have the results:  

                s(n) = s୬ାଵ + s୬ିଵ − 2s୬  
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                      = -4 sinଶ ୩ୟ

ଶ
 ൣs଴ଵ൫e୧(୩୬ୟ  ன୲) + eି୧(୩୬ୟ  ன୲)൯ − is଴ଶ൫e୧(୩୬ୟି ன୲) − eି୧(୩୬ୟ  ன୲)൯൧ 

or    

                 s(n) = - 4 sinଶ ୩ୟ

ଶ
 sn.                                                       (2.21) 

Now, we make use of the equations (2.10) and (2.16), which couple the electromagnetic with 
the gravitational oscillations. 

Firstly, we differentiate (2.21) with respect to time. We assume that we can migrate from a 
universe represented by a lattice of mass points to a universe described by a continuum. 
This might be a critical assumption (see paper 2)), but we will make it here, anyhow.  In this 
case, we can set na = x (see paper 2) with the values for a described there), and it is: 

         s ̇(n)=4 sinଶ ୩ୟ

ଶ
 iω ൣs଴ଵ൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲)൯ − is଴ଶ൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯൧ .           (2.22) 

When we insert this (together with (2.10) and (2.18)) into (2.16) we find:  

(-k’2 + μ଴ε଴ω′ଶ)ൣE଴ଵ (e୧(୩ᇱ୶ିனᇱ୲)  + eି୧(୩ᇱ୶ିனᇱ୲)) –  i E଴ଶ (e୧(୩ᇱ୶ିனᇱ୲)  − eି୧(୩ᇱ୶ିன )) ൧ =  

 
ఓబ

୆Ф౮

mq

a2  b0
2 4 sinଶ ୩ୟ

ଶ
 iω ൣs଴ଵ൫e୧(୩୶  ன୲) − eି୧(୩୶ି ன୲)൯ − is଴ଶ൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯൧.         (2.23) 

Nontrivial solutions of (2.23) are only possible, if  

                                             k′x − ω′t  = 0 =  kx −  ωt .                                                     (2.24) 

Therefore, the real and the imaginary part of (2.23) result in: 

                                   (μ଴ε଴ω′ଶ – k‘2) E଴ଵBФ୶ =  μ଴m୯  b0
2 k2 ω s଴ଶ = Γ k2 ω s଴ଶ                (2.25) 

                                - (μ଴ε଴ω′ଶ – k‘2) E଴ଶBФ୶  =  μ଴m୯  b0
2 k2 ω s଴ଵ = Γ k2 ω s଴ଵ.              (2.26) 

Therein we have used the abbreviation Γ = μ଴ m୯ b0
2, and we have restricted ourselves to 

the values ka ≪ 1, i.e. we can set sinଶ ୩ୟ

ଶ
 ≈ 

୩మୟమ

ସ
 . In this case, it follows that ω = b0 k fG (see 

paper 2)) and then, if fG = 1, we have ω = b0 k. Since (2.24) can only be fulfilled for arbitrary 
values of x and t if k‘ = k and ω′ = ω, it follows that  

                                                                  ω′= b0 k‘.                                                         (2.27) 

Applying the usual definition μ଴ε଴ = 
ଵ

ୡమ
, we can transform (2.25) and (2.26) into the following 

form:  

                                                        E଴ଵ = 
୅

(ୠబ
మି ୡమ) 

 s଴ଶ                                                  (2.28a) 

                                                         E଴ଶ = 
୅

(ୡమି b0
మ) 

 s଴ଵ                                                  (2.28b) 
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with                                                    A = 
୻னୡమ

BФx

 .                                                (2.28c) 

