On the Riemann hypothesis

Daniel Thomas Hayes

May 5, 2021

A proposed proof of the Riemann hypothesis.

1. Introduction

The Riemann zeta function is

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{1}$$

for $\sigma = \text{Re}(s) > 1$. For other values of s it is defined uniquely by analytic continuation, see [1]. The function $\zeta(s)$ has trivial zeros at s = -2l for $l \in \mathbb{N} = \{1, 2, 3, \ldots\}$. It is known that the nontrivial zeros $s = \sigma + it$ of $\zeta(s)$ satisfy the following properties.

- (I) If $s = \sigma + it$ is a nontrivial zero of $\zeta(s)$ then $s = \sigma it$ is a nontrivial zero of $\zeta(s)$.
- (II) If $s = \sigma + it$ is a nontrivial zero of $\zeta(s)$ then $\sigma \in (0, 1)$.
- (III) If $s = \sigma + it$ is a nontrivial zero of $\zeta(s)$ then $s = 1 \sigma + it$ is a nontrivial zero of $\zeta(s)$.

2. Proof of the Riemann hypothesis

Theorem

All nontrivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

Proof

In light of [2] consider

$$\psi(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \log_{e}(2\pi) - \frac{1}{2}\log_{e}(1 - x^{-2})$$
 (2)

for $x \in (n+1, n+2)$ and $n \in \mathbb{N}$. Here $\psi(x)$ is a weighted prime counting function

$$\psi(x) = \sum_{p^m \le x} \log_e p \tag{3}$$

where p is prime and the sum is over all prime powers. The sum in the second term on the right of (2) is over all ρ such that $s = \rho$ is a nontrivial zero of $\zeta(s)$. The exact function $\psi(x)$ is constant on the domain between any two consecutive integers. The approximation of $\psi(x)$ with finitely many ρ values displays a Gibbs phenomenon. Differentiating (2) with respect to x yields

$$0 = 1 - \sum_{\rho} x^{\rho - 1} - \frac{1}{x^3 - x}.$$
 (4)

Rearranging (4) gives

$$\sum_{\rho} x^{\rho - 1} (\frac{x^3 - x}{x^3 - x - 1}) = 1.$$
 (5)

Differentiating (5) with respect to x yields

$$\sum_{\rho} x^{\rho - 1} [(\rho - 1)(x^5 - 2x^3 - x^2 + x + 1) - (3x^2 - 1)] = 0.$$
 (6)

Now

$$\sum_{\rho} (\rho - 1) x^{\rho - 1} = \sum_{\beta + i\gamma} (\beta + i\gamma - 1) x^{\beta + i\gamma - 1}.$$
 (7)

On using Euler's identity

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{8}$$

equation (7) becomes

$$\sum_{\rho} (\rho - 1) x^{\rho - 1} = \sum_{\beta + i\gamma} (\beta + i\gamma - 1) x^{\beta - 1} [\cos(\gamma \log_{e} x) + i \sin(\gamma \log_{e} x)] \tag{9}$$

which expands to

$$\sum_{\rho} (\rho - 1) x^{\rho - 1} = \sum_{\beta + i\gamma} x^{\beta - 1} [\cos(\gamma \log_{e} x)(\beta - 1) - \sin(\gamma \log_{e} x)\gamma] + i \sum_{\beta + i\gamma} x^{\beta - 1} [\sin(\gamma \log_{e} x)(\beta - 1) + \cos(\gamma \log_{e} x)\gamma]. \tag{10}$$

The second term on the right of (10) disappears due to (I). Then (10) becomes

$$\sum_{\rho} (\rho - 1) x^{\rho - 1} = \sum_{\beta + i\gamma} x^{\beta - 1} [\cos(\gamma \log_e x)(\beta - 1) - \sin(\gamma \log_e x)\gamma]. \tag{11}$$

Also

$$\sum_{\rho} x^{\rho - 1} = \sum_{\beta + i\gamma} x^{\beta + i\gamma - 1}.$$
 (12)

On using Euler's identity equation (12) becomes

$$\sum_{\rho} x^{\rho - 1} = \sum_{\beta + i\gamma} x^{\beta - 1} \cos(\gamma \log_{e} x) + i \sum_{\beta + i\gamma} x^{\beta - 1} \sin(\gamma \log_{e} x). \tag{13}$$

