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Abstract

In this paper, in th&ection 1 we have described some equationscerningthe functions{(s)
and ¢(s,w). In this Section, we have described also sometisaconcerning a transformation
formula involving the gamma and Riemann zeta fumsiof Ramanujan. Furthermore, we have
described also some mathematical connections vétlows theorems concerning the incomplete
elliptic integrals described in the “Ramanujan’stinotebook”. In th&ection 2 we have described
some Ramanujan-type series fdm and some equations concerning the p-adic opergdtomthe
scalar tachyon field. In this Section, we have dbed also some possible and interesting
mathematical connections with some Ramanujan’s fEmes, contained in the first letter of
Ramanujan to G. H. Hardy. In tis®ction 3 we have described some equations concerningetiae z
strings and the zeta nonlocal scalar fields. Inctsion, in theSection 4 we have showed some
possible mathematical connections between the agtsrabove mentioned, the Palumbo-Nardelli
model and the Ramanujan’s modular equations thatelated to the physical vibrations of the
bosonic strings and of the superstrings.

1. On some equationgoncerning some observations concernirttpe functions Z(s) and

Z(sw) [1]

In the Mathematical Analysis there exist the profthe following formula:
1 1 o - dt
s)==+—+2| (A+t?) 2SidsArcTar{t)]——— (1.1
{(s)= 5+ = +2], @+t) 7sif 0 5 @D

that can be rewritten also as follows:



smstan ) 1 1
2j( e 1)dt+§+s—_l (1.1b)

where {(s) represent the Riemann zeta function.

Now we analyze in greater detail the formula (1.1)
The function{ (s) is represented from the series

{(s)= 1+ L4 L4 +ni+

. (1.2
AN (12)

as the real part of the complex variable
S=E&+in

is greater than the unity. Under the same condita@nhave still that

what is easily proved by using the following eqtyal

1. j vy idx.  (1.4)
V

It is from the expression (1.3) that Riemann redchg an ingenious application of the residue
calculus, extendingf(s) across all the plan and discover such interegtingerties of this function.

We set f(z)=z", where

p(r, t)=(r +t )Z {sarctant;j, qt)= (r +1 )2 (sarctant;j (1.5)

The following three conditions:

1° The functionf (z) is holomorphic forr > a , for eacht;;

2° The condition I|m e (r + |t) 0 is verified uniformly fora <7 < 3, however greas;

3° The functionf (z) is subject to the following condition: lim fme'z’ﬂ f(r+it)=0;

are verified in the half-planeg >0; assumingé > 1so that the series (1.2) converges, and by
m=1, we obtain, after the application of the followiftgmula:

S ()= % (m)+ [t )z -2 2 qmt)dt, (1.6)



1, 1
2

{(s)= (1+ t2) osi (sarctart)

(1.7)

that is the eq. (1.1and, after the application of the following foriau

Z;:f() ["t()dr-2[ Qlat)dt, (1.8)

forazl,

2 w( 1 2 dt
Z(s)—s_l—zjo (Z+t2j sm(sarctanZt)em—Jrl. (1.9)

Another expression fof (s) is derived from the following formula:

2 (vV)=- ”“‘”( 4 jZF(z)dz. (1.10)

277 =i\ sinsz
By a=1,z 1 +it , we find
2 2

Z(s) =ﬂjw(1 +t2j;s COE[(S_l)arth“Qt] dt. (1.12)

s-10 4

Starting from the relationship

(1— Z;L_ljz(s):l—i NS

with the application of the following formula

Zn:(-l)vf(V)=-J’a+.iwL——2j' Qa.t)dt, (1.12)

a-ie @ — @

with m=1¢a :%, we also find

2(9)= 2 jw(lﬂ j Zcos(sarctarﬁt)dt' (1.13)

25t —1Jbo\ 4 et +e”

It is easy to see that the integrals definite appgan the above expressions are analytic funstion
holomorphic for any finite value of. On the other hand, we deduce from the eq. (floi7)s =0,



then, subtracting the two member:,L—l, and making tend to the unity, taking into account the
S —
following equality:

1
C=3+ 2[” 1+t2€2n4dt (1.14)

we obtain
. 1 1 o 1
m - |=Z+2 — t= 1.1
lls:l[ds) S—l} 2 ~[01+t2e2"4—1d ¢ @15

and finally, by differentiating with respect & putting s=0 and using the following equality

1- Zj arctart dt—Iog\/ (1.16)
we obtain
Z Zj arctart dt 1=-logv2mr. (1.17)
J5-1
We note that there exist a mathematical connedietween 7z and qo—T, i.e. the aurea

section, by the simple formula
arccog =0,2879, (1.18)

thence we have that

= arccosqo[—lo%w (2.19)

We can rewrite the eq. (1.17) also as follows:

Z 2[ arctart dt 1——Iog\/ (arccogo[—lij. (1.19b)

0,2879

Now we consider the function

_1 1 1
Z(S,W)—F+ e + e 2 +.., (1.20)

which reduces t@’(s) for w=1. We must replace our general formulas

f(z)=(z+w)°, (1.21)

where



p(r,t)= [(r +w) + tz]_g co{sarctanri—wj , q(r,t)= —[(r +wf + tz]_g sin(sarctanri—wj . (1.22)

Assuming the real part ok positive, applying the following formula

2 f(v):% f(m)+ [t () - 2[” ez,}_lq(m,t)dt, (1.23)

we obtain

-S

1
syt (1.24)

