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Abstract

We consider approximations of functions from samples where the func-
tions take values on a submanifold of R™. We generalize a common quasi-
interpolation scheme based on cardinal B-splines by combining it with a
projection P onto the manifold. We show that for m > 3 we will have ap-
proximation order 4. We also show why higher approximation order can
not be expected when the control points are constructed as projections of
the filtered samples using a fixed mask.

1 Linear Theory
We start by defining cardinal B-splines.
Definition 1. Cardinal B-splines can recursively be defined by

By = 1[7 ] and By, = Bp,—1 % By for allm > 1
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where 1[ 1] denotes the indicator function on the interval [—%, %] and * de-
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notes the convolution.

Up to shift and scale cardinal B-splines are the piecewise polynomial C™~1-
functions with the smallest support and are therefore a popular choice for a
basis of the space of piecewise polynomial C™ !-functions. For a meshwidth
h > 0 a function f:[0,1] — R is approximated by a linear combination of
shifted B-splines.

fu(@) = ciBp(h 'z — i) (1)
i€z
The control points (¢;);ez can be found by applying a filter with mask (A;);ez
to the samples (f(hi))iez, i.e.

ci =Y Ajf(h(i+ 7)) (2)
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For each odd m there exists a finite sequence (Ai)\ilé m_1 of length m such that

|[fn(@) = f(a)] < CR™F,

with a constant C' > 0 independent of h. Careful analysis would show that
C can be chosen as a multiple of ||f(™*+1)| ~ This can be proven by showing
polynomial reproduction, we refer Thm 3.5.4. of [2]. For small m the sequences
(A cmo1 are for example

m=1 : (A)=(1)
1 8 1
m=3 : (A17A0’A1)_<_6’6’_6)
13 7T 73 7 13)

m=5 ¢ A At = (o 15 o 15 o

In [3] it is presented how these sequences can be constructed. We will consider

the moments
ap =Y Ai*, b= Bp(i)i* (3)
=Y i€Z
Since the sequences are symmetric, i.e. A_; = A; resp. By, (—i) = B, (i), the
odd moments ay,as, ... resp. by, bs,... are zero. The 0-th moment is always 1,
e ag =),z Ai=1land by =), ., Bm(i) =1.

2 Nonlinear theory

Assume now that f: [0,1] — M C R", where M C R% is a smooth Riemannian
submanifold of R?. We consider again the linear combination (2). In general
¢i ¢ M. We will apply a projection P: U C R™ — M to ¢;. Usually this is
the shortest point projection, i.e. P(g) := argmin,c,, |p — q|. However since we
will only require P to be a projection onto M (i.e. a map whose image is M
and whose restriction to M is the identity on M) and to be sufficiently smooth
we could take any other sufficiently smooth projection onto the manifold. For
small h the projection of ¢; is possible as then ¢; is sufficiently close to the
manifold such that the projection is well-defined. Projecting will reduce the
degrees of freedom for a control point ¢; from that of the ambient space to the
dimension of the manifold which can be quite a large reduction. Then we apply
the linear combination (1). Finally, we apply the projection P which makes the
approximation M-valued. Our approximation therefore is

fu(z) =P <Z P(¢;)Bpn(h ™z — i))
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This method is not new, it has been described in [1], Section 3.5 of [2] and
probably earlier.



3 Proof

We show that we have an order 4 approximation.

Theorem 1. Let m > 3 be odd, f € C*([0,1], M) with M C R™ such that the
projection P is well-defined for h small enough and C*. Define f,, as above.
Then we have

|fu(@) = f(z)| < Ch*
with a constant C > 0 independent of h.

Proof. The idea is to use Taylor expansion at x for f and at f(z) for P. We
have

¢ = ZAjf(h(i+j)) (4)

_ ZAjkm f(k;!(x)(hz’+hj—x)k+0(hm+1) (5)

- ;Z i(hi+ hj — ’“f(k;!(x) + O(h™ ) (6)
07

- ];”ZO< )hfa] x)k—j% +O(h™ ) (7)

Since ag = 1 and a; = 0 we have

(k)
ci=f(z)+ (hi—2a)f Zf Z(

JOJ

)hjaj(hz — )" L O(hm )

Now using Taylor expansion of P at f(x) yields

- (@) (9
m k k T

P (f(x) [(hzx)f @+ 3% (5o -0 )] (10)
=2 j—0 \J

5P G @), f @))(hi — 2)? (1)
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P @) @) b w>2;(j)haj<m ) (12)

PP @), £ @), £ @) (b - ) (13

+0O(h%) (14)



It follows that

ZP ¢i) B (h ™tz —4) (15)
iE€L
= f(x) (16)
+P'(f [Z > < ) (hi — 2)F I By, (W e — i)] (17)
1€Z k=1 75=0
+§P”(f(w))[f’(w), F1@)] Y (hi =) B (h ™"z — i) (18)
i€EZ
1 /! _ T
+1 P (F@)If ZZ( >h]a3 hi — )*7 B, (ﬁ —z) (19)
i€Z j=0
+(1).P”’(f( N (), f'(@), £ ()] D (hi = @) Bo (b~ w — i) (20)
i€L
+0O(h*) (21)

By the linear theory Term (17) is zero. By Lemma 2 the constant is equal to
h2by > 0 , hence Term (18) does not vanish. For Term (19) we have by Lemma
2 and the fact that a; = b; = 0 for odd 1.

