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Abstract

It is stated that moving fluids can be described as fluctuating continua although
their material distribution is always discontinuous. A stochastic particle transport
is then considered by an imaginary ensemble of any number of equivalent turbulent
fluids existing in parallel. This leads to exspectation values of the densities of turbu-
lently transported particles.
First a transport equation for a molecular self-diffusion is found. It is used as a refer-
ence for the difference between self-moving diffusing particles and transport through
turbulent moving continua (e.g. aerosols). This is followed by a transport theory
for longitudinal continuum fluctuations to provide an easier transition to the more
complicated turbulent particle transport.

The following transport equations arise:

1. -transport equation of molecular self-diffusion as partial differential equation as
well as integral equation. The transition probabillity of velocities is calculated,
explicitly.

2. -transport equation of a passive particle transport by longitudinal continuum-
fluktuations as partial differential equation as well as integral equation. The
transition probabillity of velocities is calculated, explicitly.

3. -transport equation of a passive particle transport by turbulent continuum-fluktuations
as partial differential equation as well as integral equation. The transition prob-
abillity of velocities is calculated, explicitly.
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1. Introduction

Feynman[5]: “Nobody in physics
has really been able to analyze
it mathematically satisfactorily in
spite of its importance to the sis-
ter sciences. It is the analysis of
circulating or turbulent fluids.“

The description of turbulent movements within the framework of continuum me-
chanics turned out to be difficult since more than 160 years. However, laminar fluid
movements can be calculated by the known basic equations successfully confirmed in
experiments: equation of continuity, Navier-Stokes-Equations and energy equation.
The efforts, treating movements of turbulence in a similar way, must be considered
as failures. There are substantial reasons for believing, that the above equations
describing turbulent collective movements of non-homogenously distributed
molecular matter are inadequate. This was the situation that inspired the
idea, to explain the phenomenon of turbulence by stochastic methods. In that
context, particularly approaches of Kolmogorov are to be mentioned, which lead
to spectral energy distributions, assuming highly hypothetically, that turbulence is
statistically isotropical and homogeneous. Between them there is a wide range of
models with physically not well founded hypotheses. Overall, this leads to the state-
ment of Feynman cited at the beginning, whereupon not much has changed since then.

This situation is characterized in recent treatises as for example by Trinh, Khanh
Tuoc [10] in the following way:

“ the study of turbulence is immediately hampered by the surprising lack of a clear and
concise definition of the physical process. Tsinober (2001) has published a long list
of attempts at a definition by some of the most noted researchers in turbulence. The
most common descriptions are vague: ”a motion in which an irregular fluctuation
(mixing, or eddying motion) is superimposed on the main stream” (Schlichting 1960),
”a fluid motion of complex and irregular character” (Bayly, Orszag, Herbert, 1988)

5



1. Introduction

or negative as in the breakdown of laminar flow (Reynolds’ experiment 1883). Some
of the definitions are quite controversial like Saffman’s (1981) ”One of the best
definition of turbulence is that it is a field of random chaotic vorticity” because the
words random and chaotic would imply that a formal mathematical solution, which
is necessarily deterministic, does not exist. Perhaps the most accurate definition
can be attributed to Bradshaw (1971) ”The only short but satisfactory answer to the
question ”what is turbulence” is that it is the general-solution of the Navier-Stokes
equation”. This definition cannot be argued with but it is singularly unhelpful since
no general solution of the NS yet exists 160 years after they were formulated.“

Fluctuation elements of the presented theory always form a dense point set, i.e. a
definition of a continuum of such fluctuation elements is important deducing equations
of motion in form of partial differential equations. On the other hand a concept of a
stochastic theory of a fluctuating continuum within the meaning of an ensemble theory
is deduced. Fundametal principles of this treatise as well as in the whole classical
physics are locality, causality and deterministics. In this treatise particular
emphasis is placed on specially defined natural causality, which in contrary to
Newtonian causality of point mechanics only knows finite velocities. Discussed
stochastics arises from statistics with an in thought experiment supposed unlimited
ensemble of locally equivalent deterministic processes.1

The following transport equations are found :

1. -transport equation of molecular self-diffusion as partial differential equation as
well as integral equation. The transition probabillity of velocities is calculated,
explicitly.

2. -transport equation of a passive particle transport by longitudinal continuum-
fluktuations as partial differential equation as well as integral equation. The
transition probabillity of velocities is calculated, explicitly.

3. -transport equation of a passive particle transport by turbulent continuum-
fluktuations as partial differential equation as well as integral equation. The
transition probabillity of velocities is calculated, explicitly.

1If one wants, it can be seen as a many-world-theory of classical physics. However this is done
creating beforehand unknown equations of the deterministic processes (in contrary to Everett’s
many-world-theory of quantum mechanics).
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2. Definition of a Turbulent Fluid
Continuum

2.1. Introduction

A proper definition of turbulence, which is based on a fluctuating, dense point
set, does not exist. But this is neccessary establishing equations of movement in
form of partial differential equations. The known Navier-Stokes equations are only
providing sufficient solutions for laminar problems. Below a fluctuating fluid is
defined, which is associated uniquely to a dense set of space points of the considered
time. This definition is the prerequisite developing stochastic theories of turbulent
transport of continously moved particles within the meaning of an ensemble theory,
a deterministic theory and the connection of stochastic and a deterministic turbulence.

2.2. Definition of moved fluid-elements

At every time, space points (~x) are assigned to fluid elements in a unique correspon-
dence. As this applies to every space point (~x) of the fluid field, the set of fluid
elements is seen as a continuum. A Continuum of fluid element points (simply called
fluid elements) is considered, where a fluid environment of non infinitesimal size is
uniquely allocated to every fluid element point. Two infinitesimally neighboring fluid
elements differ apart from their distance by their velocities and not quite identical
material distributions of their neighborhoods. The neighborhoods of two nearby fluid
elements overlap. A fluid element is shifted moving the material of its neighborhood.
Though the material of such a fluid element may have changed marginally after an
infinitesimal time interval tε, it can be identified principally by its prior material
status. As every molecule possesses its own identity, there has to be at least an in-
finitesimally greater difference of material distribution to the neighborhoods of other
fluid elements.
The neighborhoods exchange material with neighborhoods of adjacent fluid elements
and vary their thermodynamic state (a local thermodynamic state does not neces-
sarily exist). Their size is not infinitesimal, because a local thermodynamic state (if
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2. Definition of a Turbulent Fluid Continuum

physically existent) has to be detectable at least in thought experiment. The open
neighborhoods have equally sized spherical shapes, generally. Near a solid border
they are descibed by parts of spheres. Infinitesimally adjacent fluid elements possess
overlapping neighborhoods. In an ε-surrounding they move in parallel. So one ob-
tains a fluid, which is assumed to be a dense fluctuating point set, though there is
no continuous matter distribution in Space-Time. That means it is possible to follow
theoretically the history of every fluid element, though it has exchanged a lot of its
initial material altering its local thermodynamic state.
Recapitulated:
Every space point (~x) of the open point set of a considered fluid area is
at every time in unique correspondence to a fluid element. The fluid is an
abstract, dense set of fluctuating fluid elements, which do not generally correspond
to material points.

2.3. Laminar moved fluids

A continuum of moved fluid elements is considered each uniquely assigned to a neigh-
borhood and a velocity.

~vtε =
~x2 − ~x1

tε
(2.1)

The fluid elements move along sufficiently often continuously differentiable trajec-
tories. The accuracies of the considered motion quantities are determined by tε-
measurement processes tε characterising the accuracy. Deriving the transport equa-
tion of turbulent particle transport a limes consideration (lim tε → 0) is subjected.
The whole of the velocities create a velocity vector field having rot(~v) 6= 0 generally.1
Though rot(~v) has dimension [1/sec], it does not refer to a rotation of laminar flow.
In an infinitesimally surrounding area of a space-time-point (~x0, t0) a fluid flow can
be defined locally 2 by parallelly moved fluid elements. Considering without loss of
generality a fluid movement of velocity ~v(~x0) = (vx, 0, 0) in a space point ~x0 in carte-
sian coordinates, the velocity is described in an ε-neighborhood and parallel to the
x-coordinate as follows:

~v(~x) =

 vx(~x)
vy(~x)
vz(~x)

 =


vx(~x0)+ ∂vx

∂x

∣∣∣
~x0

·∆x+ ∂vx
∂y

∣∣∣
~x0

·∆y + ∂vx
∂z

∣∣∣
~x0

·∆z + ...

∂vy
∂x

∣∣∣
~x0

·∆x+ ∂vy
∂y

∣∣∣
~x0

·∆y + ∂vy
∂z

∣∣∣
~x0

·∆z + ...

∂vz
∂x

∣∣∣
~x0

·∆x+ ∂vz
∂y

∣∣∣
~x0

·∆y + ∂vz
∂z

∣∣∣
~x0

·∆z + ...


1in english literature curl(~v) 6= 0 is used but in turbulence the name rot is more adapted as will
be seen

2except in stagnation points
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2. Definition of a Turbulent Fluid Continuum

The velocity components vy(~x) and vz(~x) osculate at the velocity ~v(~x0) = (vx, 0, 0)
spatially approaching (constant time t0),

vy(x0, y, z0) −→ vy(x0, y0, z0) = 0

vz(x0, y0, z) −→ vz(x0, y0, z0) = 0
.

That means especially, that all the partial derivations by y- or z-coordinate of 1. order
of vy(~x) and vz(~x) disappear in the point (x0, y0, z0).

lim
z→z0

∆vy
∆z

∣∣∣
~x0

= lim
y→y0

∆vz
∆y

∣∣∣
~x0

= 0

~x0 = (x0, y0, z0)

. (2.2)

Applying the differential quotients in the ~∇× -operator expresssed in cartesian coor-
dinates gives for the fluid velocity

( ~∇× ~v)|~x0
=

 0
∂vx
∂z
− ∂vz

∂x
∂vy
∂x
− ∂vx

∂y


|~x0

, ~v(~x0) = (vx, 0, 0) (2.3)

The orthogonality of ~∇× ~v⊥~v is a fundamental quality 34 and a necessary condition
for continuous fluid flow.

In this orthogonality velocity vector fields differ from deformation vector fields.

2.4. Turbulently moved fluids

Trying to identify the state of movement of a fluid element in turbulent fluids by a
velocity ~vtε it should be recognized, that the state of movement is not yet determined,
as the path in every space point (except in turning points) is uniquely adapted by
an infinitesimal circle segment. In the infinitesimal neighborhood of a path point
the velocity is identified by an instantaneous axis of rotation ~ωtε and a radius vector
~rtε .5

~vtε = ~ωtε ×~rtε (2.4)

3this relation can not be found in literature.
4This is one reason why the known millenium prize question does not lead to a solution of the
turbulence problem. However the validity problem of the Navier-Stokes-equations is more fatal.

5That is why turbulence can not be uniquely identified by experiments of local velocity statistics.
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2. Definition of a Turbulent Fluid Continuum

The considered vectorial motion quantities ~ωtε and ~rtε are determined by tε-
measurement processes, which are calculated later on by a limes process lim tε → 0.
A fluid element originating from the point ~x0 crossing ~x1 after the time tε reaches ~x2

after a further time tε.
~x0

tε−→ ~x1
tε−→ ~x2

By these 3 points a circle segment is uniquely drawn crossing point ~x1 with radius
vector ~rtε and speed of rotation ~ωtε . The local state of motion can not be described
by velocity only, neither statistically nor deterministically. 6

Thus the fluid element in the space-time-point (~x, t) is identified principally by the
contents of the matter of its neighborhood and state of movement expressed by ~ωtε
and ~rtε . In that way defined fluid elements move on sufficiently often continuously
differentiable trajectories. They lead considering a continuum of fluctuating fluid ele-
ments to multiply continuously differentiable vector fields of motion. The continuum
of moved fluid elements represent the turbulently collectiv movement of a discontin-
uously spaced Matter.
The field of turbulence is described by the two vector fields ~ωtε and ~btε ,

~btε = ~rtε/r
2
tε -curvature vector field. (2.5)

In addition, the results show that

~ωtε =
1

2
rot(~vtε). (2.6)

rot(~v) has the meaning of a local rotation in the frame of turbulence. An infinitesimal
disturbance of stationary pipe flow leads to an change of the significance of rot(~v),
where rot(~v) does not correspond to a rotation initially. Whether starting motions
of turbulence are suppressed, depends on an existent viscosity. These decelerations
are generally weak. The beginning of turbulent movements avoid Newtonian friction
as well as pressure gradients by means of hereto orthogonal motions.

Vortex fields in turbulence (local rotation fields will be identified with vortex fields)
and radius fields may have turning points (~x, t) along the paths of the fluid elements,
which means ~ω = 0 and ~r =∞. 7 In this case the velocities are to be calculated by
interpolation or extrapolation of the neighborhood, for example. The fluid elements
are accompanied by a moving frame of ~ω,~b and ~v along their paths.
Deterministic considerations are found via stochastic descriptions, which could be
designated as Lagrangian. Nevertheless, Lagrangian paths are calculated only after
the deterministic turbulence field is determined.

