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A proposed proof of the Riemann hypothesis.

1. Introduction

The Riemann zeta function is

(=34
n=1

)]

for o = Re(s) > 1. For other values of s it is defined uniquely by analytic continuation, see [1]. The function £(s)
has trivial zeros at s = -2/ for/ ¢ N = {1,2,3,...}. It is known that the nontrivial zeros s = o + it of {(s) satisfy the

following properties.

(D If s = o + it is a nontrivial zero of {(s) then s = o — it is a nontrivial zero of {(s).

(D) If s = o + it is a nontrivial zero of {(s) then o € (0, 1).

(IIT) If s = o + it is a nontrivial zero of {(s) then s = 1 — o + it is a nontrivial zero of {(s).

2. Proof of the Riemann hypothesis
Theorem

All nontrivial zeros of {(s) have real part equal to %
Proof

In light of [2] consider
x° 1 _
W(x) = x — Zp: - log,(2m) ~ 7 log,(1 - x 2)
for x € (n+ 1,n+ 2) and n € N. Here ¢/(x) is a weighted prime counting function

y(x) = ) log.p

pr<x
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where p is prime and the sum is over all prime powers. The sum in the second term on the right of (2) is over all p such
that s = p is a nontrivial zero of {(s). The exact function ¥(x) is constant on the domain between any two consecutive
integers. The approximation of /(x) with finitely many p values displays a Gibbs phenomenon. Differentiating (2)

with respect to x yields

1
—1_ -1 _
0=1 E x° P
P
Rearranging (4) gives

3
Py =1
Z (x3—x—1)
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Differentiating (5) with respect to x yields

pr_l[(/)—1)(x5—2x3—x2+x+1)—(3x2_1)]:0‘
o

Now

Z(p — D' = Z(,B +iy — DaFHrL
P Btiy
On using Euler’s identity
e’ = cos(0) + i sin(0)
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equation (7) becomes
Do =1 = B+ iy = 1) cos(y log, x) + i sin(y log, )] )
p Biy
which expands to

D o=t = 3" M eos(ylog, x)(B— 1) =sin(y log, x)y1+i ) ¥~ [sin(y log, x)(B— 1) +cos(y log, 1)y]. (10)
)

B+iy Briy
The second term on the right of (10) disappears due to (I). Then (10) becomes
Z(p — ! = Z *#cos(y log, x)(8 — 1) — sin(y log, x)y]. (11)
o B+iy
Also

Z = Z KPriv-l (12)
Iy Biy
On using Euler’s identity equation (12) becomes

Z 1= Z A~ cos(y log, x) +1i Z +#~sin(y log, x). (13)
P B+iy PBriy
The second term on the right of (13) disappears due to (I). Then (13) becomes
Z ! = Z 1 cos(y log, x). (14)
P B+iy

Equation (6) is then
Z ¥ cos(ylog, x)(B — 1) — sin(y log, x)y](x* = 2x° = x> + x+ 1) — Z ¥ Lcos(ylog, x)(3x* = 1) = 0. (15)
B+iy B+iy
Let x =y + ¢ where 0 <y <« 1 and c is a constant such that x € (n + 1,n + 2). Then (15) implies
D 0+ {lcos(ylog.(y + (B = 1) = sin(y loge(y + DY +¢)° =200+ )* = (v + ¢ + (v + ) + 1]
Briy
—cos(ylog,(y + e)[3(y + ¢)* = 11} = 0. (16)
On using a Taylor expansion (16) becomes

Z(y + P Y[cos(ylog, c)(B — 1) — sin(y log, c)y1(c> = 2¢ = ¢* + ¢ + 1) — cos(y log, ¢)(3c* — 1)
B+iy

+{[- sin(y log, ¢)(8 — 1)% — cos(y log, c)y;](cs 23—t retl)

+[cos(y log, ¢)(8 — 1) — sin(y log, ¢)y](5¢* — 6¢* — 2¢ + 1)

+sin(y log, (:)%(3(:2 — 1) — 6cos(ylog, ©)cly + 0(*)} = 0. (17)
Now (17) must be true independent of y. We then take coefficients of like powers of (y + ¢) in (17), for 8 € (0, 1) in

accordance with (II), and set them to zero. Equation (17) has the form

[ee)

D2 0+ B =D + 2y, ol + )} = 0. (18)

BER yeR(B) =0

So for example, taking the the O((y + ¢)*~!) coefficient in (18) gives

D U, )B=1)+ g, =0 (19)
YER(B)
which implies
2yer() 80(Y, ) 2yer(1-p) 80(Y5 €)
= 1 = — 1 = 1 - 20
p 2yere) Jo(y, ©) " 2yer(1-) Jo(y, ©) ¥ A (20)

on using (III). Therefore without loss of generality 5 = % O
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