This is obviously a “resonance” relation. What does this mean? Let us consider, for instance, 
cosmic background radiation. According to our description above, this couples with 
gravitational waves, and (according to (2.28)) the amplitudes of these gravitational waves will 
certainly be very small as long as the light velocity c is near the velocity of the gravitational 
waves b0. Or, in other words, the universe is transparent for light, even for light with a very 
small intensity like the cosmological background radiation, provided c = b0. On the other 
hand: If the electric field component of any electromagnetic wave would try to propagate with 
a velocity c’ ≠ b0, it would excite gravitational waves, which could possibly lead to a massive 
damping of the electromagnetic wave. We have not included any damping in our 
consideration up to now, the influence of damping effects will be studied subsequently. The 
fundamental resonance character of the equation (2.28) does not seem to be destroyed by 
this simplification, at least for small damping effects. The preliminary conclusion appears to 
be justified: Light can easily propagate only if c = b0 at any location of the universe. The light 
velocity c and therefore also the product of the “vacuum values” ε଴ and μ଴ are apparently 
determined by the propagation velocity of gravitational waves.  

Before looking at the question of damping, we would like to determine the wave components 
of the magnetic flux density B, which are related to the waves (2.18). They are determined, 
e.g., by (2.13).  

Since (according to our ansatz) the electric field has only a component in y-direction, we find  

                                 ∇ X E = 
𝝏

𝝏𝒙
 E୷ ez = - Ḃ = - 

డ

డ௧
 B୸ ez .                                                    (2.29) 

Let us insert here the value E୷ of equation (2.18): 

           E଴ଵ (ik′e୧(୩ᇱ୶ିனᇱ୲) –ik’ eି୧(୩ᇱ୶ିன )) – i E଴ଶ (ik′e୧(୩ᇱ୶ିனᇱ୲) +ik’ eି୧(୩ᇱ୶ )) = - Ḃ୸       

or               E଴ଵik′ (e୧(୩ᇱ୶ିனᇱ୲) – eି୧(୩ᇱ୶ିன )) + E଴ଶk′ (e୧(୩ᇱ୶ିனᇱ୲) + eି୧(୩ᇱ୶ିன )) = - Ḃ୸ .        (2.30) 

Ansatz:             Bz = B଴ଵ (e୧(୩ᇱ୶ିன ) + eି୧(୩ᇱ୶ିனᇱ୲)) – i B଴ଶ (e୧(୩ᇱ୶ିன ) - eି୧(୩ᇱ୶ିனᇱ୲)).           (2.31) 

Then:                     

               - Ḃ୸ =  B଴ଵ (-i𝜔′e୧(୩ᇱ୶ିன ) +i𝜔′ eି୧(୩ᇱ୶ିனᇱ୲)) – i B଴ଶ (-i𝜔′e୧(୩ᇱ୶ିன ) -i𝜔′ eି୧(୩ᇱ୶ିனᇱ୲)).      

                    = i𝜔′ B଴ଵ൫e୧൫୩ᇲ୶ିனᇲ୲൯  − eି୧൫୩ᇲ୶ିனᇲ୲൯൯ +  𝜔′ B଴ଶ(e୧(୩ᇱ୶ିனᇱ୲) + eି୧(୩ᇱ୶ )).         (2.32) 

Comparison of the real part: 

                                                     E02 k’ = 𝜔′ B଴ଶ  or  B02 = 
୩ᇱ

 னᇱ
 E02 

and of the imaginary part                                                                                                   (2.33)                                                                                                         

                                                     E01 k’ = 𝜔′ B଴ଵ  or  B01 = 
୩ᇱ

 னᇱ
 E01. 

The interlinked components of the “electro-magneto-gravitational” wave field can be 
presented in the following more compact form:  
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                              E = Ey (x,t, s01, s02) ey                                                                           (2.34) 

                              B = Bz (x,t, s01, s02) ez,                                                                         (2.35) 

                               g = - 
ଵ

ଶ
 b0

2 k2 sn (x,t, s01, s02) ez                                                             (2.36) 

whereas Ey and Bz are described by (2.18) and (2.31), and (2.36) is determined by the 
summation over all j of (2.4).  

The equations (2.34) and (2.35), together with the relations (2.33), describe the propagation 
of a plane light wave with the amplitude of the electrical field stretched out in the y-direction 
and that of the magnetic flux density stretched out into the z-direction, both propagating in 
the x-direction. This light wave is coupled to a gravitational wave via the interactions 
described by (2.4) and (2.5). The gravitational wave oscillates in the z-direction, transversally 
to its propagation in the x-direction. The phase velocity of the light wave is correlated in a 
“resonant” manner with the phase velocity of the gravitational wave, namely by the 
“resonance” relations (2.28).  