Fluid motions can always be described
6This statement contadicts that of [16]
7The temporal and spatial neighborhood of a turning point does not have such singular properties.
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2. Definition of a Turbulent Fluid Continuum

Figure 2.1.: Turbulences understood by Leonardo da Vinci (Such a picture of turbu-
lence trajectories is in reality not possible)

by moved continua ! That is why considerations of stochastic
particle transports are only possible in the frame of ensemble theories.
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3. Distribution functions

3.1. Introduction

Stochastically physical processes generally refer to random transports of physical
quantities from ~A = (~x1, t1) to ~B = (~x2, t2), where a diffusion equation results at the
end of all the discussions as can be seen in the well known treatise of Chandrasekhar
[1]. This takes place in accordance with the Langevin equation, all known attempts
characterizing Brownian motion and applying Fokker-Planck-equation, too. The
diffusion equation is subjected to a Newtonian causality, that means the related
propagation speed is unlimited. This is not the case in nonrelativistic physics beyond
Newtonian mechanics, generally, as shown in the further course of this treatise.
In this context the Boltzmann Equation, which is only applicable for extensively
diluted gases, constitutes a particularity. Despite surprising successes the importance
of this equation is obviously not appropriately appreciated. In first approximation
the Navier-Stokes equations are derived from this equation. A linear version can
be classified as key-equation of nuclear reactor physics and is used for radioactive
shielding problems in its stationary formulation.1These equations are based on a
6-dimensional phase-space with the apparent disadvantage, that using distribution
functions f(~x, t, ~v) a small but not infinitesimal phase space volume element
4x · 4y · 4x · 4vx · 4vy · 4vz = 4V is to be believed surrounding the phase space
point (~x, ~v). This situation is mathematically dissatisfying, as only a finite number
of molecules can be existent inside this Volume, and executing lim4V → 0 there
remain no molecules representing f(~x, t, ~v). Despite this contrariness the Boltzmann
Equation, in general or linear form, is successful considering the results.2
Such a situation exists in other fields of physics, too. For example, no mathematically
satisfying definition of a continuum is existent justifying partial differential equations
like the Navier-Stokes-equations. Nevertheless they have performed satisfactorily in
the case of laminar fluid dynamics, but extending to the general case of turbulence
the known equations of laminar fluid dynamics fail. Deficient mathematical justi-
fication is sometimes balanced by experiments, not always. In the special case of

11968, associated with this the author has developed in his diploma thesis a numerical method
(Monte-Carlo) for solving the linearely stationary Boltzmann Equation, without knowing this
equation, simply by simulating the stochastic elementary processes.

2The Boltzmann Equation is the single equation describing the transition from a nonexisting local
thermodynamic balance to a local thermodynamic balance.
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3. Distribution functions

kinetics, which is used for describing molecular self-diffusion, an ensemble theory is
applied, which could be used for developing the Boltzmann Equation, too, avoiding
the stated contrariness. On the other side the detailed mathematical formulations
and their results do not alter by such a modified interpretation. But as phase space
considerations are not possible for stochastically interpreted deterministic continuum
fluctuations an equivalent treatment of ensemble theory will be used for all discussed
problems.
The used distribution functions f(~x, t, ~v) are not functions of the 6-dimensional
phase space as usually applied in statiscal mechanics but regular functions of space
time with a probability density distrubution of motion quantities in every point
(~x, t) obtained by an unlimited ensemble of parallelly equivalent systems. In the
case of the stationary linear radiation transport equation3 very different elementary
particles like neutrons, electrons, α− particles, γ− particles etc. are simultaneously
calculated by this equation.

A suitable ensemble-consideration is helpful to avoid Newtonian causality (see
section 3.5), and to get rid of the mathematical inconsistency of ∆V of limited
size with limited number of included particles. So mathematically not justified
applications of related partial differential equations are avoided. This interpretation
not altering the mathematical formulations in connection with gas kinetics the
turbulence is lead to new relations.

3.2. Ensemble consideration of molecular
self-diffusion

The specifically used construction may appear somehow artificially, but it is supposed
to illustrate the classification of the usual diffusion equation as an approximate equa-
tion of a primary, with natural causality endowed transport equation. The particle
density distributions are gained in thought experiment by an unlimited number of
ensemble systems, which exist simultaneously. Their functions are sufficiently often,
continuously differentiable in space and time. Regarding the quantities of motion
the continuity condition is sufficient. This situation may be generated as follows:

An ensemble of parallel, extensively diluted monomolecular systems is considered
to be in local thermodynamic ballance. They are all seen as statistically equiv-
alent. They generally differ locally in an ε- neighborhood. Permitting for some

3This is a slight modification of the linear Boltzmann Equation with a streaming function
1
vf(~x, t, ~Ω) instead of distribution function f(~x, t, ~v)), and the different velocities before and
after molecular collisions are considered in the differential cross sections of the collision integral
only [15].
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3. Distribution functions

time equivalent molecules to enter in all systems by equally distributed sources
such that the additional quantity of gas is insignificant in relation to the original
quantity of the gas, the additional part of the gas will be in the same statistical
balance in all the systems of the ensemble after a short time, though it has not
reached a homogenous distribution. While the added part of gas consists in every
single system of a limited number of molecules only, it is possible to formulate a
sufficiently often continuously differentiable particle density distribution f(~x, ~v, t)
for the added gas part, as the statistics of the velocities relates to the whole ensemble.

The expectation value of a suitable particle density may be constructed as follows.
Around the point (~x, t) an equal-sized volume ∆V(~x,t) is chosen out of all representa-
tives µ of the ensemble in which a subset ∆Nµ of molecules is located. µ identifies a
single representative of the ensemble. µ passing all values from 1 to∞ an unlimited
number of ensemble-representatives is taken into account. The expectation value of
a particle density of this ensemble-consideration in point (~x, t) in the small volume
∆V(~x,t) of the neighborhood of (~x, t) results in

< ρ(~x, t) > |
∆V

= lim
n→∞

1

n

n∑
µ=1

∆Nµ

∆V(~x,t)

. (3.1)

Contracting the volume ∆V(~x,t) to the point (~x, t) one has

< ρ(~x, t) >= lim
∆V (~x,t)→0

< ρ(~x, t) > |
∆V
. (3.2)

This function of expectation values is sufficiently often continuously differentiable
in its depending variables, especially in space and time. In accordance with the
velocities, consisting of amount and direction of motion, their distribution density is
separated in these quantities as follows 4

< ρ(~x, t) > =

∫ ∞
0

∫
4π

f(~x, t, ~v)d~Ωdv =

∫
4π

h(~x, t, ~Ω)d~Ω

f(~x, t, ~v) = f(~x, t, v~Ω) = h(~x, t, ~Ω)g(v)∫ ∞
0

g(v)dv = 1, v =

∫ ∞
0

g(v)vdv

~v = v · ~Ω.

(3.3)

So the necessary connection is given by

4A separation ansatz f(~x, t, v~Ω) = h(~x, t, ~Ω)g(~x, t, v~Ω) is generally to be chosen.
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3. Distribution functions

h(~x, t, ~Ω) =

∫ ∞
0

f(~x, t,v~Ω)dv. (3.4)

This enables the derivation of a transport equation of h(~x, t, ~Ω) the amounts of the
velocities occuring as constant coefficients only.

At this the distribution of the velocity amounts g(v) is separated from the direction
distribution h(~x, t, ~Ω). The diffusing particles possess a gaussian distribution and the
equipartition law is applied. This is the prerequisite for deriving a suitable transport
equation below and afterwards in less than first approximation a diffusion equation
with constant diffusion coefficients.
This special distribution of the velocity amounts (equipartition law) corresponds to
the assumed situation of molecular self-diffusion of chapter 5. The gained expecta-
tion value of the density does not exactly equal the value measured in an ensemble
representative performed in a small volume. Thus one has

< ρ(~x, t) >≈ ρ(~x, t). (3.5)

An exact measurement (this has nothing to do with a measurement of the macroscopic
state quantity density) would result in

< ρ(~x, t) >6= ρ(~x, t) =

{
1 one particle existent in point (~x, t)

0 else
. (3.6)

3.3. Ensemble consideration of stochastic particle
transport in a continuum of longitudinal
fluctuations

Similarily, further considerations occur to section 3.2. Around the point (~x, t) an
equal-sized volume ∆V(~x,t) is chosen out of all representatives µ of the ensemble in
which a subset ∆Nµ of particles 5 is located. µ identifies a single representative of
the ensemble. The expectation value of a particle density results in

< ρ(~x, t) >= lim
∆V (~x,t)→0

(
lim
n→∞

1

n

n∑
µ=1

∆Nµ

∆V(~x,t)

)
. (3.7)

5the particles have to be of a size adapting the identical movement of present fluid element of the
fluctuating continuum
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3. Distribution functions

This function of expectations is sufficiently often continuously differentiable in its
variables of space and time. By the separation of the velocity in amount and direction
the distribution density is described as follows

< ρ(~x, t) >=

∫ ∞
0

∫
4π

f(~x, t, ~v)d~Ωdv =

∫
4π

f(~x, t, ~Ω)d~Ω

f(~x, t, ~v) =G(~x, t, v~Ω)f(~x, t, ~Ω)∫ ∞
0

G(~x, t, v~Ω)dv =1, v(~x, t, ~Ω) =

∫ ∞
0

G(~x, t, v~Ω)vdv

~v = v · ~Ω.

(3.8)

So the necessary combination

f(~x, t, ~Ω) =

∫ ∞
0

f(~x, t,v~Ω)dv. (3.9)

is achieved deriving a transport equation for f(~x, t, ~Ω). In this transport equation
the velocities occur as coefficients of the averaged velocity amounts in dependence of
space, time and direction.

The gained expectation value of the density fails to comply with the measured en-
semble representative, that is

< ρ(~x, t) >6= ρ(~x, t) (3.10)

For a single ensemble representative the distribution function f degenerates to a delta-
function

f → δ(~v(~x,t), ~v) (3.11)

with ∫
~v

δ(~v(~x,t), ~v)d~v = 1∫
~v

δ(~v(~x,t), ~v)~vd~v = ~v(~x,t).

(3.12)

3.4. Ensemble consideration of stochastic particle
transport in turbulently moved continua

The fluid fluctuations of different ensemble-representatives may arise at the same
time by equivalent macroscopic-physical processes with different infinitesimal pertur-
bations. That is why different fluent motions are created in (~x, t) in every of the
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3. Distribution functions

parallel-sytems. The simultaneous release of passive particels retracing uniquely the
motions of fluid movements may have taken place by a distribution of similar point
sources in all parallel systems. So an own particle distribution is developed in every
individual system in space-time. The statistical recording running over the whole en-
semble leads to continuously differentiable distribution functions of a limited number
of particles 6 in a single system.
Further considerations follow analogously to section 3.2. Around the point (~x, t) an
equal-sized volume ∆V(~x,t) is chosen out of all representatives µ of the ensemble in
which a subset ∆Nµ of particles is located. µ identifies a single representative of the
ensemble. The expectation value of a particle density results in

< ρ(~x, t) >= lim
∆V (~x,t)→0

(
lim
n→∞

1

n

n∑
µ=1

∆Nµ

∆V(~x,t)

)
. (3.13)

This function of expectation values arises out of a distribution function f of motion
quantities

~ω =~ω(~x, t) rotation speed
~r =~r(~x, t) radius vector
~v =~ω(~x, t)×~r(~x, t) velocity vector

(3.14)

that means
f = f(~x, t, ~ω,~r). (3.15)

A separation results in

< ρ(~x, t) >=

∫
~r

∫
~ω

f(~x, t, ~ω,~r)d~ωd~r =

∫
2π

∫
4π

f(~x, t, ~Ω, ~Θ)d~Ωd~Θ

f(~x, t, ~ω,~r) = G(~x, t, ~ω,~r)f(~x, t, ~Ω, ~Θ)∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)dωdr = 1,

∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)ωrdωdr = v(~x, t, ~Ω, ~Θ)∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)rdωdr = r(~x, t, ~Ω, ~Θ),

∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)ωdωdr = ω(~x, t, ~Ω, ~Θ)

v(~x, t, ~Ω, ~Θ) =ω(~x, t, ~Ω, ~Θ) · r(~x, t, ~Ω, ~Θ)

~v(~x, t, ~Ω, ~Θ) =~ω(~x, t, ~Ω, ~Θ)×~r(~x, t, ~Ω, ~Θ).

(3.16)
Such the necessary combination is given by

6the particles have to be of a size adapting the identical movement of present fluid element of the
fluctuating continuum
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3. Distribution functions

f(~x, t, ~Ω, ~Θ) =

∫ ∞
0

∫ ∞
0

f(~x, t,ω · ~Ω, r · ~Θ)dωdr. (3.17)

This enables a transport equation of f(~x, t, ~Ω, ~Θ) with the averaged amounts of ro-
tation velocities and radius-vectors as coefficients.