W)€

{(sw)= \;vl_l+ WZ_S +2[ (W +t2)_g sin(sarctant—j

valid expression in the whole plan and shows tﬁéﬁw) is a uniform function admitting for

singularity at finite distance, only the po$e=1 of residue 1. We conclude, on the other hand, for
s=0,

Z(o,w)= % -w, (1.25)

then, subtractingil and for s tending to the unity,
S —

i 1 __ Aot 1
Ilsr:rf[i(s,w) —}— Iogw+2W+2J'0W2+t2 ez"—ldt’ (1.26)

and finally, differentiating with respect to and then fors= Qwe have that

1
dt. 1.2;

eZ 7t

: _ 1 @ t
ZS(O,W)—(W—Eongw—W+ ZIO arctanv—v
For the following equalities,
Iogl'(x):Iog\/gﬂ(x—%jlogx—Xhl(x), (1.28)
Dxlogr(x):logx—2—1X+J'(x), (1.29)

these last two expressions on reduced respecﬁvely—% and Iogl'(w)— logv2rr.
w

Here it is possible to obtain some mathematicaheotions with various theorems concerning the
incomplete elliptic integrals described in the “Ramjan’s lost notebook”.
Let u(q) denote the Rogers-Ramanujan continued fractionetby

u:=u(qg):= , o<1, (1.30)




and setv=u(g?). Recall that(q) is defined by

wla)=1laq)=2a = @

8y 5(q dg _ 2 1+ (/5 - 2uv?

J5-1
2

Then

We note that 1+(\/§—2):l,236067977= x2, i.e. the aurea section multiplied by the

J5+1
2

number 2, and thatl- (\/5 + 2): -3,236067977F —( X j l.e. the aurea ratio multiplied by

the number 2 and with the minus sign.

with f(-q), ¢(q), andu(q) defined by

f(_ CI)Z: f(_ q’_qz): i(_l)nqn(Sn 1)/ (CI q) 2712/24,7(2)' q zezn'z' Imz>0, (1'33)

n=-o

by (1.31) and (1.30), respectively, and witkhr (\/5 +1)/2, we have that

53/4.[q fZ(_t)f 2(_t5)dt =2 ’T/i 5/2 . dg =

0 Jt cos™ ((eu) )\/1—5'55'3/25in2¢

_p2tan(5¥4q%(~q ) 12(-q)) 1 B 2tan(57% g o )1 (a) 1

_.[o _ ~5E3/2 qin2 ¢_£Io _ o l2 g2 dg. (1.34)
\/1 £7°57sin" ¢ \/1 E577sin" g

Let v be defined by the following expression

vi=v(q):= q(f quf qq J (1.35)

and lete = (\/E +1)/2. Then

qf— f_3f_5f_15d :1 Ztan_l(l/\/g)_ 2 ;d =
Jy 1 C0f () () (e S[Iﬁ]m¢
25

1 _1 tan” (3\/3)

= <[ (e i) | ——— = ) e
= [ 1-ve® | (rvela-ve®) [T =1 Jian Ve vl || T .
9 -2tan [1+v53 (1—v5‘1)(1+v5‘5)J l_isin2¢ 4- [( ) (1+ve)+ve™ ] l_Lssin2¢
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If v is defined by the following expression

(1.36)




t-a’)f-q
andif c= 13+716\/§, then
a 1 costc 1
f(—t)f(-t?)f|-t")f(-t*)dt = —— L4y dg. .38
rbeed e [ s 0o
3202 sin“ ¢
Let
_ 3?)(-q) 9-42
= Ie )f3( q7) and c= Ty
Then
[HE0f ) o) egae= 2 {°1m . dg. (1.39)

1+2fx+1} \/1_ 32-13/2 sin’ ¢
64

1.10n some equations concerning a transformation formula involving the gamma and
Riemann zeta functions of Ramanujan.

In the Ramanujan’s lost notebook there is a cldiat provides a beautiful series transformation
involving the logarithmic derivative of the gammang€tion and the Riemann zeta function. To state
Ramanujan’s claim, it will be convenient to use férmiliar notation

w(x):= %?y Z(kﬂ( kilj (1.40)

where y denotes Euler's constant. We also need to resalfdllowing functions associated with
Riemann’s zeta functiod (s). Let

&(s):=(s- 1)77_;SI'(1+ % sj{ (s).

Then Riemann’&-function is defined by



{&)-4)

Theorem 1

Define

Ax):=w(x)+ 2_1x -logx. (1.41)

If a and S are positive numbers such thafl =1, then

Jal 1G] 5 o) = 5= S o) -
L 200{1t|090j
R

1+t?
where y denotes Euler's constant ari(x) denotes RiemannZ-function

Although Ramanujan does not provide a proof of Z}.4e does indicate that (1.42) “can be
deduced from”

I: (w(1+ x) - logx)cogd2mx)dx = %((//(1+ n)-logn). (1.43)

We have that, fot # 0,

- 1/ 1 11
e C i IR0

n=1

We find that, forRez> Q

- o[, tdt
d2)=-2[ 7 2 =1) (1.45)

We require Binet's integral fologl (z), i.e., forRez > Q thence

(1 1 o(1 1 1 )e*
IogF(z)—(z—Ejlogz—z+§log(2ﬂ)+jo [E_ere‘—lj t dt. (1.46)