As we know, any profile of a light wave can be composed by the superposition of plane 
waves. Therefore, the relationships described above seem to dictate any arbitrary 
propagation of light. The same is valid for gravitational waves, which can also be composed 
of plane waves by superposition.  

In the beginning of this paper, we postulated the existence of a magnetic flux density Bnj in 
the x-direction but left its magnitude open. This flux density plays the role of a field, which 
enables the physical mechanisms considered here to be effective, but which is static and 
arbitrary small. Because we know that magnetic fields are present in practically all regions of 
the universe, our assumption of the existence of an “initiating” flux density Bnj might be 
justified. Admittedly, it is questionable whether one could average this flux over the distance 
of our oscillating discs to form a mean value BnФ. Furthermore, it is required that the values of 
Bnj or BnФ should be the result of a self-consistent solution of all involved equations, particle 
movements, and boundary conditions. We are not touching on this possibly very complicated 
set of problems here. Furthermore, we must remember that we based our consideration on 
the simplified description of the plasma within a single particle model. But we will certainly 
find fractions of an equator disc (that is stretched out over the whole universe), where BnФ ≠ 
0. Possibly, it will be necessary to develop the theory step by step over smaller distances 
towards a solution that comprises the total universe.  

In any case, if we are going to consider large distances, we must include damping even for 
very thin plasmas. It will not be adequate to neglect collisions between charged particles. 

Therefore, we supplement the equation of motion of an oscillating disc (see 2) equation 
(2.20)) by a damping term.  

                      -𝛾ṡ୬ - Ms s̈n = - Ms D’ (sn+1 + sn-1 – 2 sn ).                                                   (2.21a) 

There it is again (see 2) (2.21))         D’ = G‘ 
୑౩

ୟయ   = 2 G 
୑౩

ୟయ    .  

We use now wiggled symbols for the (now damped) displacements, and we abbreviate 
Ms=m: 
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                                        s෤̈୬ = - 
ஓ

୫
 s෤̇୬ + D’ (s෤୬ାଵ +  s෤୬ିଵ - 2 s෤୬).                                          (2.37)                                          

We are looking for a solution with the ansatz 

                                         s෤୬ = sn 𝑒
ିఒ௧

.                                                               (2.38) 

Herein sn is given by (2.20). The solution of this problem is elementary. Nevertheless, we will 
describe it here in detail:  

We find with the ansatz (2.38) at first 

                                     s෤̇୬ = ṡ୬𝑒ିఒ௧
  - 𝜆 sn 𝑒

ିఒ௧                                                                   (2.39) 

and then 

                                     s෤̈୬ =  s̈n 𝑒ିఒ௧ – 2 𝜆 ṡ୬𝑒ିఒ  + 𝜆ଶ sn 𝑒
ିఒ௧.                                          (2.40) 

It is in addition                 s෤୬ାଵ +  s෤୬ିଵ - 2 s෤୬ = - 4 sinଶ ୩ୟ

ଶ
 sn 𝑒

ିఒ௧
 .                                              (2.41) 

With 

                      ṡ୬ = - i ω s01൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲)൯ – ω s02൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯            (2.42) 

and 

                       s̈n = -  ω2  sn ,                                                               (2.43) 

as well as                                             4 α sinଶ ୩ୟ

ଶ
 ≈ π ρG R0

2 k2 = 
ଵ

ଶ
 b2 k2 .                                       (2.44) 

There is further:  

                           s̈n + ṡ୬(
ஓ

୫
 - 2 𝜆) + sn (𝜆ଶ + 

ଵ

ଶ
 b0 

2 k2 - 
ஓ

୫
 𝜆) = 0.                                  (2.45) 

Therein, we have written 2πρGR0
2 = b0

2 (for the meaning and importance of b0 see 1) 
equations (2.3) and (3.7), and 2) equation (2.25)). 