The resulting expectation value of the density does not equal the measured value of
a single ensemble representative. That is

< ρ(~x, t) >6= ρ(~x, t) (3.18)

Limiting to one system of the ensemble the distribution function degenerates to a
delta-function

f → δ(~ω(~x,t),~r(~x,t); ~ω,~r) (3.19)

with

∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)d~ωd~r = 1∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~ωd~ωd~r′ = ~ω(~x,t)∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~rd~ωd~r′ = ~r(~x,t).

(3.20)

3.5. Definition of Markov Processes with natural
causality

The probabilistic theory is related to random distributions of velocities ~π moving
from (~x, t) to (~x+ ~πtε, t+ tε). These velocity distributions may get together of vortex
and curvature vector fields

~π = ~ω ×
~b

b2
.

The transport from (~x − tε~π′, t− tε) to (~x, t) is addionally controlled by transition
probabilities

Wtε = Wtε(~x, t, ~π, ~π
′),
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3. Distribution functions

resulting in

ftε(~x, t, ~π) =

∫
~π′
Wtε(~x, t, ~π, ~π

′)ftε(~x− tε~π
′, t− tε, ~π′)d~π′ .

Such a relation we call a Markov Process of natural causality. According to Sen [12]
there is a so called Newtonian causality in nonrelativistic physics implying the possi-
bility of unlimited velocities. However Newtonian causality is restricted to Newtonian
mechanics and stochastic processes of physics ending with diffusion equations when
applied practically. 7 This applies not for formulations of the general or linear Boltz-
mann Equation. In electrodynamics the velocity of light is the limiting velocity. In
this treatise one essential statement is: classical physics is generally not Newtonian.
Further on

1. is shown, that diffusion equations can only be approximations of an exact de-
scription. The diffusion equation is related to an unlimited propagation speed.
The diffusion coefficient is correlated with the velocity of sound. Exact descrip-
tions lead via Boltzmannlike formulations.

2. is shown, that the second Newtonian law applies to fluid dynamics in limiting
cases only. In field theories as fluid dynamics not force- but accelleration fields
are expressed. These are generally not free of rot (equivalently curl) in con-
trary to a Newtonian force field. That is why it is reasonable to distinguish
conservative from non conservative accelleration fields. In classical physics one
has normally non conservative fields.(Though for students a contrary impression
may occur.)

The Newtonian causality proves to be a limiting case of non relativistic classical
physics. Subsequently a causal Markov Process is continuously used or derived.
Overarching master equations can not exist, physically. The transition probabilities
Wtε depend on a time quantity tε related to continuum fluctuations of measurement
accuracy according to vectorial motion quantities. For tε → 0 (exact motion
quantities) the transition probabillity Wtε degenerates to a δ-function.

Simultaneous details of space and momentum are not possible in the context of quan-
tum mechanics. The Schrödinger Equation for free particles

i~
∂ψ(~x, t)

∂t
= − ~2

2µ
~∇2ψ(~x, t) (3.21)

can be transformed into a linear homogenuous integral eqution [7] [9]

7This statement applies to the Fokker-Planck and Langevin equation. See, for example,
Chandrasekhar[1]
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3. Distribution functions

ψ(~x, t) = i

∫
G(~x, t; ~x′, t′)ψ(~x′, t′)d~x′. (3.22)

The Green function

G(~x, t;~x′, t′) =

〈
~x

∣∣∣∣exp(− i

}
(t− t′)H

)∣∣∣∣ ~x′〉 (3.23)

is called Feynman kernel, too.

In the case of the diffusion equation

∂ρ(~x, t)

∂t
= D~∇2ρ(~x, t) (3.24)

an equivalent integral equation the Green function understood as transition proba-
billity from (~x′, t′) to (~x, t) exists with

ρ(~x, t) =

∫
V ′
G(~x, t;~x′, t′)ρ(~x′, t′)d~x′ (3.25)

and the Green function

G(~x, t;~x′, t′) =

(
1

4πD(t− t′)

) 3
2

e
− (~x−~x′)2

4πD(t−t′) . (3.26)

Equations based on a ”heat-kernel”-structure are not exact in classical physics (as
well as the Newtonian mechanics).

In quantum mechanics and quantum field theory natural causality is
not possible because of the uncertainty principle. In Relativity there is
the maximal possible velocity, the velocity of light. A geometrodynamic
equation system of turbulence found further down does not contain such
limiting velocities, explicitly. Velocity fields are calculated uniquely by an
initial field giving to GR compatible results after mapping from Einstein
Space into a suitable observer-space. Using other initial conditions higher
velocities are possible.
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Part II.

Stochastically continuous transport
of passive scalar particles within

the meaning of an ensemble-theory
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4. Introduction

∂f

∂t
+ ω · r~Ω× ~Θ · ∇f =

−1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

l(l + 1)

2
f lmk(~x, t)Plm(~Ω)Hk(~Θ)

m

f tε(~x,
~Ω, ~Θ, t) =

∫
2π

∫
4π
W̃tε(~x, t, ~Ω, ~Θ, ~Ω

′
, ~Θ
′
)f tε(~x− tε · v

′~Ω′ × ~Θ
′
, ~Ω′, ~Θ

′
), t− tε)d~Ω

′
d~Θ
′

The aim is the derivation of a stochastic transport equation of turbulent, passively
moved scalar particles being based on particle balancing. Stochastics is always
understood as the randomness of motions. From point ~A originated a point ~B is
approached in consequence of a random velocity. The particle motions are totally
adjusted to the fluid motions of the fluctuating continuum and reproduce single
fluid motions in detail.1 The used stochastics is based for one thing on an ensemble-
consideration and on the other hand on a locally formulated motion process. So an
equation is achieved owning local coefficients depending on space and time as well
as the states of movement. The field of coefficients can be determined in principal in
every desired level of detail by the deterministic turbulence theory. The transport
equation is a partial differential equation shown to be equivalent to a derived integral
equation. The respective stochastic process is immediately recognized as Markovian
of natural causality. We call it causal Markov Process.

Chapter 5: Within the framework of kinetic theory a physical situation is selected
handling the linear Boltzmann Equation. This equation is extensively studied in
nuclear reactor physics called neutron Boltzmann Equation[15].2 Using the above
described ensemble consideration a statistical particle balance is formulated by
local velocities and their unsteady changes by local cross sections. The resulting
mathematical ties help the developments in further chapters as guideline and answer
the question, which analogies exist between kinetic theory and turbulent stochastic
continuum transport.

Chapter 6: The motion of passive scalar particles by longitudinal continuum fluctua-
tions is examined. In the centre of the consideration is the development of transition

1The particles are assumed to have a suitable weight
2The insights of this theory had little impact on similar fields of physics.
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4. Introduction

probability densities of velocities. They depend as well as the velocities and their
particle density distributions on the accuracy of a measuring process indexed by tε.
lim tε → 0 means exact measurements and the transition probabilities result into δ−
functions. They have the property of test functions of the distribution theory with
immediate physical meaning. Calculating them a transport equation in form of a
partial differential equation as well as an equivalent integral equation is derived.

Chapter 7: In analogy to chapter 6 the motion by turbulent continuum fluctuations
of passive particles is examined. The fluctuation directions are expressed by
Eulerian angles and the distribution functions are developed by generalized spherical
harmonics (we call them turbulence functions). A pair of equations is created
consisting of a partial differential equation and an equivalent integral equation
as in the cases of molecular self diffusion and the longitudinal (1+3)-dimensional
continuum fluctuations. The three physical situations can be compared all the more
as in the three cases the transition probabilities are explicitely formulated.
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5. Brownian motion as molecular
self-diffusion

∂

∂t
h+v~Ω · ∇h =

1

τ

+∞∑
l=1

γl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω)

htε(~x,vtε ~Ω, t) =

∫
4π

∫ ∞
0

Wtε(~Ω, v
′~Ω
′
)htε(~x− v′~Ω

′
tε, v

′~Ω
′
, t− tε)dv′d~Ω

′

5.1. Introduction

Brownian motion is understood as a disordered thermic motion of molecules in gases
or fluids creating a disordered motion of suspended, sufficiently small particles. This
Brownian motion is all the more livelier the smaller the particle quantity is. With
increasing particle sizes the detailed molecular influence on the particle movement
disappears and having suitable sizes the particles reproduce the turbulent fluid
motions. The phenomenon of small paricles was first examined by Einstein and
Smoluchowski.
Subsequently, the case of very small particles that is the statistical development
of the molecular distribution of a gas is evaluated. In the treatises of Einstein[4]
and Smoluchowski[13] the considerations lead in each case to a diffusion equation,
which contains two fundamental deficiencies, though beeing sufficient for the purpose
at that time. The propagation speed concerning a diffusion equation is unlimited.
Immediately after switching a point particle source on there is at least an infinitesimal
influence in arbitrary distance. In close proximity to a point source the solution of a
diffusion equation shows a ∼ 1

r
-behaviour. But it should be ∼ 1

r2
.

5.2. Transport equation of molecular self-diffusion

Examining the molecular self-diffusion in a highly diluted gas in thermodynamic
equilibrium the linear Boltzmann equation will be derived. It is a linear integro-
differential equation statistically describing the transport of diffusing particles by
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5. Brownian motion as molecular self-diffusion

cross sections of the interacting particles. The whole gas medium is regarded as
devided into two parts, a main part and an additional very small part. The diffusing
of the small part in the main part without changing the statistical properties of
the main part is considered. (See section 3.2) Due to the low density of the diffusing
molecules a relevant self interaction within the small part can be excluded. Regarding
the spatiotemporal development the velocity distribution density g(v) is normalised
to 1.

∫ ∞
0

g(v)dv = 1 (5.1)

The diffusing part is depicted by

f(~x, ~v, t) = f(~x, t, v~Ω) = h(~x, t, ~Ω)g(v) (5.2)

I.e. the velocity distribution is independent of space-time (~x, t) and direction (~Ω)
(equipartition theorem).

This allows to talk about an expectation value for every space-time point of the
particle density

< Φ(~x, t) >=

∫ ∞
0

∫
4π

f(~x, t, ~v)d~Ωdv =

∫
4π

h(~x, t, ~Ω)d~Ω. (5.3)

However the measured value of the density Φ(~x, t) is only a good approximation of
the expectation value

< Φ(~x, t) >≈ Φ(~x, t). (5.4)

This ceases to apply for the particle transport by fluctuating continua.

The total derivative of the distribution function f in direction of the velocity v~Ω
results in

d

dt
f(~x, t, v~Ω) =

∂

∂t
f + v~Ω∇f. (5.5)

The change of the particle density distribution for the velocity ~v = v~Ω is balanced by
collisions of molecules modifying the velocities with a certain probability expressed
by differential cross sections. Defining 1

v
f(~x, ~v, t) as particle stream1 the following

1Hereby no stream in the meaning of deterministic fluid dynamics is defined!
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5. Brownian motion as molecular self-diffusion

balance equation can be noted

1

v

d

dt
f(~x, t, v~Ω) =

1

v

∂

∂t
f + ~Ω∇f = I+ − I−. (5.6)

I+ corresponds to molecules coming from other directions ~Ω′.
I− corresponds to molecules leaving direction ~Ω.

The particle distribution density varying in space this expression has to be different
from zero. Otherwise the particle distribution density remains constant. So the
assumed initial distribution is variously dispersed in space.

The momentum exchange is determined on one side by the cross sections of the impact
partners and on the other side by the number of particles arriving at location ~x and
time t per unit area with the velocity ~v′ pivoting into the velocity ~v. This growth of
the number of particles per time and unit-area is

I+ = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′) · f(~x, t, v′ ~Ω′)dv′d ~Ω′ (5.7)

with

ρ =constant density of the main part of the gas
σ(~v · ~v′) =differential cross section, symmetrical in ~v and ~v′.

The particles simultaneously changing their velocity ~v into another ~v′ the appropriate
decrease of particle number per time- and area-unit is expressed by

I− = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′) · f(~x, t, v~Ω)dv′d ~Ω′ = Σ(v)f(~x, t, v~Ω) (5.8)

due to

Σ(v) = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′)dv′d ~Ω′′ [m−1]. (5.9)

Σ(v) represents the total macroscopic cross section and the transport equation results
in the molecular self diffusion equation
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5. Brownian motion as molecular self-diffusion

1

v

∂

∂t
f + ~Ω · ∇f = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′) · f(~x, t, v′ ~Ω′)dv′d ~Ω′ − Σ(v)f . (5.10)

Further on, considering the molecules being in statistical balance throughout the
whole gas, i.e. the same Boltzmann Distribution g(v) is existing everywhere, an
integration of

∫∞
0

(5.10)dv results in a manageable equation as follows.

