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Abstract: In the present note a critical discussion of two ODEs and two polynomials that have been 

wrongly attributed to the French mathematician  Edmond Nicolas Laguerre (1834-1886) is provided. It is 

shown that Laguerre had nothing to do with such a wrong attribution and the actual discoverer was the 

Russian mathematician Nikolay Yacovlevich Sonine (1849-1915).  
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1. Introduction 

 
In addition to Encyclopedia of Mathematics [1], Encyclopedic Dictionary of Mathematics [2],  

Wikipedia [3], and Wolfram  MathWorld [4], several authors of textbooks, for example, Refs. [5-12] 

and peer-reviewed research articles [13-18] relating to the mathematical theory of classical 

orthogonal polynomials wrongly attributed the second-order linear ODE 
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and its polynomial solution 
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to the French mathematician Edmond Nicolas Laguerre (1834-1886), that is to say, Eq.(1) and 

polynomials (2) are named after Laguerre. 

 

Actually, Eq.(1) and polynomials (2) are, respectively, special cases of another ODE and 

polynomials, namely 
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and its polynomial solution 
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which are also wrongly attributed to Laguerre since, in the literature, they are named: 

‘associated Laguerre differential equation’ and ‘associated Laguerre polynomials’ or 

‘generalized Laguerre polynomials’.  
 

2. Laguerre true and authentic ODE and polynomials 
 
The literature relating to the classical orthogonal polynomials refer to two articles written by 

Laguerre and published in 1878 [19] and 1879 [20], respectively. For instance, in Encyclopedia of 

Mathematics [1] we can read «Laguerre polynomials are most frequently used under the 

condition 0α ; these were investigated by E. Laguerre [Ref.[19]: E. Laguerre, "Sur le 

transformations des fonctions elliptiques" Bull. Soc. Math. France 6,72–78 (1878)], and are 

http://mathworld.wolfram.com/LaguerreDifferentialEquation.html
https://www.encyclopediaofmath.org/index.php/Laguerre_polynomials#References
https://www.encyclopediaofmath.org/index.php/Laguerre_polynomials#References
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denoted in this case by )(xLn  (in contrast to them, the )()( xLn
  are sometimes known as 

generalized Laguerre polynomials). However, the Laguerre 1878 [19] article has nothing to do 

with Eqs.(1), (3) and polynomials (2) , (4). 

 

The rest of the literature refer to the Laguerre 1879 [20] article, which also has nothing to do with 

the above mentioned ODEs and polynomials. But as it is always better to refer to the original 

articles rather than to second hand account and, I therefore, scrutinized the 1879 article in which 

Laguerre wrote in French, Page 74, : “… from where it follows that the polynomial )(xf  

satisfies the second order differential equation 

 

                                                              01  nyyxyx ,                                                       (4) 

of which a second solution is 
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Expansion in series easily gives 
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As we can clearly see, Eq.(4) and polynomial )(xf are completely different from Eq.(1) and 

polynomial (2) and for that reason cannot be deduced from Eq.(3) and polynomials (4) when 

0α . Consequently, the Laguerre true and authentic ODE and polynomials are, respectively, 

Eq.(4) and )(xf . 

 
3. Sonine was the real discoverer   

 

A very small part of the literature [3, 4, 21] referred to the Russian mathematician Nikolay 

Yacovlevich Sonine (1849-1915) as the discoverer of Eq.(3) and polynomials (4). For instance, 

Wikipedia wrote: «... Then they are also named generalized Laguerre polynomials, as will be 

done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after 

their inventor
  

[Ref.[22]: Sonine, N. J. "Sur les fonctions cylindriques et le développement des 

fonctions continues en séries." Math. Ann. 16,1-80 (1880)] Nikolay Yakovlevich Sonin).» 

Effectively, in 1880, Sonine wrote and published the referred article [22] in which he studied in 

detail  Eq.(3)  and its polynomial solution (4). He wrote in French, Page 41: “… But by 

expanding ),( yrm according to the powers of  r , we find 
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Thus, by substituting the expansions of ),( yrm , we get 

 

https://en.wikipedia.org/wiki/Nikolay_Yakovlevich_Sonin


3 

 

                                0)()( 1

0





dyyTyTye n

m
n

m
my ,   ( 1n  different from n ),                                   (iii) 

 

                                 
)()(

1
)()(

0 nmn
dyyTyTye n

m
n

m
my





 .                                                   (iv) 

 

The polynomials )(yT n
m  have the following properties 
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and satisfy the second order differential equation 
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To expand a function )(xf  into a series of the form 
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multiply this assumed expansion by )(xTx n
m

mx
e
  and integrate from 0 to . We obtain 
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…  ” 

 

Remark, Eq.(vi) can be written in the form 
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which is, apart from the symbolic notations, similar in all its details to Eq.(3). Furthermore, for 

the special case when 0m , this equation reduces to 
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4. Conclusion 

 

The original Laguerre 1879 article is scrutinized and the so-called Laguerre ODE and 

polynomials are found to be wrongly attributed to him by the literature relating to the classical 

orthogonal polynomials. Also the original Sonine 1880 article is studied and found that, unlike 
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Laguerre Eq.(4), Sonine Eq.(vi) is (apart from the symbolic notations) similar in all its details to 

Eq.(3) and the same can be said about polynomials (ii). Therefore, Sonine was indisputably the 

real originator of Eq.(3) and polynomials (4). That is why his name must be logically and fairly 

attached to his discovery. 
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