If we now insert (2.20), (2.42) and (2.43), we find  

                        -  ω2[s01 ൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯ – i s02൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲)൯] 

           + (
ஓ

୫
 - 2 𝜆) ω[-i s01 ൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲)൯ - s02൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯]                 

+ (𝜆ଶ + 
ଵ

ଶ
b0

2 k2 - 
ஓ

୫
 𝜆)[s01 ൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯ – i s02൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲)൯] = 0 .      (2.46) 

We compare the real and imaginary parts before e୧(୩୶ି ன୲) und eି୧(୩୶ି ன୲) and arrive at: 

                        -  ω2 s01 - (
ஓ

୫
 - 2 𝜆) ω s02 + (𝜆ଶ + 

ଵ

ଶ
b0

2 k2 - 
ஓ

୫
 𝜆) s01 = 0                              (2.47a) 

                           ω2 s02 - (
ஓ

୫
 - 2 𝜆) ω s01 - (𝜆ଶ + 

ଵ

ଶ
b0

2 k2 - 
ஓ

୫
 𝜆) s02  = 0                              (2.47b) 

or in another form:  
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                           (𝜆ଶ + 
ଵ

ଶ
b0

2 b2 k2 - 
ஓ

୫
 𝜆 - ω

2) s01 -  (
ஓ

୫
 - 2 𝜆) ω s02  =  0                              (2.48a) 

                       -  ( ஓ

୫
 - 2 𝜆) ω s01 –  (𝜆ଶ + 

ଵ

ଶ
b0

2 b2 k2 - 
ஓ

୫
 𝜆 -  ω

2) s02 =  0 .                            (2.48b) 

The determinant condition for non-trivial solutions yields several solutions, e.g.:  

                                𝜆  = i ω + 
ଵ

ଶ
 

ஓ

୫
 ± ට 

ଵ

ସ
 

ஓమ

୫మ
−

1

2
b0

2  kଶ   .                                              (2.49) 

We convert this into:  

                                𝜆  = i ω + 
ଵ

ଶ
 

ஓ

୫
 ± i 

ଵ

ଶ
b଴ k  ට 1 −  

ஓమ

୫మୠబ
మ ୩మ

 . 

For  O(𝜆ଶ) ≪ O(𝜆), we find approximately:  

                         𝜆ଵ  ≈  i
ଷ

ଶ
ω +   

1
2
 

ஓ

୫
     or     𝜆ଶ ≈ i ଵ

ଶ
 ω + 

ଵ

ଶ
 

ஓ

୫
 .                                          (2.50)                      

Hence it returns a mixed term with damping and frequency shift.  

Starting from (2.10) and (2.12), we find now for the drift current density:  

                  𝐉 =  
୫౧

ୟమ  b0
2 s෤୬

(n) 
 𝐞z x 𝐁Ф 

୆Ф
మ  =  - 

୫౧

ୟమ  b0
2  

 𝐞z x 𝐁Ф 

୆Ф
మ  4 sinଶ ୩ୟ

ଶ
 s෤୬                             (2.51) 

For small values of ka and with (2.39) one finds the derivation:  

                           𝐉̇ = - 
୫౧

୆Ф
 b0

2  kଶ (ṡ୬𝑒ିఒ௧
  - 𝜆 sn 𝑒

ିఒ௧) 𝐞୷,                                              (2.52) 

or with (2.20) und (2.42): 

 

μ଴𝐉̇ = μ଴

mq
BФ

 b0
2  k2 [ω(is01 ൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲)൯ + s02൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲))൯         

              +𝜆(s01 ൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯ -i s02൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲))൯] eି஛୲
 𝐞୷.        (2.53) 

We try a similar ansatz as with (2.18) for the electric field, but now again with a damping 
term:   

         E୷ = [E଴ଵ(e୧(୩ᇲ୶ିωᇲ୲) + eି୧(୩ᇲ୶ିωᇲ୲)) – iE଴ଶ(e୧(୩ᇲ୶ିωᇲ୲) - eି୧(୩ᇲ୶ିωᇲ୲)) ] 𝑒ିλE୲.         (2.54) 

We leave the value of the damping constant λ୉ undetermined for a start.  