Defining

Σ =

∫ ∞
0

Σ(v)g(v)dv (5.11)

σ(~Ω · ~Ω
′
) =

∫ ∞
0

∫ ∞
0

σ(~v · ~v′)g(v′)dvdv′ (5.12)

v =

∫ ∞
0

vg(v)dv (5.13)

gives2

∂

∂t
h+ v~Ω · ∇h = vρ

∫
4π

σ(~Ω · ~Ω
′
) · h(~x, t, ~Ω′)d ~Ω′ − vΣ · h(~x, t, ~Ω). (5.14)

Developing by spherical harmonics (see appendix 8.2) yield in

σ(~Ω · ~Ω
′
) =

+∞∑
l=0

σlPl(cos(α)) =
+∞∑
l=0

σl

m=+l∑
m=−l

Plm(~Ω)P ∗lm( ~Ω′) (5.15)

and

h(~x, t, ~Ω) =
+∞∑
l=0

m=+l∑
m=−l

hlm(x, t)Plm(~Ω)

=
+∞∑
l=0

m=+l∑
m=−l

hlm(x, t)P ∗lm(~Ω).

(5.16)

2Such an equation corresponds in nuclear reactor physics to the one group neutron-transport-
equation regardless of absorbtions-and fission effects.
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5. Brownian motion as molecular self-diffusion

These developments inserted into (5.14) and executing the respective integrations
lead to

∂

∂t
h+ v~Ω · ∇h =ρv

+∞∑
l=1

σl
4π

2l + 1

m=+l∑
m=−l

hlmP
∗
lm(~Ω)− vΣ ·

+∞∑
l=0

+l∑
m=−l

hlm(~x, t)P ∗lm(~Ω)

=
+∞∑
l=1

v{ρσl
4π

2l + 1
− Σ} ·

+l∑
m=−l

hlm(~x, t)P ∗lm(~Ω)

(5.17)

It holds
Σ = 4πρσ0 = ρ

∫
4π

σ(~Ω · ~Ω
′
)d~Ω

′
[m−1] (5.18)

and defining

τ−1 = vΣ [sec−1]

γl =

(
σl
σ0

1

2l + 1
− 1

)
< 0 für l ≥ 1 [/]

(5.19)

=⇒ γ0 = 0 (5.20)

one gets

∂

∂t
h+ v~Ω · ∇h =

1

τ

+∞∑
l=1

γl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) . (5.21)

As γl ≤ 0, the development components of order l are the more rapidly decaying the
l becoming greater. The total derivation in the direction of the velocity v~Ω leads to

d

dt
h(~x, t, ~Ω) =

+∞∑
l=0

m=+l∑
m=−l

d

dt
hlm(x, t)Plm(~Ω) =

1

τ

+∞∑
l=1

γl ·
+l∑

m=−l

hlm(~x, t)Plm(~Ω). (5.22)

That is why the time behaviour of the single development components result in

d

dt
hlm(t) =

γl
τ
hlm (5.23)
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5. Brownian motion as molecular self-diffusion

and
hlm(t) ∼ exp(

γl
τ
· t). (5.24)

So approximations of first order turn out to approach exact solutions, asymptoti-
cally.3

5.3. Brownian motion as Markov Process with
natural causality

Defining the transition probability density of directions

W tε(~Ω · ~Ω
′
) =

+∞∑
l=0

2l + 1

4π
e+Υl· tετ �

+l∑
m=−l

P ∗lm(~Ω)Plm( ~Ω′) (5.25)

and determining the following relationships

ε =
tε
τ
,

1

τ
= v · Σ = v · 4πρσ0 = const (5.26)

σ(~Ω · ~Ω
′
) =

+∞∑
l=0

σlPl(cos(α)) =
+∞∑
l=0

σl

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′
) (5.27)

Υl =

(
σl
σ0

· 1

2l + 1
− 1

)
(5.28)

an integral equation of self-diffusion results in dependence of directions of motions,
cross sections and locally averaged absolute values of velocities as coefficients,

htε(~x, t, ~Ω) =

∫
4π

W tε(~Ω · ~Ω
′
) · htε(~x− v~Ω

′
tε, t− tε, ~Ω′)d ~Ω′ (5.29)

from which equation

∂

∂t
h+ v~Ω · ∇h =

1

τ

+∞∑
l=1

Υl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) (5.21)

3This is correct in the case of lacking absorbtion processes. We are only regarding scattering.

30



5. Brownian motion as molecular self-diffusion

may be reconstructed.

Proof:

htε developed around ~x and t until first order one gets

htε(~x− v′tε ~Ω
′ · tε, ~Ω

′
, t− tε) = htε(~x, ~Ω

′
, t)− τ · ε · [

∂h′tε
∂t

+ ~v′tε · ~∇h
′
tε +O(ε2)] (5.30)

with tε = τ · ε. Inserted into (5.29) this leads to

htε =

∫
4π

W tεh
′
tεd

~Ω
′
−
∫
4π

W tε · τ · ε · [
∂h′tε
∂t

+ ~v
′
tε · ~∇h

′
tε +O(ε2)]d~Ω

′
(5.31)

and simple conversions give

∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε
=

∫
4π

W tε · τ [·
∂h′tε
∂t

+ ~v
′
tε · ~∇h

′
tε +O(ε2)]d~Ω

′
. (5.32)

Executing the limiting process tε → 0 the transition probability W tε results in a
δ-function and the particle density distribution htε achieves the limiting function h.

lim
tε→0

W tε = δ(~Ω, ~Ω
′
) :delta-Function

lim
tε→0

htε = h

lim
tε→0

~vtε = ~v = v · ~Ω

lim
tε→0

~Ωtε = ~Ω

(5.33)

Executing the limiting process tε → 0 on equation (5.32) the tε-indexing disappears
in accordance with the distribution functions.
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5. Brownian motion as molecular self-diffusion

Before the limes process is carried out the following integrations lead to∫
4π
W tε(~Ω · ~Ω

′
)htε(~x, t,

~Ω′)d~Ω
′
=∫

4π

[+∞∑
l=0

2l + 1

4π
e+Υl· tετ �

+l∑
m=−l

P ∗lm(~Ω)Plm( ~Ω′)

]
htε(~x, t,

~Ω′)d~Ω
′

=

∫
4π

[+∞∑
l=0

2l + 1

4π
e+Υl· tετ �

+l∑
m=−l

P ∗lm(~Ω)Plm( ~Ω′)

] +∞∑
l=0

m=+l∑
m=−l

htεlm(x, t)P ∗lm( ~Ω′)d~Ω
′

=
+∞∑
l=0

e+Υl· tετ
m=+l∑
m=−l

htεlm(x, t)P ∗lm(~Ω).

(5.34)

Thus one gets∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε · τ

=

∫
4π
W tεh

′
tεd

~Ω
′
−
∑+∞

l=0

∑m=+l
m=−l htεlm(x, t)P ∗lm(~Ω)

ε · τ

=

∑+∞
l=0 (e+Υl· tετ − 1)

∑m=+l
m=−l htεlm(x, t)P ∗lm(~Ω)

ε · τ
.

(5.35)

Setting

Υl = lim
tε→0

e+Υl· tετ − 1

ε
, tε = ε · τ (5.36)

creates

lim
ε→0

∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε · τ
=

1

τ

+∞∑
l=1

Υl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) (5.37)

and

lim
ε→0

∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε · τ
=
∂h

∂t
+ ~v · ~∇h, (5.38)

32



5. Brownian motion as molecular self-diffusion

which results in

∂h

∂t
+ v~Ω · ~∇h =

1

τ

+∞∑
l=1

Υl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) . (5.39)

q.e.d.

Extending the transition probability density W by the velocity distribution g(v′)

Wtε(~Ω, v
′~Ω
′
) = g(v′)W tε(~Ω · ~Ω

′
), (5.40)

one gets the Brownian molecular motion under the terms of the described model in
the most general form.

ftε(~x,vtε ~Ω, t) =

∫
4π

∫ ∞
0

Wtε(~Ω, v
′~Ω
′
)ftε(~x− v′~Ω

′
tε, v

′~Ω
′
, t− tε)dv′d~Ω

′
(5.41)

The transition probabilities are not symmetric in contrary to the differential cross
section!

5.4. Approximation formula

An approximation formula of 1. order of the equation

∂

∂t
h+ v~Ω · ∇h =

1

τ

∞∑
l=1

γl ·
+l∑

m=−l

h1m(~x, t)P1m(~Ω) (5.42)

is beeing looked for. The approach accounts for the methods of the transport theory
of nuclear reactor physics [15]. In cartesian coordinates this leads to

∂

∂t
h+ v ·

(
Ωx

∂

∂x
h+ Ωy

∂

∂y
h+ Ωz

∂

∂z
h

)
=

1

τ

∞∑
l=1

γl ·
+l∑

m=−l

h1m(~x, t)P1m(~Ω). (5.43)

33



5. Brownian motion as molecular self-diffusion

Ωx = sin(ϑ)cos(ϕ)

Ωy = sin(ϑ)sin(ϕ)

Ωz = cos(ϑ)

(5.44)

The spherical harmonics of 0th and 1st Order are

P00 = 1 P1−1 = 2−
1
2 e−iϕsinϑ P10 = cosϑ P11 = −2−

1
2 eiϕsinϑ

P ∗00 = 1 P ∗1−1 = 2−
1
2 e+iϕsinϑ P ∗10 = cosϑ P ∗11 = −2−

1
2 e−iϕsinϑ.

(5.45)

In cartesian coordinates until 1st order this leads to

∂

∂t
h+ v ·

(
Ωx

∂

∂x
h+ Ωy

∂

∂y
h+ Ωz

∂

∂z
h

)
=

1

τ
γ1 ·

+1∑
m=−1

h1m(~x, t)P1m(~Ω) (5.46)

The direction vectors in cartesian coordinates expressed by spherical harmonics are
written

Ωx = 2−
1
2 [P1−1 − P11]

Ωy = −i2−
1
2 [P1−1 + P11]

Ωz = P10.

(5.47)

The transport equation in 1st approximation is reduced to

∂

∂t
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

+ v

[
·2−

1
2 [P1−1 − P11]

∂

∂x
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

− i2−
1
2 [P1−1 + P11]

∂

∂y
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

+ P10
∂

∂z
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

]
=

1

τ
γ1 · (h1−10P1−1 + h10P10 + h11P11).

(5.48)

After integrating
∫

(5.48P ∗lm(~Ω)d~Ω for l = 0, 1 the evolution equation set until 1st
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5. Brownian motion as molecular self-diffusion

order

∂h00

∂t
+
v

3

[
2−

1
2

(
−∂h11

∂x
+
∂h1−1

∂x

)
−i2−

1
2

(
∂h11

∂y
+
∂h1−1

∂y

)
+
∂h10

∂z

]
= 0 (5.49)

∂h10

∂t
+ v

∂h00

∂z
− Υ1

τ
h10 = 0 (5.50)

∂h1−1

∂t
+ v2−

1
2

(
∂h00

∂x
+ i

∂h00

∂y

)
−Υ1

τ
h1−1 = 0 (5.51)

∂h11

∂t
+ v2−

1
2

(
−∂h00

∂x
+ i

∂h00

∂y

)
−Υ1

τ
h11 = 0 (5.52)

is approached.

Now we define a vector field ~J .

Jx =
4π

3
2−

1
2h(1−1−h11)

Jy =− i4π
3

2−
1
2 (h1−1 + h11)

Jz =
4π

3
h10

Φ =4πh00

(5.53)

Insertion (5.53) into (5.49) gives

∂Φ

∂t
+ v · ~∇ · ~J = 0. (5.54)

Φ is the particle density of an in a thought experiment assumed small part of the
molecular set. Inserting (5.53) into (5.50) until (5.52) leads to

~J =
τ

Υ1

[
v

3
~∇Φ +

∂~J

∂t

]
(5.55)

with Υ1 =

(
1
3
σ1
σ0
− 1

)
= −η

So a telegrapher’s equation arises4

τ

η

∂2Φ

∂t2
+
∂Φ

∂t
=
τ

η
v~∇ · v

3
~∇Φ. (5.56)

4To derive telegrapher’s equation relativistic considerations are not necessary as is stated in [3].
The propagation speed is closely connected with the speed of sound.
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5. Brownian motion as molecular self-diffusion

As η, τ and v represent constants, the telegrapher’s equation is written

τ

η

∂2Φ

∂t2
+
∂Φ

∂t
=D∆Φ

with D =
τ

η

v2

3

(5.57)

D=diffusion coefficient, η dimensionless, τ = (v · Σ)−1= mean free collision time
v=mean amount of velocity
Compared to the 1st derivation the term with temporal derivation of 2nd order can
normally be neglected.

The dependence of the diffusion coefficient from macroscopic state variables of an
ideal gas may happen as follows:

The equation of state of the ideal gas becomes

p = ρRT . (5.58)

The mean quadratic velocity of a Maxwellian velocity distribution of particles with
mass m is [2]

v2 =
3kT

m
(5.59)

=⇒

v =

√
8

π

kT

m
=

√
8

π

p

ρ
(5.60)

m means the mass of a molecule.
k is the Boltzmann constant.