The second term on the right of (13) disappears due to (I). Then (13) becomes

$$\sum_{\rho} x^{\rho - 1} = \sum_{\beta + i\gamma} x^{\beta - 1} \cos(\gamma \log_{e} x). \tag{14}$$

Equation (6) is then

$$\sum_{\beta + i\gamma} x^{\beta - 1} [\cos(\gamma \log_e x)(\beta - 1) - \sin(\gamma \log_e x)\gamma](x^5 - 2x^3 - x^2 + x + 1) - \sum_{\beta + i\gamma} x^{\beta - 1} \cos(\gamma \log_e x)(3x^2 - 1) = 0.$$
 (15)

Let x = y + c where $0 \le y \ll 1$ and c is a constant such that $x \in (n + 1, n + 2)$. Then (15) implies

$$\sum_{\beta+i\gamma} (y+c)^{\beta-1} \{ [\cos(\gamma \log_{e}(y+c))(\beta-1) - \sin(\gamma \log_{e}(y+c))\gamma] [(y+c)^{5} - 2(y+c)^{3} - (y+c)^{2} + (y+c) + 1] \}$$

$$-\cos(\gamma\log_{e}(y+c))[3(y+c)^{2}-1]\} = 0.$$
 (16)

On using a Taylor expansion (16) becomes

$$\sum_{\beta+i\gamma} (y+c)^{\beta-1} \{ [\cos(\gamma \log_{e} c)(\beta-1) - \sin(\gamma \log_{e} c)\gamma](c^{5} - 2c^{3} - c^{2} + c + 1) - \cos(\gamma \log_{e} c)(3c^{2} - 1) \}$$

$$+\{[-\sin(\gamma\log_{e}c)(\beta-1)\frac{\gamma}{c} - \cos(\gamma\log_{e}c)\frac{\gamma^{2}}{c}](c^{5} - 2c^{3} - c^{2} + c + 1) + [\cos(\gamma\log_{e}c)(\beta-1) - \sin(\gamma\log_{e}c)\gamma](5c^{4} - 6c^{2} - 2c + 1) + \sin(\gamma\log_{e}c)\frac{\gamma}{c}(3c^{2} - 1) - 6\cos(\gamma\log_{e}c)c\}y + O(y^{2})\} = 0.$$
(17)

Now (17) must be true independent of y. We then take coefficients of like powers of (y + c) in (17), for $\beta \in (0, 1)$ in accordance with (II), and set them to zero. Equation (17) has the form

$$\sum_{\beta \in \mathbb{R}} \sum_{\gamma \in \mathbb{R}(\beta)} (y+c)^{\beta-1} \{ \sum_{l=0}^{\infty} [f_l(\gamma,c)(\beta-1) + g_l(\gamma,c)](y+c)^l \} = 0.$$
 (18)

So for example, taking the the $O((y+c)^{\beta-1})$ coefficient in (18) gives

$$\sum_{\gamma \in \mathbb{R}(\beta)} [f_0(\gamma, c)(\beta - 1) + g_0(\gamma, c)] = 0$$
(19)

which implies

$$\beta = -\frac{\sum_{\gamma \in \mathbb{R}(\beta)} g_0(\gamma, c)}{\sum_{\gamma \in \mathbb{R}(\beta)} f_0(\gamma, c)} + 1 = -\frac{\sum_{\gamma \in \mathbb{R}(1-\beta)} g_0(\gamma, c)}{\sum_{\gamma \in \mathbb{R}(1-\beta)} f_0(\gamma, c)} + 1 = 1 - \beta$$

$$(20)$$

on using (III). Therefore without loss of generality $\beta = \frac{1}{2}$. \Box

References

- [1] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, *Monat. der Königl. Preuss. Akad. der Wissen. zu Berlin aus der Jahre 1859* (1860), 671–680; also, *Gesammelte math. Werke und wissensch. Nachlass*, 2. Aufl. 1892, 145–155.
- [2] J. Vaaler, The Riemann Hypothesis Millennium Prize Problem, Lecture Video, CLAY (2001).