With this ansatz we again obtain the following (as in the case without damping) 

                                                 
డమ

డ୶మ E୷  = - kᇱ2 E୷ .                                                              (2.55) 

But at the derivations with respect to time, damping comes into the play now:  
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డమ

డ୲మ E୷ = (λE
ଶ - ωᇱ2)[E01(e୧(୩ᇲ୶ିωᇲ୲) + eି୧(୩ᇲ୶ିωᇲ୲)) – i E଴ଶ(e୧(୩ᇲ୶ିωᇲ୲) - eି୧(୩ᇲ୶ିωᇲ୲))] 𝑒ିλE୲  

        +2iλ୉ωᇱ [E01(e୧(୩ᇲ୶ିωᇲ୲) - eି୧(୩ᇲ୶ିωᇲ୲)) – iE଴ଶ(e୧(୩ᇲ୶ିωᇲ୲) + eି୧(୩ᇲ୶ିωᇲ୲))] 𝑒ିλE୲.     (2.56) 

We can insert again (2.53), (2.55) and (2.56) into (2.16): 

- k‘2 [E01 (e୧(୩ᇱ୶ିனᇱ୲) + eି୧(୩ᇱ୶ିனᇱ୲)) – i E଴ଶ (e୧(୩ᇱ୶ିனᇱ୲) - eି୧(୩ᇱ୶ିனᇱ୲)) ] eି஛ు୲   

 - μ଴ε଴ {(λE
ଶ – ω‘2)[E01 (e୧(୩ᇱ୶ ) + eି୧(୩ᇱ୶ିனᇱ୲)) – i E଴ଶ (e୧(୩ᇱ୶ିனᇱ୲) - eି୧(୩ᇱ୶ିனᇱ୲))] 

              +2iλ୉ω‘[E01 (e୧(୩ᇱ୶ିன ) - eି୧(୩ᇱ୶ିனᇱ୲)) – i E଴ଶ (e୧(୩ᇱ୶ିனᇱ୲) + eି୧(୩ᇱ୶ିனᇱ୲))]} eି஛ు୲
  

= μ଴

mq
BФ

 b0
2  k2[ω(is01 ൫e୧(୩୶ି ன୲) − eି୧(୩୶  ன୲)൯ + s02൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲))൯         

             +𝜆(s01 ൫e୧(୩୶ି ன୲) + eି୧(୩୶ି ன୲)൯ - i s02൫e୧(୩୶ି ன୲) − eି୧(୩୶ି ன୲))൯] eି஛୲.            (2.57) 

Non-trivial solutions are only possible, if 

                                       k’x – (ωᇱ - iλ୉)t = 0 = kx – (ω - iλ)t                                       (2.24a) 

and                                k’x – (ωᇱ + iλ୉)t = 0 = kx – (ω + iλ)t .                                    (2.24b)  

This is fulfilled for all arbitrary values of x and t only if:  

                                            k‘ = k,  ωᇱ =  ω  und λ୉ = 𝜆ଵ (oder =  λଶ)                            (2.24c) 

The real and the imaginary parts of (2.57) then deliver two equations again for the 
amplitudes of E01, E02, s01 und s02:  

We abbreviate                                              p = 
 μ

0
 mq b0

2 

୆Ф
 k2                                                       

and find (𝜆  =  λଵ or =  λଶ ): 

                   [- k2 - μ଴ε଴(𝜆ଶ- ω2)] E01  - 2μ଴ε଴𝜆 ωE02     - p 𝜆 s01     - p ω s02  = 0         (2.58) 

                             - 2μ଴ε଴𝜆 ω E01 +[k2 + μ଴ε଴(𝜆ଶ- ω2)]E02   - p ω s01    + p𝜆  s02 = 0.        (2.59) 

Multiplication with 𝜆 or ω yields: 