To get a comparison with the speed of sound at a Gaussian velocity distribution

c =

√
∂p

∂ρ


T

(5.61)

one obtains

v =

√
8

π
c (5.62)

and
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5. Brownian motion as molecular self-diffusion

D =
1

ηΣ

8

3π
c2 . (5.63)

The propagation speed for Brownian molecular motion is v. This in particular be-
comes apparent by equation (5.29). In connection with the diffusion approximation
an unlimited propagation speed is assigned. This leads to solutions approaching
asymptotically to those of the linear Boltzmann Equation. In close proximity to
point sources (less than 3 average free lengths afar5) one obtains the following char-
acteristics of the exact and the diffusional solution.

Φ ∼ 1

r2
solution of the transport equation in the proximity of a point source

(5.64)
Anticipating this result from an exact theory appears directly plausible.

Φ ∼ 1

r
solution of the diffusion approximation in the proximity of a point source

(5.65)

Avoiding such deficiencies it is neccessary to take a stochastic velocity distribution
into account as root of the diffusion process. Analyzing turbulent particle transport
this does not satisfy.

5.5. Appendix: equations for the spherical
hamonics components

The general equations arise out of

∫
(5.43)P ∗lm(~Ω)d~Ω (5.66)

=⇒

5An experience of the neutron transport theory [15]
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5. Brownian motion as molecular self-diffusion

∂hlm(~x, t)

∂t
= −v

[√
(l + 2 +m)(l + 1 +m)

2l + 3

(
−1

2

∂hl+1,m+1

∂x
− i

2

∂hl+1,m+1

∂y

)
+

√
(l + 1−m)(l + 2−m)

2l + 3

(
1

2

∂hl+1,m−1

∂x
− i

2

∂hl+1,m−1

∂y

)
+

√
(l − 1−m)(l −m)

2l − 1

(
1

2

∂hl−1,m+1

∂x
+
i

2

∂hl−1,m+1

∂y

)
+

√
(l +m)(l +m− 1)

2l − 1

(
−1

2

∂hl−1,m−1

∂x
+
i

2

∂hl−1,m−1

∂y

)
+

√
(l + 1 +m)(l −m+ 1)

2l + 3

∂hl+1,m

∂z
+

√
(l +m)(l −m)

2l − 1

∂hl−1,m

∂z

]
−Υl

τ
hlm

(5.67)
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6. Stochastic transport by
longitudinal fluctuations of a
continuum

f tε(~x,
~Ω, t) =

∫
4π

W̃tε(~x, t, ~Ω, ~Ω
′
)f tε(~x− tε · v

′~Ω′, ~Ω′, t− tε)d~Ω
′

m

∂f

∂t
+ v~Ω · ~∇f = − 1

tE

+∞∑
l=0

+l∑
m=−l

l(l + 1)

2
f l,m(~x, t)Pl,m(~Ω)

6.1. Introduction

The motion of passive particles by longitudinal continuum fluctuations is examined.
The particles are moved in this field without interaction.1 In accordance with section
3.3 they perform detailed motions of single fluid elements of fluid continua. The con-
sidered velocities of the particles are determined by measure processes. The particles
coming from point x1 and moving further for a time tε are detected in x2. So the
velocity ~vtε may be assigned to

~vtε =
~x2 − ~x1

tε
= vtε ~Ωtε . (6.1)

This corresponds to (~x1, t) −→ (~x2, t+ tε) = (~x1 + ~vtε · tε, t+ tε).

According to an ensemble consideration (see chapter 3 ) for every point (~x, t) a con-
tinuously differentiable particle density distribution of velocities ~vtε is assigned in
accordance with

ftε = ftε(~x, ~vtε , t). (6.2)

1Such conditions generally lead to linear equations.
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6. Stochastic transport by longitudinal fluctuations of a continuum

The functions indexed with tε or ε enclose motion quantities ~vtε or their motion di-
rections ~Ωtε as variables subordinated to an understanding of measurement accuracy.
The indexing of motion quantities with tε or ε may be dropped if their functions are
indexed. Executing a limiting process, for instance

lim
tε→0

ftε(~x, ~v, t) = f(~x, ~v, t) (6.3)

f and ~v are literally understood as results of exact measurement processes. 2 Inte-
grating the particle density distribution over the velocity one obtains an expectation
value of a particle density not generally coinciding with the actually measured value
ρ.

< ρtε(~x, t) >=

∫
4π

∫ ∞
0

ftε(~x, v~Ω, t)dvd~Ω 6= ρtε(~x, t) (6.4)

This is contradicting the molecular self-diffusion beeing an inherent stochastic
process.
It results into a rigorously derived partial differential equation calculating particle
density distributions in dependence on space-time and motion directions. The
initially unlimited number of unknown coefficients is reduced to one, a local
time-scaling. The initially abstractly formulated transition probabilities obtain their
precise functional dependencies alternativly generating an integral equation. For
numerical solutions there are always suitable Monte-Carlo methods possible.

Equations of 1st approximation substantially differ from usual diffusion equa-
tions.

6.2. Transport by Markov Processes with natural
causality

The probability particles at location ~x and time t changing their velocity from ~v′tε =

v′~Ω′ to ~vtε = v~Ω is given by the transition probability

Wtε = Wtε(~x, t, v~Ω, v
′~Ω′) (6.5)

with ∫
4π

∫ ∞
0

Wtε(~x, t, v~Ω, v
′~Ω′)dv′d~Ω′ = 1. (6.6)

2With the indexing tε an assigned measurement process is always understood according to accuracy.
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6. Stochastic transport by longitudinal fluctuations of a continuum

So the following Markov Process is defined by

ftε(~x, v~Ω, t) =

∫
4π

∫ ∞
0

Wtε(~x, t, v~Ω, v
′~Ω′)ftε(~x− tε · v′~Ω′, v′~Ω′, t− tε)dv′d~Ω

′
(6.7)

∆~x = ~x− ~x1 = v′tε
~Ω′tε · tε (6.8)

For the transition probability Wtε merely steadiness is reqired regarding all variables.
The sequence of the velocities ~v′tε , ~vtε means a motion

(~x− ~v′tε · tε, t− tε, ~v
′
tε) −→ (~x, t, ~vtε). (6.9)

At the process tε → 0 the transition probabilitiesWtε prove to be physical realisations
of test functions of distribution theory.
The passive particles have to reproduce the motions of the fluctuation field, exactly.
For the particle density distribution ftε(~x, t, ~v) a separation approach is formulated
without restriction of generality:

ftε(~x− v~Ω · tε, v~Ω, t) =Gtε(~x− v~Ω · tε, v~Ω, t)f tε(~x− v~Ω · tε, ~Ω, t)∫ ∞
0

Gtε(~x, v~Ω, t)dv = 1
(6.10)

=⇒

f tε(~x− v~Ω · tε, ~Ω, t) =

∫ ∞
0

ftε(~x− v~Ω · tε, v~Ω, t)dv (6.11)

This results in

v = v(~x, t, ~Ω) =

∫ ∞
0

Gtε(~x, v~Ω, t) · vdv. (6.12)

I.e. v is dependent on (~x, t, ~Ω).

A transition probability only in dependence on the directions and space-time W tε is
obtained by integration of Wtε over the velocity amounts v′tε and vtε
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6. Stochastic transport by longitudinal fluctuations of a continuum

W tε(~x, ~Ω, ~Ω
′
, t) =

∞∫
0

∞∫
0

Wtε(~x, t, v~Ω, v
′~Ω′)Gtε(~x− v′~Ω′ · tε, v′~Ω′, t− tε)dv′dv .

(6.13)

Now an integration of
∫∞

0
(6.7)dv is leading to

f tε(~x,
~Ω, t) =

∞∫
0

∞∫
0

∫
4π

WtεGtε(~x−v′~Ω′·tε, v′~Ω
′
, t−tε)f tε(~x−v

′~Ω′·tε, ~Ω
′
, t−tε)dv′dvd~Ω

′

(6.14)
respectively

f tε(~x,
~Ω, t) =

∫
4π

W tε(~x, t, ~Ω, ~Ω
′)f tε(~x− v

′~Ω′ · tε , ~Ω′, t− tε)d~Ω
′
. (6.15)

f tε in the integrand is developed about ~x and t until 1st order and one obtains

f tε(~x− v
′~Ω′ · tε, ~Ω

′
, t− tε) = f tε(~x,

~Ω
′
, t)− τE · ε · [

∂f
′
tε

∂t
+ v′tε

~Ω
′
tε · ~∇f

′
tε +O(ε2)]

f
′
tε = f tε(~x,

~Ω
′
, t)

(6.16)

with tε = τE · ε and τE = const. Inserted in (6.15) this leads to

f tε =

∫
4π

W tεf
′
tεd

~Ω
′
−
∫
4π

W tε · τE · ε · [
∂f
′
tε

∂t
+ ~v

′
tε · ~∇f

′
tε +O(ε2)]d~Ω

′
. (6.17)

and simple conversions give
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∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε
=

∫
4π

W tε · τE[·
∂f
′
tε

∂t
+ ~v

′
tε · ~∇f

′
tε +O(ε)]d~Ω

′
. (6.18)

The process tε → 0 applied to the transition probability W tε ceates a δ-function and
the particle density distribution f tε results in f .

lim
tε→0

W tε = δ(~Ω, ~Ω
′
) :delta-Function

lim
tε→0

f tε = f

lim
tε→0

~vtε = ~v = v · ~Ω

lim
tε→0

~Ωtε = ~Ω

(6.19)

These relations applied to equation (6.18) give

lim
ε→0

∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε · τE
=
∂f

∂t
+ ~v · ~∇f (6.20)

and

lim
ε→0

∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε · τE
(6.21)

subsequently called exchange-term.

6.3. Calculation of the exchange-term

The dependencies of the transition probabilityW tε on the initially uncorrelated move-
ment directions ~Ω and ~Ω

′
may be expressed by the scalar product of the movement

directions ~Ω · ~Ω
′
and the simultaneous interchange of the constant time scaling τE by

a time scaling depending on location, time and direction tE(~x, ~Ω, t), i.e.

lim
ε→0

∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε · τE
= lim

ε→0

∫
4π
W̃tε(~Ω · ~Ω

′
)f
′
tεd

~Ω
′
− f tε

ε · tE(~x, ~Ω, t)

W tε(~x, t, ~Ω, ~Ω
′) −→ W̃tε(~Ω · ~Ω′)
τE −→ tE(~x, ~Ω, t).

(6.22)
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The direction distribution of the particles is developed by complex spherical harmonics
Plm, the transition probability by legendre polynomials Pl.

f(~x, ~Ω, t) =
+∞∑
l=0

+l∑
m=−l

f lm(~x, t)Plm(~Ω) =
+∞∑
l=0

+l∑
m=−l

f lm(~x, t)P ∗lm(~Ω) (6.23)

W̃tε(~Ω
′
· ~Ω) =

+∞∑
l=0

W̃tεlPl(cos(α)) =
+∞∑
l=0

m=+l∑
m=−l

W̃tεlPlm(~Ω
′
)P ∗lm(~Ω) (6.24)

The spherical harmonics Plm are

Plm(~Ω) = eimϕ
(−sin(ϑ))m

l!2l
·
(

(l −m)!

(l +m)!

) 1
2 dl+m(cos2ϑ− 1)l

(dcosϑ)l+m
(6.25)

The normalisation holds:

∫
4π

PlmP
∗
lmd

~Ω =

{
4π

2l+1
l = l’ and m=m’

0 else
(6.26)

There is the relation between spherical harmonics Plm and Legendre polynomials Pl:

Pl(~Ω
′
· ~Ω) = Pl(cos(α)) =

m=+l∑
m=−l

Plm(~Ω
′
)P ∗lm(~Ω) (6.27)

Thus one has

∫
4π

W̃tεf
′
εd
~Ω
′
=

∫
4π

+∞∑
l=0

m=+l∑
m=−l

W̃tεlPlm(~Ω
′
)P ∗lm(~Ω) �

+∞∑
l=0

+l∑
m=−l

f tεlm(~x, t)P ∗lm(~Ω
′
)d~Ω

′

=
+∞∑
l=0

W̃tεl
4π

2l + 1

+l∑
m=−l

P ∗lm(~Ω)f tεlm(~x, t).

(6.28)

The left side of equation ( 6.20 ) results in
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lim
ε→0

∫
4π
W̃tεf

′
tεd

~Ω
′
− f tε

tE · ε
= lim

ε→0

+∞∑
l=0

+l∑
m=−l

(W̃tεl
4π

2l+1
− 1)

tE · ε
f tεlm(~x, t)P ∗lm(~Ω)

=
1

tE

+∞∑
l=0

+l∑
m=−l

Υlf tεlm(~x, t)Plm(~Ω)

(6.29)

with

Υl = lim
ε→0

(W̃tεl
4π

2l+1
− 1)

ε
(6.30)

as exchange coefficient.