We find that

) 1 1) _
-=le¥dx=y, (1.47
IO (1—e‘X xje x=y, ( )

where y denotes Euler’s constant. Furthermore, by Fruantegral, we have that



o @ W — g
J' udx:IogK , Mv>0. (1.48)

0 X /J
We now describe a proof of Theorem 1. Our firstlged@o establish an integral representation for

the far left side of (1.42). Replacing by na in (1.45) and summing on, 1< n<oo, we find, by
absolute convergence, that

> dna)=-23 1 o Btk (zidt_l)Z L (149

(t? + n%a? e a

Invoking (1.44) in (1.49), we see that

- 2= 1 1 a 1
24”“)2_7 0 (ezn _1)[ 2itla +_jdt- (1.50)

—1 21 2

Next, settingx =27t in (1.47), we readily find that

ol 2T e
y:IO(e“—l_ t )dt. (1.51)

By Frullani’s integral (1.48),

—t/a

gt —g?t 2
jfdt—log(lmj—log(Zna). (1.52)

0

Combining (1.51) and (1.52), we arrive at

—-t/a

y—log(2rm) = jom(eziil_ et jdt. (1.53)

Hence, from (1.40) and (1.43), we deduce that

f(%ﬁzﬂahzdnaj 2\/—j( - ]dt‘ j (2’“” -1 267y7t+;jdt

n=1

e a B 27T _ e—t/a
= IO [t(ebt _1) \/E(ezn/a _1)(6271 _1) Zt\/ajdt (154)

Now, for n real, we have that

L= “J(—(%JT°°S“‘dt—f:f(%0r(‘1:“f

:ﬁj( e j( - 1njdx. (1.55)

cosnt
1+t2




Letting n :%Ioga andx = 27t/a in (1.55), we deduce that

zcoz{ltlogaj
T i e o
1+t2 21 2t \ e -1 2

a
- nzjdt . (1.56)

Hence, combining (1.54) and (1.56), in order tovprthat the far left side of (1.42) equals the far
right side of (1.42), we see that it suffices towthat

o 1 _\/E gtla 1 e ’1 ‘_1 e—u/(zn) _
IO(t\/a(ez'“a—l) 2n2+2t\/51dt‘\/;jo[u(eu_l) 2 de—O, (1.57)

where we made the change of variable 272/ a . In fact, more generally, we show that

o 1 1. €e”"
ﬁ -= = ——| 2 1.

so that if we sed =1/(27) in (1.58), we deduce (1.57).
Consider the integral, far> ,0

_ o 1 _1 1 e—tu e—ua_e—tu _ _ _1 _1 1 l
Flat)=] {[ + ju + }du-logl‘(t) (t 2jlogt+t 2Iog(2ﬂ)+2Ioga,

-1 u 2 2u

(1.59)
where we applied (1.46) and (1.48). Upon the irggn of (1.30), it is easily gleaned that, as
t - 0,

logr(t)=-logt—pt, (1.60)

where y denotes Euler’s constant. Using this in (1.59) fiwé, upon simplification, that, as—» ,0
1 1
F(at)= -yt —tlogt +t —Elog(ZH)—Eloga. (1.61)

Hence,
limF(at)= —%Iog(Zm). (1.62)

t-0

Letting t approach 0 in (1.59), taking the limit under th&egral sign on the right-hand side using
Lebesgue’s dominated convergence theorem, and gmg@I¢l.62), we immediately deduce (1.58).
As previously discussed, this is sufficient to prdtae equality of the first and third expressiams i
(2.42), namely,

10



\/—{y |ozgi$2na)+z w(na}

o

1
2 co{ztlogaj
dt.

o (1.63)

He

Lastly, using (1.63) withr replaced by and employing the relation =1, we conclude that

ﬁ{y '0‘?6(,2“8)+Z¢(nﬂ}

o

2 co{ltlogﬁj
2 _
5 dt=
1+t

JiS

1+itj
4

2 cos{;t log(1/ a)j

e 1 oo: 1 _1+it =
10 G B v
1
L zcos{tlog(a)j
:_%E’ z@tjr( 1I't i+t2 dt. (1.64)

Hence, the equality of the second and third expessn (1.42) has been demonstrated, and so the
proof is complete.
2. On some Ramanujan-type series fot/ nn [2]

Ramanujan’s series representations frz depend upon Clausen’s product formulas for
hypergeometric series and Ramanujan’s Eisenstegsse

k k
<t

P(q):=1- (2.1)

More precisely, but briefly, by combining two diféat relations betweerIP(q) and P(q“), for

certain positive integera, along with a Clausen formula, we can obtain sempresentations for
1/n.

Theorem 1

For n=5,if A, andB,, k=0, are defined by the following formula

then

k2’

B, =

k®

11

WG LG

K

)

3l

5

6

kt®

jk . (2.1b)



S= 2Bk B -1iA (B -2, 22
8 _ S .« 1
7—7_;)(—1) (20k+3)BkF. (2.3)

For n=13,if A  andB,, k=0, are defined by the formula (2.1b), then

R

NgE

(-1 (260 + 238, % . (2.4)

=
1l
o

The last two identities was recorded by Ramanujathé fundamental papeMbdular equations
and approximations ta(1914}.