                               𝜆[- k2 - μ଴ε଴(𝜆ଶ- ω2)] E01  - 2μ଴ε଴𝜆ଶωE02  - p𝜆2 s01  - p ω 𝜆 s02 = 0        (2.60) 

                      - 2μ଴ε଴𝜆ωଶ E01 + ω[k2 + μ଴ε଴(𝜆ଶ - ω2)]E02   - p ωଶs01  + p ω𝜆  s02 = 0.        (2.61) 

And we find by addition: 

                  (𝜆[- k2 - μ଴ε଴𝜆ଶ] - μ଴ε଴𝜆 ωଶ) E01 
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                         - ω (μ଴ε଴𝜆ଶ - k2 + μ଴ε଴ ωଶ) E02 – p(𝜆ଶ+ ωଶ) s01  = 0 

or with  
ଵ

ୡమ
 = μ଴ε଴  and  

ଵ

ୠబ
మ  =  

୩మ

னమ  , and with the assumption 𝜆  ≪  ω (note: 𝜆 is a parameter 

here, not a wavelength!) we find eventually: 

                             s଴ଵ =  - 
ఒ ൬ଵା 

ౘబ
మ

ౙమ൰୉బభା ω ൬
ౘబ

మ

ౙమିଵ൰୉బమ

୮ୠబ
మ  .                                   (2.62) 

There is a similar dependency also for s02. 

The figure s଴ଵapproaches the value described by (2.28b) if 𝜆 → 0. In that case, it converges 

to zero if c → b0. But with a finite damping value, there is also a finite value for s଴ଵ, even in 
the case that c → b0. In other words, gravitational waves will be excited for each value of c. A 
“resonance” correlation remains between the amplitudes E01 and E02 and the gravitational 
excitations s01 und s02, even when damping occurs. Now it becomes obvious that plane 
electromagnetic waves can exist in the universe only if c = b0. Otherwise they would suffer 
damping over very large distances, which seem to prevent their existence. Finite values for 

the electromagnetic field amplitudes seem to be possible only if c = 
ଵ

ඥஜబகబ
 = b0. 

We would like to recall our basic assumption, namely that all arbitrary shapes of 
electromagnetic or gravitational waves can be assembled by super-composing the respective 
plane waves. In that case, the behavior of these plane waves determines the behavior of any 
composition. If this fundamental assumption is justified, with the above investigation we find 
that gravitational waves dictate the existence and propagation of light. The “vacuum” 
parameters μ଴ and  ε଴ are not natural constants but are determined by the gravitational 
constant as well as by the mean density of the universe and its extent. 

The equation (2.62) interconnects the physical quantities s଴ଵ, E଴ଵ and E଴ଶ, which are 
measurable in principle. This is also valid for all similar equations, containing components of 
the electric, the magnetic or the displacement field. If respective experiments could be 

realized, it would be possible to determine the unknown parameters 𝜆, mq and BФ and to 
prove or to disprove the theory developed here. 

3. Special Case: Dense Plasmas and Damping 

Now we would like to look to damping within another context. It plays an important role with 
very dense plasmas, where a great number of collisions occur. In this case, damping is 
decisive and, of course, cannot be neglected. We shall immediately see that, in dense 
plasmas, damping could be causative for the coupling of light to gravitational waves. 
Depending on these damping effects, drift currents can occur. 

Let us consider two particles of opposite charge within plasma of high density. If a 
gravitational field is acting there, we can write the equations of motion in the following form:  

                                     - me v̇ୣ - 𝛾  vୣ + me g = 0                                                    (3.1a) 

                                      - mi v̇୧  - 𝛾୧ v୧  + mi g = 0 .                                                  (3.1b) 
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If there would be no damping, i.e. if 𝛾  = 0 = 𝛾୧, then the change of the velocities of both 
particles would always be the same. Also, their distance would remain the same, they could 
not be “polarized” by the gravitational field. This is different if the damping constants (and 
possibly also the masses) have a different size. In general, this will be the case and, 
therefore, the velocities will also become different: ve ≠ vi. If the particles are identical, but 
have the opposite charge, and if n particles are contained within a volume element, they 
generate the current density   