Now equation ( 6.20 ) yields

1

tE

+∞∑
l=0

+l∑
m=−l

Υlf lm(~x, t)Plm(~Ω) =
∂f

∂t
+ v~Ω · ~∇f . (6.31)

6.4. Calculation of the exchange-coefficients Υl

The transition probability is outlined by Legendre-polynomials respectively spherical
harmonics:

W̃tε(~Ω · ~Ω
′
) =

+∞∑
l=0

W̃tεlPl(cos(ϑ)) =
+∞∑
l=0

W̃tεl

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′
)

cos(ϑ) = ~Ω · ~Ω
′
= µ.

(6.32)

On the other hand is
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lim
tε→0

W̃tε(~Ω · ~Ω
′
) = δ(~Ω · ~Ω

′
)

δ(~Ω · ~Ω
′
) =

+∞∑
l=0

2l + 1

4π

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′
) =

+∞∑
l=0

2l + 1

4π
Pl see(8.20).

(6.33)

W̃tε(µ) > 0 is only in the range µ ∈ [1 − ε, 1] essentially different from 0. So the
Legendre polynomials are approximated by

Pl(µ) = 1− dPl
dµ
|1 · ε+O(ε2) ε = 1− µ

dPl
dµ
|1 =

l(l + 1)

2
see (8.1) P0 = 1,P1 = µ

=⇒

Pl(µ) = P0 − (P0 − P1)
l(l + 1)

2
+O(ε2).

(6.34)

Using

∫ +1

−1

PlPl′dµ = δll′
2

2l + 1
(6.35)

follows∫ +1

−1

W̃tεPldµ = 2W̃tε0 − l(l + 1)W̃tε0 +
l(l + 1)

3
W̃tε1 =

2

2l + 1
W̃tεl. (6.36)

Furthermore is

∫
4π

W̃tε(~Ω · ~Ω
′
)d~Ω

′
=

∫
4π

W̃tε0d~Ω
′
= 4πW̃tε0 = 1

=⇒ W̃tε0 =
1

4π
,

(6.37)

as W̃tε for tε → 0 degenerates to a δ-function. That is why the W̃tεl are expressed
by W̃tε1 and the determination of W̃tε1 remains to be calculated. We set
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lim
ε→0

(W̃ tε1
4π
3
− 1)

ε
= ζ. (6.38)

Multiplying equation (6.36) with 2π leads to

4π

2l + 1
W̃tεl = 4πW̃tε0 − (4π)

l(l + 1)

2
W̃tε0 +

4π

3

l(l + 1)

2
W̃tε1. (6.39)

I.e.

4π

2l + 1
W̃tεl − 1 =

l(l + 1)

2
(
4π

3
W̃tε1 − 1) = − l(l + 1)

2
ζ +O(ε2) = Υl +O(ε2)

Υl = − l(l + 1)

2
ζ

(6.40)

=⇒
∂f

∂t
+ v~Ω · ~∇f = − 1

tE

+∞∑
l=0

+l∑
m=−l

l(l + 1)

2
f l,m(~x, t)Pl,m(~Ω) (6.41)

This equation only contains the unknown coefficients tE and v principally depending
upon the space-time-point (~x, t) and the fluctuation direction ~Ω

tE =tE(~x, t, ~Ω)

v =v(~x, t, ~Ω).
(6.42)

The total derivation of f(~x, t, ~Ω) with respect to t in direction of ~Ω leads to

d

dt
f(~x, t, ~Ω) =

+∞∑
l=0

m=+l∑
m=−l

d

dt
f lm(x, t)Plm(~Ω) =

1

tE

+∞∑
l=1

γl·
+l∑

m=−l

f lm(~x, t)Plm(~Ω). (6.43)

The time behavior of the spherical harmonic components is described by the equa-
tions

d

dt
f lm(t) =

γl
tE
f lm (6.44)
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and result in
f lm(t) ∼ exp(

γl
tE
· t). (6.45)

The greater the order l the more powerful is its temporal decay.

6.5. Reconstruction of the transition probabilities
W tε

The Transition probability W̃tε0→1→2 , changing the movement direction ~Ω at the
times t0, t1, t2 from ~Ω0 via ~Ω1 to ~Ω2

~Ω0
~Ω1

~Ω2

is the product of the single transition probabilities.

W̃tε,0→1→2 = W̃ tε
2

(~Ω0 · ~Ω1) · W̃ tε
2

(~Ω1 · ~Ω2). (6.46)

On the other side

W̃tεl = (1 + Υlε)
2l + 1

4π
+O(ε2) (6.47)

holds and thus arises

W̃tε(~Ω · ~Ω
′
) =

+∞∑
l=0

(1 + Υlε)
2l + 1

4π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) +O(ε2). (6.48)

The probability, that a particle changes the direction after an infinitesimal time in-
terval ε · tE from ~Ω0 to ~Ω2 is given by

W̃tε(~Ω0 · ~Ω2) =

∫
4π

W̃ tε
2

(~Ω0 · ~Ω1) · W̃ tε
2

(~Ω1 · ~Ω2)d~Ω1 (6.49)

and

W̃tε(~Ω0 · ~Ω2) =
+∞∑
l=0

(
1 + Υl

ε

2

)2
2l + 1

4π
·

+l∑
m=−l

P ∗lm( ~Ω0)Plm( ~Ω2) +O(ε2). (6.50)
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Using n intermediate steps W̃tε is expressed by an integral over the product of the
single transition probabilities.

W̃tε,0→1...→n = W̃ tε
n

(~Ω0 · ~Ω1) · W̃ tε
n

(~Ω1 · ~Ω2)....W̃ tε
n

(~Ωn−1 · ~Ωn) (6.51)

W̃tε(~Ω0 · ~Ωn) =

∫
4π

∫
4π

....

∫
4π

W̃ tε
n
· W̃ tε

n
....W̃ tε

n
d~Ω1....d~Ωn−1 (6.52)

For n→∞ this results in:

W̃tε(~Ω · ~Ω
′
) = lim

n→∞

+∞∑
l=0

{
1 +

εΥl

n

}n
2l + 1

4π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) +O(ε2) (6.53)

and finally

W̃tε(~Ω · ~Ω
′
) =

+∞∑
l=0

eΥl·ε 2l + 1

4π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) +O(ε2) . (6.54)

Selecting ε = tε
tE(~x,t,~Ω)

the exchange function W̃tε may be understood in the depen-
dencies

W̃tε = W̃tε(~x, t, ~Ω, ~Ω
′
). (6.55)

Therefore

W tε(~x, t, ~Ω, ~Ω
′
) ≈ W̃tε(~x, t, ~Ω, ~Ω

′
) (6.56)

is calculated, too.=⇒

f tε(~x,
~Ω, t) =

∫
4π

W tε(~x, t, ~Ω, ~Ω
′
)f tε(~x− tε · v

′~Ω′, ~Ω′, t− tε)d~Ω
′

v′ = v′(~x, ~Ω′, t)

(6.57)

The Transition probability W tε is unsymmetrical in the direction quantities on ac-
count of ε = tε

tE(~x,t,~Ω)
.
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6. Stochastic transport by longitudinal fluctuations of a continuum

6.6. Approximation formula

In 1st approximation a telegrapher’s equations is derived out of the linear Boltzmann
Equation leading to the known diffusion equation without taking into account the
second time derivation. In this case the diffusion equation is proved to be usefull.
Subsequent considerations are displaying which relation exists between the 1st
approximation of the particle transport by longitudinal continuum fluctuations and
the known diffusion equation.

Assuming the simplification

1

tE
= τ(~x, ~Ω, t) = τ0 = const (6.58)

the transport equation described in 1st approximation is

∂f

∂t
+ v~Ω · ∇f = − 1

tE
·

+1∑
m=−1

f 1m(~x, t)P1m(~Ω). (6.59)

In cartesian coordinates one gets

∂f

∂t
+ vxΩx ·

∂f

∂x
+ vyΩy ·

∂f

∂y
+ vzΩz ·

∂f

∂z
= − 1

tE
·

+1∑
m=−1

f 1m(~x, t)P1m(~Ω) (6.60)

with
vx = v(~x, t, ~Ω) vy = v(~x, t, ~Ω) vz = v(~x, t, ~Ω). (6.61)

Subsequently we confine us on

vx = vy = vz = v(~x), (6.62)

suggesting an isotropy of fluctuation motions in the statistical ensemble. The condi-
tions are selected such that the further derivations analogous to 5.4 follow until to a
telegrapher’s equation.

tE
∂2Φ

∂t2
+
∂Φ

∂t
= tEv~∇ ·

v

3
~∇Φ (6.63)

The usual diffusion coefficient normally contained in ~∇ · D~∇Φ cannot be found.
In the equation above D = tE · v

2

3
is contained partly outside partly between the

~∇−operators. This has consequences in inhomogeneous media. Such problems arise
unrecognized using the Bousinesque approach . I.e. in an inhomogenuous medium
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6. Stochastic transport by longitudinal fluctuations of a continuum

this approach may be fatal. The term of second derivation by time has nothing
to do with relativistic theory. Because of the small size of tE it may generally be
neglected.
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7. Stochastic transport by
turbulent
continuum-fluctuations

∂f

∂t
+ v~Ω× ~Θ · ∇f =

−1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

l(l + 1)

2
f lmk(~x, t)Plm(~Ω)Hk(~Θ)

m

f tε(~x,
~Ω, ~Θ, t) =

∫
2π

∫
4π
W̃tε(~x, t, ~Ω, ~Θ, ~Ω

′
, ~Θ
′
)f tε(~x− tε · v

′~Ω′ × ~Θ
′
, ~Ω′, ~Θ

′
), t− tε)d~Ω

′
d~Θ
′

7.1. Introduction

The motion of passive particles by turbulent continuum fluctuations is examined.
The particles are moved not affecting this field. Their trajectories correspond in
every ε−neiborhood of a point to a circle segment passed with the velocity

~vtε = ~ωtε × ~rtε . (7.1)

The considered motion quantities ~ωtε and ~rtε are determined by successively detecting
a single particle originating from a point ~x0 after a time tε moving to ~x1 and after a
further time tε to ~x2. By these 3 points a circle segment is uniquely defined for the
point ~x1 with radius vector ~rtε and a rotation speed ~ωtε .

~rtε = rtε · ~Θtε

~ωtε = ωtε · ~Ωtε

(7.2)

In the special case ~ωtε → 0 and ~r → +∞ the velocity ~vtε is revealed out of its neigh-
borhood.1 The particle density distributions are received in a thought experiment
by an unlimited number of deterministic ensemble-systems (see chapter 3 ). In every

1Applying the deterministic theory this problem must be treated numerically.
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7. Stochastic transport by turbulent continuum-fluctuations

point (~x, t) a continuously differentiable particle density distribution of the motion
quantities ~ωtε and ~rtε is assigned in accordance with

ftε = ftε(~x, t, ~ω, ~r). (7.3)

The with tε indexed functions are automatically assumed to contain motion quantities
of corresponding measurement accuracies. The indexing of the motion quantities can
be omitted if the functions are indexed. After execution of a limiting process for
example

lim
tε→0

ftε(~x, t, ~ω, ~r) = f(~x, t, ~ω, ~r) (7.4)

f and (~ω, ~r) are understood according to an exact measuring process. Integrating
the particle density distribution over the motion quantities one obtains expectation
values of a particle density not conforming with the actual particle density ρ.

< ρtε(~x, t) >=

∫
2π

∫
4π

∫ ∞
0

∫ ∞
0

ftε(~x, t,ω · ~Ω, r · ~Θ)dωdrd~Ωd~Θ 6= ρtε(~x, t) (7.5)

A strictly deduced partial differential equation is obtained calculating the develop-
ment of spatio-temporal particle density distributions. The incipiently unlimited
number of unknown coefficients is reduced to a local time-scaling related to the
vortex calculation of an associated deterministic theory discussed in further chapters.
The initially abstractly formulated transition probabilities get concrete functional
dependencies. There are always found suitable Monte-Carlo methods treating them
with the help of the deterministic theory described in further chapters.