ZZ( >hﬂaj hi — x)377 (22)

i€Z j=0

b3 ag+2by a1 + b1 as (23)
~~ ~— =~

0 0 0
— 0. (24)

By Lemma 2, Term (20) is zero as well. Hence (18) is the only term left and we
have

fe) = P50+ P U@, @) 25)

+O(h*) (26)

~ @ (27)

P () [P @), )2 (28)

+0O(hY). (29)

Term (28) is zero by Lemma 4. O

In numerical experiments one can observe that, unlike in the linear case, the
approximation order does not exceed 4. This has been observed in [4]. If we try
to generalize the previous proof beyond 4 we end up with the following order 4



terms for Y, ., P(¢;) By (h™ 'z — i):
1

o1 P @IS @), 7@, 7w, ' (@)]bah? (30)
SPEIF @), /@), £ ()] (s + baas)? (31)

2 PY(F)IF @), £ )] (bs + Bbaaa)h? (32)

SP DL (@), £ ()] 3 (s + 2sas + boad) (33)

By taking four derivatives of P(f(z)) = f(x) we get

P (@), £, £ (@), £ (@) (34)

F6P (F@)f (), f' (@), £ (@) (35)

AP (f(@)[f (@), £ ()] (36)

L3P (F@)f" (@), £ ()] (37)

— (Id— P'(f@)f" (@) (38)

The RHS and therefore also the LHS yield zero when applied to P’(f(x)). By
comparison one can see that in order for the terms (30)-(33) to be a multiple of
(34)-(38) one would for example need boas = 0. However by > 0 and in order
to be exact for polynomials of degree 2 one needs as = —by and hence we have
boaz = —b3 # 0. Hence in general there does not exist a linear sequence (4;)icz
such that we have optimal approximation order for any manifold. An alternative
way to find control points with optimal approximation order is described in
Section 3.5.3 of [2].

The analysis above also shows that the constant C' > 0 in Theorem 1 depends
not only on f*)(x) = f””(z) but also on lower order derivatives as well as on
the projection P. Additionally, for f; we will also have the 4-th order term

1 " 1" 1 1 1z / ! b2h2 ?
3P ) P (DI @), 5 @)L PG @ 1@ (%)

4 Appendix

The appendix consists of a part regarding linear combinations of B-splines and
a part regarding the projection P onto the manifold.

4.1 B-spline sums

Lemma 1. For 0 <k <m we let G: R — R be defined by
G(z) =Y Bp(z —i)i*

for all z € R. Then G is a polynomial of degree k with leading term x*.



Proof. By definition of B-splines we have B/ (z — i) = By—1(x — i+ 1/2) —
B,,—1(x —i—1/2). Hence we have

G'(x) = Y B(z—i)i (39)
i€EZ

= 3 (Bu-i(e—i+1/2) = Buoa(e —i—1/2))i*  (40)
€L

= Y Bl i 12) (- G- 1Y) (an)
1E€EZ

When repeatedly applying this rule the polynomial degree of the term on the
right hand side reduces by 1 every time. Hence by applying k times we get

GW(x) = B k(e —i+k/2)k! =K.
€7

Since the k-th derivative of G is therefore constant to k! the claim follow. O

Lemma 2. For 0 < k <m we have for all x € R

> Bp(x —i)(z — i)k = by,

i€Z
where by, is defined in (3).
In particular for odd k the sum is zero by the symmetry of the B-splines.

Proof. By Lemma 1 the function

F(z) = Y Bp(z—i)(x—i)" (42)
1€EZ
k
_ i (B i v il
- X (%) 5 Bt (43)

is a polynomial. On the other hand we have F(z+1) = F(x), i.e. it is periodic.
Hence it follows that F is constant and that F(z) = F(0) = b; forallz € R. O

4.2 Properties of a Projection onto a manifold

Lemma 3. Let P: U C R™ — M be a projection onto a manifold M. Then for
each p € M the map P'(p): R — T,M C R" is a projection as well, i.e. we
have P'(p) o P'(p) = P'(p)-

Proof. Let p € M,v € R" and g: R — R” be defined by ¢(t) = p + tv. The
function t — P(g(t)) is well-defined for |¢| sufficiently small. As P is a projection
we have P o P = P and hence also P(P(g)) = P(g). Taking the derivative and
using the chain-rule we get

P'(P(9(0))) © P'(9(0))g'(0) = P'(g(0))g'(0) = P'(p) o P'(p)v = P'(p)v
Since this is true for all v € R™ we get P’(p) o P'(p) = P'(p). O



Lemma 4. Let f: [0,1] — M and P be a projection onto the manifold M.
Then we have

P(f(@) [P"(f @) (@), f(@)]] =0

for all x € [0,1]

Proof. Taking two derivative of P(f(x)) = f(x) yields

PU(f@)f (@), [/ ()] + P'(f (@) (@)] = f"(2).

Applying P’(f(z)) on both sides and using Lemma 3 yields the claim. O
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