Proof of (2.2).
From Ramanujan’s second noteboblo{ebooks — 2 volumes — 195&e see that

00 k 2k 00 kqlok

e J T4 SRE O CORN(O) B 8
x{1+ \/x (q) x(q5) + \/(1— x(q))(l— X(qs))}llz. (2.5)
With the help of (2.1) we can rewrite (2.4) in foem
se(a)- Pla")= L o7 (ol oo+ J(abe) A A}
e Plae) + AT 2

and use, following Ramanujan, the following exgsiens

Now we setq = e

1_Xn:x1/n’ Z.I./n:\/_nzn’ (27)
z:= 7(q) :=2F1(%,%;]; xj =¢#(q), (2.8)

to deduce thatx(q) = x,s =1-%, x(¢°)=%, and qoz(e‘”’@): \/Egg?(e‘”@)z J5z,.
Thus, from (2.6), we find that

5P(e " )- plee%)= VB3 + 2,/ - Xs}\/ b+ 2%l %)) =

= J522{3+ Jax (i xsj}\/ L+ Jaxl-%)). (2.9)

The eq. (2.9), puttingX, = 4x5(1— xs) can be rewritten also as follows

12



5P(e‘2”ﬁ")—P(e‘2”’f) 5223+ 2,/ 1~ X5}\/ i+ 2% %)) =
= 523+ /%) E(“\/X_F’)' (2.9b)

But, the singular modulug; is given by

_1_ (E‘j . (2.10)
2 2

so that

X;=9-4/5 and X, =v5-2. (2.11)

Thus, from (2.9), we find that
-2/1/5 -277//5 | \/E -1\,
5ple 2% |- ple =/5(/5+1 =E @)
Next, settingn =5 in the following equation

nple277 )+ ple2 7)< % (2.13)

we find that

&

5P( 2”f)+ P( 2”’f) &5 (214

m

Adding (2.12) and (2.14), we deduce that

P(e—zm/é) nf/_ \/:5/:'1 [\/_ 1j25- (2.15)

Now, employing the following expression

111 @ 1
Z=F,| =,=, =1L X XX, 0<x<=, (2.16
(222,11, j 5 A XD

in (2.15), we deduce the identity

P(ez”f) 7:’/_ */_f’/fl {\/_ 1}2/%;. (2.17)

Next, settingn = 5in the following equation

13



P(e‘ZM ) =(1-2%,)> (3k+)A X!, (2.18)

k=0
we find that

Ple %)= (1-2x)3 (B + DA X = 2/[V5-2)> Bk +)AXE.  (2.19)

k=0 k=0

Using (2.17) and (2.19), we arrive at (2.2).
Proof of (2.3)
Employing the following expression

2= 1 F(llg’;u, j w( 1) BW*, Osxs%(l—Z”“\/Z—\/E], (2.20)

1-2x° 14’24

in (2.15), we find that

P(ez”f) 3 */§+1) (5 1)5:( 1) w2k_—+ i( BWZ, (2.21)

205 J5(-2x : m/5 P
where
24 X
w=N"s o1 5 o0
1-X, 2

Next, settingn =5in the following equation

plen)= io( )3k(1+>(1”_);1+x”/28kwn2k, (2.23)

we find that

ple2n)= igk(“ X, )+1+ xnlsz(_l)kWn2k=(3\2/§k+3\/§+2

> 1= X 5 j(—l) BWX. (2.24)

From (2.21) and (2.24), we readily arrive at (213)us, we complete the proof. The proof of (2.3b)
is similar.

2.1 On some equations concerning the p-adic open strirfgr the scalar tachyon field. [3] [4]

As a free action in p-adic field theory one caretétke following functional

= jQ fDfdx  (2.25)

14



where f = f(x) is a function f :Q, - R, dx is the Haar measure ard is the Vladimirov

operator or its generalizations. Boundary valueblenms for homogeneous solutions of nonlinear
equations of motion corresponding to the p-adiogir

€d=p°. (2.26)
Herel is the d’Alembert operator and the fiefl and its argument are real-valued.

The dynamics of the open p-adic string for the ascichyon field is described by the non-linear
pseudodifferential equation

1
P2O=0F, (2.27)

where 0=07-0; -..-0; , t=x, isthe d’Alembert operator and is a prime number,

p=235,.... In what follows p is any positive integer. We consider only realusohs of

equations (2.27), since only real solutions hawsgal meaning. In the one-dimensional case (d =
1) we use the change

o(t)= d)(t 2In p)

and write equation (2.27) in the following equivalérm:

§*¢=¢W (2.28)

Equation (2.28) is a non-linear integral equatibthe following form:
1 o ooy _

— e rdr=¢°(t), tOR. (2.29

—[. e glr)r=¢7() (2.29)

Solutions of equation (2.29) are sought in thesctE#sneasurable functior¢s(t) such that
p(t) < Cexg(1-£)?} forany £>0, tOR. (2.30)

The following boundary-value problems for the smins ¢ of equation (2.29) have physical
meaning:
lim ¢(t) =0, ym¢®=1 (2.31)

to -

if p iseven, and
lim ¢(t) = -1, !qg¢&):1 (2.32)

o eo
if p is odd.
Assertion 1
If ¢ is a solution of equation (2.29) such that

limg(t)=a, [g<w, (2.33)

15



thena=0 or a=1 if p is even anda=0 or a==1 if p is odd, lim,__(#°}{t)=0. If az0,
then lim, , ¢'(t)=