7.2. The transport as Markov Process with natural
causality

A particle at location ~x and time t changing its velocity from ~v′ = (~ω′ × ~r′) to
~v = (~ω × ~r) is given by the transition probability

Wtε = Wtε(~x, t; ~ω, ~r; ~ω′, ~r′) (7.6)

with
∞∫

0

∞∫
0

∫
4π

∫
2π

Wtε(~x, t; ~ω, ~r; ~ω′, ~r′)dω′dr′dΩ′dΘ′ = 1. (7.7)
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=⇒

ftε(~x, t, ~ω, ~r) =
∞∫

0

∞∫
0

∫
4π

∫
2π

Wtε(~x, t, ~ω, ~r, ~ω
′, ~r′)ftε(~x− ~ω′ × ~r′ · tε, ~ω′, ~r′, t− tε)dω′dr′dΩ′dΘ′

(7.8)

Continuity is required respectively of all variables of the transition probability Wtε .
The sequence of velocities ~v′tε , ~vtε means a motion from

(~x− ~ω′tε × ~r
′
tε · tε, t− tε, ~ω

′
tε × ~r

′
tε) to (~x, t, ~ωtε × ~rtε). (7.9)

For the limiting process tε → 0 the transition probabilities Wtε prove to be physical
realizations of test functions of the distribution theory.

lim
tε→0

Wtε = δ(~ω, ~r; ~ω′, ~r′). (7.10)

The passive scalar particles precisely reproduce the motions of the fluctuation field.
For the particle density distribution ftε(~x, t, ~ω, ~r) the following separation aproach is
used without loss of generality:

ftε(~x−~ω×~r ·tε, t, ~ω, ~r) = Gtε(~x−~ω×~r ·tε, t, ~ω, ~r)f tε(~x−v~Ω× ~Θ·tε, t, ~Ω, ~Θ) (7.11)

with ∫ ∞
0

∫ ∞
0

Gtε(~x, t,ω~Ω, r ~Θ)dωdr = 1∫ ∞
0

∫ ∞
0

Gtε(~x, t,ω~Ω, r ~Θ)ωrdωdr = v(~x, t, ~Ω, ~Θ)

v(~x, t, ~Ω, ~Θ) = ω(~x, t, ~Ω, ~Θ) · r(~x, t, ~Ω, ~Θ)

(7.12)

=⇒

f tε(~x− v~Ω× ~Θ · tε, t, ~Ω, ~Θ) =

∫ ∞
0

∫ ∞
0

ftε(~x− ~ω×~r · tε, t,ω · ~Ω, r · ~Θ)dωdr (7.13)

One obtains a transition probability W tε only depending on the directions by inte-

54



7. Stochastic transport by turbulent continuum-fluctuations

grating Wtε over the amounts ω′, r′, ω, r.

W tε(~x, t, ~Ω, ~Θ, ~Ω
′
, ~Θ
′
) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

WtεGtε(~x− ~ω′ × ~r′ · tε, t− tε, ~ω′, ~r′)dω′dr′dωdr

(7.14)
The integration ∫ ∞

0

∫ ∞
0

(7.8)dωdr (7.15)

gives

f tε(~x, t,
~Ω, ~Θ) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

∫
4π

∫
2π

Wtεftε(~x−~ω
′×~r′·tε, t−tε, ~ω′, ~r′)dω′dr′dωdrd~Ω

′
d~Θ
′

(7.16)

=⇒ f tε(~x, t,
~Ω, ~Θ) =

∫
4π

∫
2π

W tεf tε(~x− v
′ ~Ω′ × ~Θ′ · tε, t− tε, ~Ω

′
, ~Θ
′
)d~Ω

′
d~Θ
′

(7.17)

In the integrand f tε is developed around ~x and t:

f tε(~x−∆~x, t− tε, ~Ω
′
, ~Θ
′
) = f tε(~x, t,

~Ω
′
, ~Θ
′
)− τE · ε · [

∂f
′
tε

∂t
+ v′~Ω

′
× ~Θ

′
·∇f ′tε +O(ε2)]

(7.18)

This leads to∫
4π

∫
2π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε
=∫

4π

∫
2π

W tε(~x, t, ~Ω
′
, ~Θ
′
, ~Ω, ~Θ) · τE[·

∂f
′
tε

∂t
+ v′ ~Ω′ × ~Θ′ · tε · ∇f

′
tε +O(ε2)]d~Ω

′
d~Θ
′
.

(7.19)

As
lim
tε→0

W tε = δ(~Ω, ~Θ; ~Ω
′
, ~Θ
′
) (7.20)

=⇒

lim
ε→0

∫
4π

∫
2π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε · τE
=
∂f

∂t
+ v~Ω× ~Θ · ∇f . (7.21)

Furtheron
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lim
ε→0

∫
4π

∫
2π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε · τE
(7.22)

is called exchange-term.

7.3. Calculation of the exchange-term

Exchange term dependencies of scalar products ~Ω · ~Ω
′
and ~Θ · ~Θ

′
are taken into

account istead of individually depending directions ~Ω, ~Ω
′
and ~Θ, ~Θ demanding the

following relation

lim
ε→0

∫
2π

∫
4π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε · τE
= lim

ε→0

∫
2π

∫
4π
W̃tε(~Ω · ~Ω

′
, ~Θ · ~Θ

′
)f
′
tεd

~Ω
′
d~Θ
′
− f tε

ε · tE
.

(7.23)

The following transitions

τE = const −→ tE = tE(~x, t, ~Ω, ~Θ)

W tε(~x, t, ~Ω, ~Θ; ~Ω
′
, ~Θ
′
) −→ W̃tε(~Ω · ~Ω

′
, ~Θ · ~Θ

′
)

(7.24)

are regarded. Moreover, a separation of ~Ω · ~Ω
′
and ~Θ · ~Θ

′
is asumed:

W̃tε(~Ω · ~Ω
′
, ~Θ · ~Θ

′
) = Vtε(~Ω · ~Ω

′
) ·Mtε(~Θ · ~Θ

′
). (7.25)

Functions of the unit vectors ~Ω and ~Θ are presented by a complete orthogonal func-
tion system representing an extension of the spherical harmonics called turbulence
functions.

f tε(~x, t,
~Ω, ~Θ) =

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

f tεlmk(~x, t)Qlmk(~Ω, ~Θ)

=
+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

f tεlmk(~x, t)Q
∗
lmk(

~Ω, ~Θ)

(7.26)

∫
2π

∫
4π

Qlmk(~Ω, ~Θ)Q∗lmk(
~Ω
′
, ~Θ
′
)d~Ω

′
d~Θ
′
=

{
8π2

2l+1
for l = l’ and m=m’

0 else
(7.27)
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with

Qlmk(~Ω, ~Θ) =Plm(~Ω)Hk(~Θ)∫
2π

Hk′(~Θ)H∗k(~Θ)d~Θ =

{
2π for k’=k
0 else

Hk(~Θ) =eikθ

(7.28)

The product ~Ω · ~Ω
′
in the separated exchange function Vtε is developed by spherical

harmonics.

Vtε(~Ω
′
· ~Ω) =

+∞∑
l=0

VtεlPl(cos(α)) =
+∞∑
l=0

Vtεl

m=+l∑
m=−l

Plm(~Ω
′
)P ∗lm(~Ω)

mit

lim
tε→0

Vtε(~Ω
′
· ~Ω) =δ(~Ω,~Ω

′
)

(7.29)

The product ~Θ · ~Θ
′
in the separated exchange function Mtε is developed by functions

Hk.

Mtε(~Θ
′
· ~Θ) =

+∞∑
k=0

Mtεkcos(kβ) =
1

2

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(

~Θ)]

(7.30)

with

cos(kβ) =
1

2
[Hk(~Θ

′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)] =

1

2
[eik(θ

′−θ) + e−ik(θ
′−θ)]

~Θ
′
· ~Θ = cos(β) = cos(θ′ − θ) =

1

2
[H1(~Θ

′
)H∗1 (~Θ) +H−1(~Θ

′
)H∗−1(~Θ)] =

1

2
[ei(θ

′−θ) + e−i(θ
′−θ)]

lim
tε→0

Mtε(
~Θ
′
· ~Θ) = δ(~Θ,~Θ

′
)

(7.31)

=⇒
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∫
4π

∫
2π

W̃tεf
′
tεd

~Ω
′
d~Θ =

∫
4π

∫
2π

Vtε(
~Ω
′
· ~Ω) ·Mtε(

~Θ
′
· ~Θ)f

′
tεd

~Ω
′
d~Θ
′

=

∫
4π

∫
2π

[
{

+∞∑
l=0

Vtεl

m=+l∑
m=−l

Plm(~Ω
′
)P ∗lm(~Ω) �

1

2

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)]}

�
+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

f tεlmk(~x, t)P ∗lm(~Ω
′
)H∗k( ~Θ′)

]
d~Ω
′
d~Θ
′

=

+∞∑
l=0

Vtεl
4π

2l + 1

+l∑
m=−l

P ∗lm(~Ω)

+∞∑
k=0

Mtεk2πf tεlmk(~x, t)H∗k(~Θ).

(7.32)

Finally the exchange term results in

lim
ε→0

∫
4π

∫
2π
W̃tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε

= lim
ε→0

+∞∑
l=0

+l∑
m=−l

+∞∑
k=0

(Vtεl
4π

2l+1
Mtεk2π − 1)

ε
f tεlmk(~x, t)P

∗
lm(~Ω)H∗k(~Θ)

=
+∞∑
l=0

+l∑
m=−l

+∞∑
k=0

Υlkf lmk(~x, t)Plm(~Ω)Hk(~Θ).

(7.33)

With the exchange coefficients

Υlk = lim
ε→0

(V tεl
4π

2l+1
Mtεk2π − 1)

ε
(7.34)

the transport equation

∂f

∂t
+ v~Ω× ~Θ · ∇f =

1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

Υlkf lmk(~x, t)Plm(~Ω)Hk(~Θ) (7.35)

is achieved. Further on it is shown that in Υlk the index k may be skipped.

7.4. Calculation of the exchange-coefficients Υl

Considering an overall closed volume range V the particle number in the entire volume
remains constant if no absorbtion is assumed.
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total number of particles =

∫
V

∫
4π

∫
2π

fd~Ωd~ΘdV = const. (7.36)

=⇒

d

dt

∫
V

∫
4π

∫
2π

fd~Ωd~ΘdV =∫
V

∫
4π

∫
2π

[
∂f

∂t
+ v~Ω× ~Θ · ∇f ]d~Ωd~ΘdV = Υ0,0 · V = 0

(7.37)

and thus
Υ0,0 = 0 . (7.38)

Getting an overview over the exchange function Mtε the essential relations are pre-
sented again with the following equations:

Mtε(
~Θ
′
· ~Θ) =

+∞∑
k=0

Mtεkcos(kβ) =
1

2

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)]

cos(kβ) =
1

2
[Hk(~Θ

′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)] =

1

2
[eik(θ

′−θ) + e−ik(θ
′−θ)]

~Θ
′
· ~Θ = cos(β) = cos(θ′ − θ) =

1

2
[H1(~Θ

′
)H∗1 (~Θ) +H−1(~Θ

′
)H∗−1(~Θ)] =

1

2
[ei(θ

′−θ) + e−i(θ
′−θ)]

lim
ε→0

Mtε(~x, t,
~Θ
′
· ~Θ) = δ(~Θ,~Θ

′
)∫

2π

Hk′(~Θ)H∗k(~Θ)d~Θ =

{
2π für k’=k
0 else

Mtε(~Θ
′
· ~Θ) =

∑+∞
k=0Mtεkcos(kβ) only takes values essentially different from 0 in an

ε-neighborhood of β = 0, such that ~Θ
′
· ~Θ = cos(β) = 1−O(ε2) is sufficient. =⇒

2π ·Mtεk =∫ +π

−π
Mtεcos(kβ)dβ =

∫ +π

−π
Mtε(1−O(ε))dβ = 2π ·Mtε0 −O(ε2).

(7.39)
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On the other hand∫
2π

Mtε(~Θ · ~Θ)′d~Θ
′
=

1

2

∫
2π

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(

~Θ)]d~Θ
′
= 2π ·Mtε0 = 1.

(7.40)

is valid. =⇒

Mtεk = Mtε0 =
1

2π
. (7.41)

The calculation of the exchange coefficients is not influenced by Mtε the Υ-values
given by

Υl = lim
tε→0

(V tεl
4π

2l+1
− 1)

tε
. (7.42)

Further calculation of the Υl analogously happen to section 6.4 with the result

Υl = − l(l + 1)

2
ζ ζ = const. (7.43)

Now the equation of turbulent particle transport is written

∂f

∂t
+ v~Ω× ~Θ · ∇f = − 1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

l(l + 1)

2
f lmk(~x, t)Plm(~Ω)Hk(~Θ) (7.44)

the coefficient ζ
tE

replaced by 1
tE
. A more complicated dependency of tE = tE(~x, t, ~Ω)

possibly remains. Maybe, physically justified simplifications lead to practical solu-
tions. The below presented theory of deterministic turbulence enables the calcultion
of these coefficients by numerical evaluation.

Die total derivative with respect to time gives
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d

dt
f(~x, t, ~Ω, ~Θ) =

+∞∑
l=0

m=+l∑
m=−l

+∞∑
k=−∞

d

dt
f lmk(~x, t)Plm(~Ω)Hk(~Θ)

=
1

tE

+∞∑
l=1

γl ·
+l∑

m=−l

+∞∑
k=−∞

f lmk(~x, t)Plm(~Ω)Hk(~Θ).

(7.45)

The time behavior of the single modes are obtained by

d

dt
f lmk(t) =

γl
tE
f lmk (7.46)

f lmk(t) ∼ exp(
γl
tE
· t). (7.47)

The greater the order l the more powerful is its temporal decay.