                                                        j = n q (ve – vi ).                                                            (3.2) 

Therefore, in this case there is also a coupling between the electric and the gravitational field 
as described by (2.16). If we set for g again the gravitation factor gnj of an oscillating disc 
(see (2.4)), and proceed analogous to the above consideration from (2.16) to (2.33), we 
arrive at structurally similar equations for the description of coupled electromagnetic and 
gravitational waves. In this case, the existence of an initial magnetic flux density BnФ is not 
demanded. On the other hand, electromagnetic waves can penetrate dense plasmas only on 
a limited scale (penetration depth). The effect occurs only at the skin of such plasmas, i.e. at 
the skin of stars. We will resign ourselves here to a more detailed investigation of the 
relationships. They seem to be much more complicated than with thin plasmas and the single 
particle model. And, here as well, a self-consistent solution that pays regard to all fields, to 
the motion of the particles, and to the boundary conditions must be found.   

Finally, we would like to refer to the papers 1) and 2). There we discussed the behavior of 
oscillating discs stretched out over a universal distance. We cannot assume that such discs 
are plane in the whole space, although we used this model for a simplified description. 
Rather, curved discs are to be expected even upon the effect of boundary conditions. 
According to these circumstances and due to the considerations and results of this paper, 
one would expect curved paths for the light propagation in the universe on large scales. This 
could imply that light beams at the edge of the universe will propagate parallel to the “outer 
surface” of the universe, i.e. on closed pathways. In this sense the universe could be seen as 
closed. Although space and time are separate entities in our theory, “space-time” is flat. Our 
theory is based on Euclidean geometry.  

4. Summary and Conclusion  

There is evidence that gravitational waves do exist even in the framework of Newton’s laws 
alone 2). Based on this finding, it seems very reasonable that these gravitational waves are 
coupling to electromagnetic waves on a universal scale. An equation for this universally valid 
coupling can be derived. The collective excitation of gravitational waves on a universal scale 
seems to play a decisive role for the formation of light. The reason for that is the long range 
order of Newton’s force of gravity. The theory established here is fundamentally based on 
this long range, i.e. universal scale character of Newton’s law of gravity.  

It seems that a non-locality of all incidents within the universe does exist. Everything 
depends on everything, everywhere and instantaneously (but nonetheless, there is a 
maximum velocity that particles must obey!). It is not only that gravitational waves seem to 
be possible; apparently they are omnipresent, are manifesting themselves by their interaction 
with electromagnetic waves, and in doing so determine the light velocity. It seems that there 
is a certain relationship of these universal properties to the properties envisaged of Einstein. 
Einstein believed, that in an ultimate theory the laws should apply everywhere, becoming 
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manifest in solitons propagating within the framework of a large-scale topology of the 
universe 8). We intend to investigate this relationship in a forthcoming paper. To this end, we 
will have to abandon our restriction on linearized equations and will have to consider Frenkel-
Kontorova-like equations instead (see also 2)). 

It is one of the results of paper 1) that also the equation of motion for a massive light source is 
Lorentz invariant, i.e. light emitted from a moving light source is not dependent on the 
velocity of this source. If we see this result together with the findings in this paper on the 
correlation of gravitational and electromagnetic waves on universal scale, it seems that we 
have found something like the “lost ether” (which determines light propagation) without 
having looked for it. But the way on which we have found that result is quite different from all 
attempts from Lorentz’s time until now. It is found quite naturally, without any arbitrary 
assumptions or model imaginations, only on the basis of Newton’s laws and on the 
assumption that the universe exists. The universe with all its masses is the ether!  

In the major part of the investigation in this paper, we have restricted ourselves to a 
homogeneous distribution of the masses in the universe. Of course, this restriction could be 
dropped, i.e. a space-dependent density distribution could be considered. In this case, plane 
waves will no longer describe the propagation of light. An inhomogeneous mass distribution 
would certainly lead to curved paths of propagation. Of course, it must be investigated, 
whether a respective extension of our theory will yield results that coincide with those of GR 
or not. But such an extension exceeds by far the frame set out here.  
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