We deduce from equation (2.29) the following chafiequalities:

t o0 t o0

Iim¢p(t)=[!im¢(t)]p:ap:Iim%fwﬂr dr—llm\/_j ot -

j limg(t-u)e'du=a, (2.34)

©t_, 0

whencea= Oora=1if p isevenanda =01 if p is odd. Further, we have

!im(¢p)'(t):—2!im\/_j #(r) ”>dr_—2!|mfj Bt -u)ue™ du =

jl|m¢t— uedu=-— aju ‘du=-——aD=0. (2.35)

ot _ 00 ,\/]_T

If a#0, then lim, _¢'(t)=0, since
lim(g° }(t) = plim ¢**(t)g'(t) = pa™lim¢'(t) =0. (2.36)

We passed to the limit under the integral signngidiebesgue’s theorem and estimate (2.30). We
shall write a=b if the integersa and b are both even or both odd, aads b if one of them is
even and the other is odd.

Hermite polynomials are defined to be the polyndsnia

2 dn e_xz
dxn ) 1 1

H, (x)=(-1)"¢’

whence H,(x)=1, H,(x)=2x, H,(x)=4x?-2, H,(x)=8x*-12x,... They form a complete
orthogonal system in the Hilbert space, and

[HAE =] H2(du(x) =2 (2.38)

Any f 0L, can be expanded in Hermite polynomials:

(0= 3(1,H,), Hal¥

H 1
2 o in L, (2.39)

and the Parseval-Steklov equality holds:

(2.40)

- 1
71 =20 H
n=0

16



The expansion in powers of has the form

H, (x)= n!Zn:cnymxm, n=01.., (2.41)

In particular, we have

_2 _C) oY

_H’ C2n,0_ nl C2n+1,1_

= __4-Y
a Cono = 2(!’1 1) Coni1z = _3(n _1)! . (2.42)

n,n

The integral representation for the modified Heenpiblynomials has the form:

\fj H, (r)e /> n=0L,... (2.43)

Let fOL?. It follows from (2.28) thatf 0L,

Sa Ml )= 50p,

n
= " 2'n e nl

in L. (2.44)
We denote byK the linear integral operator in equation (2.29):
/- ( E\/_.[ rdr. (2.45)

Lemma 1

The operator K assigns to every functiorf(t) satisfying condition (2.30) an entire function
(Kf )(z) with the estimate

|(Kf)(z)|s%exp{y2+[%—1jt2}, z=t+iy. (2.46)

The proof follows immediately from (2.30):

2 e—(t—r)z _ \/C:_ 2_t2.[°°e—sr2+2trdz_ — %exp{yZ + (% _1jt2} ) (247)
T - &

Lemma 2

The operatorK assigns tof 019, 0<a < 2, an entire functior(Kf )(z) with the estimate

(k=] 2-a) el v +5 0 v, z=tey. @24
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The proof follows from the Cauchy-Bunyakovskii inedjty (applied to(Kf )(z)) and the following

estimates:
exp{— 2%+ 221 - (1— %)rz}

<| ], [%TJ-:‘GXF{ZZZ +atr-(2- a)rsz TTZ <||f ||a{% .[_Z exg2y’ - 2t° + 4tr - (2-a)r*Jd r}

=|f]. eXp{yZ+ﬁt2}{7_17fmexp{(2—a)(r— Z?GJ }dr} . (2.49)

We can rewrite the above equation also as follows:

exp{— 22 +2z1 —(1—£jr2}
2
=|f]. eXp{yz +%t2}{%fwexp{(2—a)(r - Z%taj }dr} . (2.499

dr <

(Kf )(2) < % [t @)

1/2

(Kf )(z)|s% [t @) dr =

Lemma 3

The operatorK :L§ - L4, 0<a <2, B> 220/
-a

, iIs bounded, and

2 -1/4
||Kf||ﬂs(20—2%—azj 1, fOL. (@50

2

We prove the lemma by writing the following chainegualities and inequalities for (L :
—(a/2)r2—(1—a/2)r2+2trdz. dt <

2 _ B> a2 2 _ B (peayz| 1
Ik —\/;J'_we (ke ) dt—\/;j_we A RIG"
1 ﬁ © a(Br2)? [ 2 _-ar? ® _~(2-a)r?+atr —
< n\/;j_we J'_w|f(r)| e drj'_me drdt
| gro— B 2 " ,
=1\E||f||j [e ooz dif e dr = (Zﬂ—Za—aﬂ)_l’z\/E||f||z. (2.51)
w\a © =] a

This equation can be rewritten also as follows:

2 _ |B a? 21 B _[ﬁ+2_—ia]tz ® ~(2-a)r?
||Kf||ﬂ—\/;j_weﬂ (1)) dt—l—T\/;”f”aJ'_me wo et ar. sty

Lemma 4

18



If f 0L, , then its imagdKf )(t) can be expanded in the Taylor series

0 n

(Kf)(t)=§)an -, a,=(fH,), (252

nl
which converges uniformly on every compact s® irlf f L., then

(Kf)(t)zianzg—g) in L}, b,=(KfH,), (253)

and
(Kf,H,), =(f.V,),,, n=0L... (2.54)

By lemma 3, the functiofKf )(t) is the trace of an entire functidif )(z) for y = 0. Hence, it can
be expanded in the Taylor series with the coeffitse

n

g d —(t-7)? 1 00 n_—(t-r)?
) S dr = [ 1Oy )=

K)o =

[ i@ H,(-r)etdr=(f,H ), =a,. (2.55)