7.5. Reconstruction of the transition probabilities
W tε

The transition probability W̃tε,0→1→2 , a particle changing its motion pair of
directions (~Ω, ~Θ) at the times t0, t1, t2 from (~Ω0, ~Θ0) via (~Ω1, ~Θ1) to (~Ω2, ~Θ2),

(~Ω0, ~Θ0) (~Ω1, ~Θ1)
(~Ω2, ~Θ2)

results out of the product of the single probabilities of the pairs of directions (vortex
vector and radius vector direction of motion in a circle segment). The grafical pre-
sentation is meant symbolically because such a pair of directions does not compose
to an overall direction. ~Ωi is always orthogonal to ~Θi. A vectorial overall direction
of ~Ωi and ~Θi has no physical meaning in the 3 dimensional space. 2

W̃tε,0→1→2 = W̃ tε
2

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) · W̃ tε
2

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2) (7.48)

2~Ω, ~Θ would make a single direction vector in a 4-dimensional space. The longitudinal fluctuations
in the 4-dimensional space should accord to turbulence in the 3-dimensional space.
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The probability , that a particle changes its pair of directions within a time tε = ε · tE
from (~Ω0, ~Θ0) to (~Ω2, ~Θ2), is obtained by

W̃tε(~Ω0 · ~Ω2, ~Θ0 · ~Θ2) =

∫
2π

∫
4π

W̃ tε
2

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) · W̃ tε
2

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2)d~Ω1d~Θ1.

(7.49)
The evolution coefficients of the transition probability are

W̃ tε
2
l =

{
1 +

ε ·Υl

2

}
2l + 1

4π
· 1

2π
(7.50)

and therefore

W̃ tε
2

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) =
+∞∑
l=0

{
1 +

ε ·Υl

2

}
2l + 1

4π
· 1

2π

+l∑
m=−l

Plm(~Ω1)P ∗lm(~Ω0)

· 1

2

+∞∑
k=−∞

[Hk(~Θ1)H∗k(~Θ0) +H−k(~Θ1)H∗−k(
~Θ0)].

(7.51)

respectively

W̃ tε
2

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2) =
+∞∑
l=0

{
1 +

ε ·Υl

2

}
2l + 1

4π
· 1

2π

+l∑
m=−l

Plm(~Ω2)P ∗lm(~Ω1)

· 1

2

+∞∑
k=−∞

[Hk(~Θ2)H∗k(~Θ1) +H−k(~Θ2)H∗−k(
~Θ1)].

(7.52)

Integrating (7.49) one obtains

W̃tε(~Ω0 · ~Ω2, ~Θ0 · ~Θ2) =
+∞∑
l=0

{
1 +

ε ·Υl

2

}2
2l + 1

4π
· 1

2π

+l∑
m=−l

P ∗lm(~Ω0)Plm(~Ω2)

· 1

2

+∞∑
k=−∞

[Hk(~Θ0)H∗k(~Θ2) +H−k(~Θ0)H∗−k(
~Θ2)].

(7.53)
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Using n intermediate stages W̃tε is expressed by an integral over the product of the
single transition probabilities.

W̃tε,0→1...→n = W̃ tε
n

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) · W̃ tε
n

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2)....W̃ tε
n

(~Ωn−1 · ~Ωn, ~Θn−1 · ~Θn)

(7.54)

W̃tε(
~Ω0 · ~Ωn, ~Θ0 · ~Θn) =

∫
2π

∫
4π

∫
2π

∫
4π

....

∫
2π

∫
4π

W̃ tε
n
· W̃ tε

n
....W̃ tε

n
d~Ω1d~Θ1....d~Ωn−1d~Θn−1

(7.55)

W̃tε(
~Ω · ~Ω

′
, ~Θ · ~Θ

′
) = lim

n→∞

+∞∑
l=0

{
1 +

ε ·Υl

2

}n
2l + 1

4π

· 1

2π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) · 1

2

+∞∑
k=−∞

[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)]

(7.56)

For n→∞ arises

lim
n→∞

{
1 +

ε ·Υl

2

}n
= eΥl·ε (7.57)

and using (7.55)

=⇒

W̃tε(~Ω · ~Ω
′
, ~Θ · ~Θ′) =

+∞∑
l=0

eΥl·ε 2l + 1

4π
· 1

2π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) · 1

2

+∞∑
k=−∞

[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(

~Θ)]
.

(7.58)
Choosing ε = tε

tE(~x,t,~Ω)
the exchange function W̃tε may be understood in the depen-

dencies

W̃tε = W̃tε(~x, t, ~Ω · ~Ω
′
, ~Θ · ~Θ

′
) (7.59)

and

W tε(~x, t, ~Ω, ~Θ, ~Ω
′
, ~Θ
′
) ≈ W̃tε(~x, t, ~Ω · ~Ω

′
, ~Θ · ~Θ

′
) (7.60)
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is given, too. =⇒

f tε(~x,
~Ω, ~Θ, t) =

∫
2π

∫
4π
W̃tε(~x, t, ~Ω, ~Θ, ~Ω

′
, ~Θ
′
)f tε(~x− tε · v

′~Ω′ × ~Θ
′
, ~Ω′, ~Θ

′
), t− tε)d~Ω

′
d~Θ
′

v′ = v′(~x, ~Ω′, ~Θ′, t) = ω′(~x, ~Ω′, ~Θ′, t) · r′(~x, ~Ω′, ~Θ′, t)
(7.61)
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8. Appendix

8.1. Legendre-Polynomials

The Legendre-polynomials are defined within the interval [−1,+1] by

Pn =
1

2nn!

dn

dxn
(x2 − 1)n, n ∈ N. (8.1)

They represent a complete orthogonal function system with

∫ +1

−1

Pn(x)Pm(x)dx =

{
2

2m+1
for m = n

0 else.
(8.2)

Every continuously differentiable function f(x) defined within [-1,+1] can be developed
by Legendre-polynomials according to

f(x) =
∞∑
l=0

flPl(x). (8.3)

The fl are the evolution coefficients. A presentation of the δ−function by Legendre-
polynomials is obtained by

δ(x, x′) =
∞∑
l=0

2m+ 1

2
Pl(x)Pl(x

′) . (8.4)

Important recurrence equations are

(n+ 1)Pn+1 = (2n+ 1)xPn(x)− nPn−1(x)

P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x) , n = 0, 1, 2, ...

(1− x2)P ′n(x) = nPn−1(x)− nxPn(x).

(8.5)
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An integral representation of the Legendre-polynomials is obtained by

Pn(x) =
1

π

∫ π

0

(x+
√
x2 − 1cos(ϕ))ndϕ. (8.6)

Owing to |x+
√
x2 − 1cos(θ)| = |cos(θ) + isin(θ)cos(θ)| 6 1

|Pn(x)| 6 1 (8.7)

follows. These polynomials have their maximum for x = 1, particularly

Pn(1) = 1. (8.8)

dPl(x)

dx
|1 =

l(l + 1)

2
(8.9)

is proved by complete induction.

Proof :

1.P ′0(1) = 0

Assumption:
2.P ′n(1) = n(n+1)

2

=⇒

3.P ′n+1(1) = (n+2)(n+1)
2

wegen (8.5) P ′n+1(1) − P ′n(1) = (n + 1)Pn(1)
q.e.d.
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8.2. Spherical harmonics

The Spherical harmonics [[15] page 224] represent a complete orthogonal, complex
function system on the spherical surface

Plm(~Ω) =eimϕ
(−sin(ϑ))m

l!2l
·
(

(l −m)!

(l +m)!

) 1
2 dl+m(cos2ϑ− 1)l

(dcosϑ)l+m

=eimϕ
(sin(ϑ))−m

l!2l
·
(

(l +m)!

(l −m)!

) 1
2 dl−m(cos2ϑ− 1)l

(dcosϑ)l−m

(8.10)

with

Pl,−m(~Ω) = (−)mP ∗lm(~Ω) (8.11)

and ∫
4π

d~ΩPl′m′(~Ω)P ∗lm(~Ω) = δl′lδm′m
4π

2l + 1
. (8.12)

All continuously differentiable functions on the spherical surface f(Ω) = f(θ, φ) can
be developed according to

f(~Ω) =
∞∑
l=0

m=+l∑
m=−l

flmPlm(~Ω) (8.13)

the flm representing the evolution coefficients. The P ∗lm(~Ω) being complex to Plm(~Ω)

f(~Ω) can be alternatively considered

f(~Ω) =
∞∑
l=0

m=+l∑
m=−l

flmP
∗
lm(~Ω). (8.14)

The spherical harmonics for l = 0, 1 are

P00 =P ∗00 = 1

P1,−1(~Ω) =2−
1
2 e−iϕsin(ϑ), P ∗1,−1 = 2−

1
2 eiϕsin(ϑ)

P1,0(~Ω) =P ∗1,0(~Ω) = cos(ϑ) = P1(~Ω)

P1,1(~Ω) =− 2−
1
2 eiϕsin(ϑ), P ∗1,1(~Ω) = −2−

1
2 e−iϕsin(ϑ) .

(8.15)
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The connection of spherical harmonics and Legendre-polynomials is obtained by

Pl0 = P ∗l0 = Pl. (8.16)

Furthermore the addition theorem

Pl(cos(ϑ)) =
m=+l∑
m=−l

Plm(~Ω
′

)P ∗lm(~Ω) (8.17)

matters with
cos(ϑ) = ~Ω

′

· ~Ω. (8.18)

The δ−function depending on the spherical harmonics may be stated by

δ(~Ω, ~Ω
′

) =
∞∑
l=0

2l + 1

4π

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′

) (8.19)

and

δ(~Ω, ~Ω
′

) =
∞∑
l=0

2l + 1

4π
Pl(~Ω · ~Ω

′

). (8.20)

8.3. Turbulence-functions

Functions of the unit direction vectors ~Ω and ~Θ are represented by a complete or-
thogonal function system meaning an extension of the spherical harmonics. We call
them turbulence functions.

Qlmk(~Ω, ~Θ) =Plm(~Ω)Hk(~Θ)

Plm(~Ω) spherical harmonics∫
2π

Hk′(~Θ)H∗k(~Θ)d~Θ =

{
2π for k’=k
0 else

Hk(~Θ) =eikθ

(8.21)

cos(ϑ) = ~Ω
′

· ~Ω. (8.22)
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with∫
2π

∫
4π

Qlmk(~Ω, ~Θ)Q∗lmk(
~Ω
′
, ~Θ
′
)d~Ω

′
d~Θ
′
=

{
8π2

2l+1
for l = l′;m = m′; k = k′

0 else
(8.23)

Such, suitable distribution functions are described by

ftε(~x, t, ~Ω, ~Θ) =
+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

flmk(~x, t)Qlmk(~Ω, ~Θ)

f(~x, t, ~Ω,Θ) =
+∞∑
l=0

+l∑
m=−l

Plm(~Ω)
+∞∑

k=−∞

flmk(~x, t)Hk(~Θ).

(8.24)

Die δ−function depending on the turbulence functions is expressed

δ(~Ω, ~Ω
′

; ~Θ, ~Θ
′

) =
∞∑
l=0

2l + 1

4π

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′

)
+∞∑

k=−∞

1

2π
Hk(~Θ)H∗k(~Θ

′

) (8.25)

and such

δ(~Ω, ~Ω
′

; ~Θ, ~Θ
′

) =
1

8π2

∞∑
l=0

(2l + 1)Pl(~Ω · ~Ω
′

)
+∞∑

k=−∞

exp(ik(Θ−Θ
′
)). (8.26)

8.4. Euler-angles as fluctuation properties of the
turbulent particle transport

The angles respectively unit direction vectors ~Ω and ~Θ of turbulent motions are
applied using the turbulence functions. The unit vector ~Ω× ~Θ with ~Ω ⊥ ~Θ depending
on the angles θ, ϕ and ϑ is determined. Initially, the direction vector ~Ω

~Ω
0

=

 0
0
1

 (8.27)

may be given before a rotation. The orthogonal direction vector ~Θ
0
may be descripted

in this starting situation by
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~Θ
0

=

 sinθ
cosθ

0

 (8.28)

The rotation T = T2 ·T1 with

T1 =

 1 0 0
0 cosϑ sinϑ
0 −sinϑ cosϑ

 (8.29)

and

T2 =

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

 (8.30)

results in

T = T2 ·T1 =

 cosϕ sinϕcosϑ sinϕsinϑ
−sinϕ cosϕcosϑ cosϕsinϑ

0 −sinϑ cosϑ

 (8.31)

with the unit vectors

~Θ = T · ~Θ
0

=

 cosϕsinθ + sinϕcosϑcosθ
−sinϕsinθ + cosϕcosϑcosθ

−sinϑcosθ


~Ω = T · ~Ω

0
=

 sinϕsinϑ
cosϕsinϑ
cosϑ

 (8.32)

and

~Ω× ~Θ =

 sinϕsinϑ
cosϕsinϑ
cosϑ

×
 cosϕsinθ + sinϕcosϑcosθ
−sinϕsinθ + cosϕcosϑcosθ

−sinϑcosθ


=

 −cosϕcosθ + sinϕcosϑsinθ
cosϕcosϑsinθ + sinϕcosθ

−sinϑsinθ

 .

(8.33)
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