—00

Here we used equality (2.37). Further, fifJL}?, then (2.53) holds by (2.44), sind&f 0L, by
Lemma 3. Equalities (2.54) can be proved as foliows

(Kf'Hn)lz(f'KDHn)llz :(f’vn)1/2' (256)
Here we used formula (2.43), which implies thvat= K"H_, where K" is the operator adjoint to
K.
Let ¢ be a solution of equation (2.29) belonginglip whenceg® = K¢ . Putting a, :(¢,Hn)l,
we deduce from (2.39) and (2.40) that

)= a Hel) i 2, > 2 =l (@s7)

n
n
o 2n n=0

The functiong®(t) is the trace of the entire functiol(z) = (K#)(z), for which (2.48) holds with
a=1:
A(z)<|¢|. 6%, z0C. (2:58)

By Lemma 4, it can be expanded in the Taylor s€@es?):
$°t)=2a . (259)
n=0 g

The integral equation (2.29) is equivalent to tbdofving boundary-value problem for the heat
equation:
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X

u(ot)=g(t), u(Lt)=g¢r(t), tOR. (2.61)

uzlun, O<x<1, tOR, (2.60)
4

Let us note that if there is an interpolating fumet it can be represented by Poisson’s formula for
equation (2.60):

X

u(x,t)=%fw¢(r)exp{—u}dr, 0<x<1l (2.62)

If @ such that
|¢(t)|sCexp{et2} for any £> Q tOR, (2.63)

then formula (2.62) gives its analytic continuatitmmthe domainx> 1t[JR and, further, its
analytic continuation with respect 1(0(,t) to the complex domaiif * xC, where T is the right
half-plane Red =x>0.

Equation (2.29) takes the form

¢2q(t):%fwﬂf)e'(”)zdr, q=12,... (2.64)

If ¢(t) is a solution of equation (2.64), thef-t) and #(t +t,) also are solutions of this equation
(for all t,).

Assertion 2

If #(t) is a solution of equation (2.64) such that (2.68)ds, then

1 4 (t-r) %-1 -~ 1 | 29-1
ﬁLﬂ (T)exp{—T}dTSX (1+x) 49-2 ZqTx—l (2.65)

for all x>1/(2q-1).

We remember that if S is a measurable subset’afifR the Lebesgue measure, and f and g are
measurable real- or complex-valued functions oin&) Holder inequality is

[ ()a(x)dx< (U i (x]"dx)” "([S|g(x)|“o|x)“q . (2.65b)

Denoting the left-hand side of inequality (2.65) ﬂ)@)(,t), using the boundary conditions (2.61), the
properties of solutions of the heat equation an@tlétts inequality, we obtain the following chain
of relations for allx >1/(2q-1):

20



(=2 J:¢2q(r)exp{— ( ‘f}m:ﬁ fw¢(r)exp{-%}drs

) Ii¢(r)exp{— (tz_q:()z}exp{— (- T()lfzf)xz g;‘l)}dr _

e

whence

3 (7)1 ( \/m(1+><)(2q-1)j121“, (2.67)

1+ x) 2gqx-x-1

which implies that (2.65) holds.
Now we can rewrite the eq. (2.65) also as follows:

—(1+x) 2gx-x-1

Lo (-1P ), _ o, b [ 29-1
—_ r)exp—~——dr < x“(1+ x) ag-2 | ——— . (2.67b
jﬁLﬁ (7) D{ . (L+x) %2 o AR CALL)
For x=1 estimate (2.65) witlg = 23,... takes the form

1 o ) a2 [29-1
ﬁj—f (r)ex;{—(t—r) }drsz -2 (2.68)

he | Jm(m)(zq—l)j;‘* B,

Corollary

With regard the possible mathematical connectioves,note that it is possible to obtain some
interesting and new relationships evidencing sonaen&ujan’s Theorems. The first letter of
Ramanujan to G. H. Hardy, contain the bare statésnehabout 120 theorems, mostly formal

identities extracted from his note-books. We tdke,the connections regarding this section, the
following identities:

Iw1+(bilj2 D1+(b-):2j2 | _\/7—TF(a+;jr(b+1)r(b_a+;j

) 2 7 dx= = 1 . (2.69)
1+[xj 1{ X j r(a)r(b+jr(b—a+1)
a a+l 2
[ 1 —dx= 77 1 . (2.70)
o {L+x?fL+raefi+rix).. u+r+ri+re+ros )
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If aB =, then

- o xg ™
0'1/4(1+40’.[ ’
0 e”’(_

1 g2 g7 _{\/(5+x/§j_\/§+l}em5’ (2.72)
1+ 1+ 1+., 2 2

2 . _'gxz
1de - ﬂ-1,4[1+ 4p(! exzi dx}, (2.71)

i e_zm/g e_4”“/§ = \/g _ \/g +1 ez;r/x/g

1+ 1+ 1+... 5/2 2

We note that the eqgs. (2.49b), (2.51b) and (2.68) lze related with the expression (2.69) and
(2.70). Indeed, we have:
p{ zz+22r—(1—£jr2}
2

=|f|, exp{y2 +ﬁt2}{7—17fw exp{(z - a)(r - 23taj2}d TTZ >
9-"”14-([))(4'1)2 D1+(bi(2j: . N F(a+$jl’(b+1)l’(b—a+;j |
T e

(Kf fj f(r eXp{— ZZJ’ZZT‘(l-%er}

=||f||aexr{y2+%t2}[,—yzexr{(z_a)[r-thaf}dr}”l

00 1 _ 1
9!0 (1+ xz)(1+rzxz)(1+r“xz)___dx_ﬂz(:H_r +I’3+r6+r1°+___)' (2.75)

Ik _\ﬂ (k1)) dt__\ﬂf”j ol o e ar >
1+(Xj2 1+(Xj2 F(a+1jl'(b+1)l'(b—a+1j
>l b+2) g \" 2 - 2, (2.76)
1*()() 1*()() 2 r(a)r(b+jr(b—a+1)
a a+1 2

22

(2.73)

<_.[ |f —qr? /2 dr =

(2.74)

—ar /12

dr =




Ik fj &(KF ) |dt——\/7|| L AT

9! (1+x)(1+r x)(1+r x) 2(1+r+r FIPCIRT ) (2.77)
L g —-(t- 4q2 2q-1
ﬁf_mﬁ (r)ex;{ (t-7 }dr<2 -

1+(Xj2 1+(Xj2 I‘(a+1jr(b+1)r(b—a+lj
> g b+22...dx=*/’—7 2 - 2)  (2.78)
1+(Xj 1+(Xj 2 F(a)r[b+jr(b—a+1)
a a+l 2
2q 4q2 2q
\/_.[ ¢ ex;{ t— }r<2 2q—2
1 1

9[0 L+ xz)(1+rzxz)(1+r“xz)...(jlxzﬂz(l;rr Ay (2.79)

3. On some equations concerning the zeta stringsdrthe zeta nonlocal scalar fields [5]

The exact tree-level Lagrangian for effective scdi@ld ¢ which describes open p-adic string
tachyon is

‘ep:iz . ¢p 2¢+ ¢"”} (3.1)
9" p-1

where p is any prime number;=-8> +® is the D-dimensional d’Alambertian and we adopt

metric with signature(— +...+). Now, we want to show a model which incorporates p-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian
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L=>C.L = zn 1£n——[ %qoZn_quzniﬂ;d‘”] (3.2)

nx1 nz1 n

Recall that the Riemann zeta function is defined as

zn |_|1 =1 s=o+ir, o>1. (3.3
n=1

Employing usual expansion for the logarithmic fuoctand definition (3.3) we can rewrite (3.2) in
the form

L= —é{%@(%)¢+ Q-+ In(l— w)} , (3.4

where|g<1. ¢ (%) acts as pseudodifferential operator in the foltayivay:

Z@w(x) = (21

where (k)= [e™)g(x)dx is the Fourier transform gix).
Dynamics of this fieldg is encoded in the (pseudo)differential form of Riemann zeta function.

When the d’Alambertian is an argument of the Rieman zeta function we shall call such
string a “zeta string”. Consequently, the abowe is an open scalar zeta string. The equation of

motion for the zeta string is

— 1 |xk _k_z - :i
z( j¢ P o e iroane Z( 2Jw(k)olk gy GO

which has an evident solutign=0.
For the case of time dependent spatially homogeneolutions, we have the following equation of
motion

With regard the open and closed scalar zeta strthg equations of motion are

Z(Dj j'xkz( j()dk 292 . (38)

nz1

: J'eix"Z(—k?z}Z(k)dk, ~-k?=k2-k?>2+¢&, (3.5)

jcb(t) (—1)jk >ﬁ+ge‘ik°tz(ﬁjc'5(ko)dko=1f”(2t). (3.7)

2

af=p

and one can easily see trivial solutipr6= . 0

Ie'xkz[ j()dk Z[ ( 136'“(2_1)_1(40””-1), (3.9)

nx1
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The exact tree-level Lagrangian of effective scdie@ld ¢, which describes open p-adic string
tachyon, is:

2

D
_Mp
p 2

p

= [ ~op 2’“p¢+ ¢] (3.10)

g, P~
where p is any prime numben,) =-07 +[* is the D-dimensional d’Alambertian and we adopt
metric with signaturg-+...+), as above. Now, we want to introduce a model wiicbrporates
all the above string Lagrangians (3.10) wphreplaced byn[0N . Thence, we take the sum of all
Lagrangiansg, in the form

L= ZCﬁn Sc,m

n=1 gnnl

1 _27?12 1 +1
hpF—— . (3.11
{ SmTe n+1¢f } (3.11)

whose explicit realization depends on particulasich of coefficientsC,, massesn, and coupling

constantsg,, .

Now, we consider the following case
C = n-1

n~—  _2+h?
n

(3.12)

whereh is a real number. The corresponding Lagrangiatdsrea

D

L, = wznzm Tpe> D

g nln

qa”*l (3.13)

and it depends on parameter According to the Euler product formula one caitevr

+o00 _E_h 1

Zn 2m® = |_|—E_h (314)

n=1

Z(S):iézﬂ 1_5, s=o+ir, o>1, (3.15)

which has analytic continuation to the entire caempt plane, excluding the poird= , vhere it
has a simple pole with residue 1. Employing defnit(3.15) we can rewrite (3.13) in the form

m°| 1 O “n" g
L= -2 + . (3.16
= a e B s
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O
2m?

Here Z(

+ hj acts as a pseudodifferential operator

{ (% + hjq(x) = (2717)D | e‘xkz(— 2‘:]2 + h}Z(k)dk, (3.17)

where ¢(k) = [eg{x)dx is the Fourier transform a#(x).

We consider Lagrangian (3.16) with analytic congithens of the zeta function and the power series
-h

> N gt ie.

n+1

-h

m’| 1 O &N
L =—|—-= +h |p+ AC 1, (3.18
= 2 e ACE T a8
where AC denotes analytic continuation.
Potential of the above zeta scalar field (3.1&qsal to—-L, at 1 =0, i.e.

(7 () - ACS g
Vi(o)= gz(zz(h) ACY 7 J (3.19)

where h# 1since (1)=w. The term with -function vanishes ah = -2,-4,-6,.... The equation
of motion in differential and integral form is

Z(zaz + hjqo: ACY n"g", (3.20)

n=1
. j eixk((_k_z + hj&(k)dk = Aci n"g', (3.21)
(272)° = 2’ =1 S
respectively.
Now, we consider five values oh, which seem to be the most interesting, regardhng
Lagrangian (3.18)h= 0Oh=x1 andh=x2 For h=-2, the corresponding equation of motion
now read:

SIS DU S S G SR R, (‘)
Z(zmz 2);0 (on? jRDe (( o~ qu)(k)dk iog (3.22)

This equation has two trivial solutiong{x)=0 and ¢(x)=-1. Solution ¢(x)=-1 can be also
shown taking ¢(k) = -d(k)(277)° and ¢(-2)=0 in (3.22).
For h=-1, the corresponding equation of motion is:

B P S A0 (L SR ISV
Z(Zmz 1j¢ (2P jRDe z( o 1J¢(k)dk - of (3.23)

1
whered(-1)=-—.
(-)=-3
The equation of motion (3.23) has a constant fraaéution only forqa(x) =0.

For h= 0, the equation of motion is
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oY)y _ 1 w A K= K2
Z(Zmzjqo_(ZH)D J'Rﬂ’e Z( 2m2j¢)(k)dk 1-¢ (3:24)

It has two solutionsg =0 and ¢ = 3 The solutiong = 3follows from the Taylor expansion of the
Riemann zeta function operator

¢ Dzj=z(0)+25(n)(°)[ fnj (3.25)

as well as fromp(k) = (277)°35(k).
For h =1, the equation of motion is:

1 jxk —k_2 P :—1 AL
WLDe (( 2m2+1j¢(k)dk 2|n(1 o, (3.26)

where (1) = gives V,(¢g)=oo.
In conclusion, forh= 2 we have the following equation of motion:

1 o K )=y - eIn(l-w)’
WLDE Z( 2m2+2j¢(k)dk— '[O—ZW dw. (3.27)

Since holds equality

LT WEEC)

one has trivial solutiog = in (3.27).

Now, we want to analyze the following casg; = N 5 1. In this case, from the Lagrangian (3.11),
n

_ml 1 = O v
L_g{ 2‘”{5(2m2 1j+((2m2j}¢+1_¢] (3.28)

The corresponding potential is:

Vig=- 3179 o o.g
() 924(1_¢)w2 (3.29)

We note that 7 and 31 are prime natural numbersgn + 1with n=1 and 5, with 1 and 5 that are
Fibonacci’'s numbers. Furthermore, the number Zéleted to the Ramanujan function that has 24
“modes” that correspond to the physical vibratioha bosonic string. Thence, we obtain:

we obtain:
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© COSTEXW oW dx
0 coshrx \/142
712

antilog

- w'

e ¢ qitw)

2w
Ogl\/(10+11\/§] +\/[1o+ NEH
4 4
The equation of motion is:

[ERREy =S

2m 2m (p-17

(3.29b)

P 31-7
Vig)=-" ? 7=

241~ ¢)

Its weak field approximation is:

0 O _
{Z[Zmz —1)+Z(2m2j—2}go—0, (3.31)

which implies condition on the mass spectrum

M2 M ?
o 1))

From (3.32) it follows one solution fav1> >0 at M? = 279m° and many tachyon solutions when

M? < -38m°.
We note that the number 2.79 is connected \qrpitch%L nd ® —LL i.e. the “aurea” section

2. (3.32)

and the “aurea” ratio. Indeed, we have that:

ol

—| = |=27725420 278.
2 22| 2

Furthermore, we have also that:

(¢)14/7 + (q;)‘25/7 =2,61803398% 0179314566- 2,79734

4. Mathematical connections

We have the following new possible mathematicalnemtions: between egs. (1.7), (1.17) and
(1.19b) with eq. (3.6)

(1+ t2) 2 sin(sarctart) ezgt

9

Ze)=2+
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— 1 ixk _k_2 — :i
ez( jw G Jcirn® z( 2]w(k)dk o @)

S

[t 1=-logv2r >

— 1 ixk _k_2 - :i
ez( jw 2P oo bkt ® z( 2]w(k)dk o (42

Z ZJ' arctart

S

dt 1——Iog\/ (arccosp[—lijé

=2 arctart
Z J- 0,2879

ez( jqﬂ_( 7];') '[kz k2>2+£eIXkZ(_kEj(;(k)dk rqow (43)

We have further possible mathematical connecti@tsden eqgs. (1.56) and (1.64) with eq. (3.6):

(1 1+t zco{;tlogaj ) 1 _
_(thr( 4 j 1+1t2 j ( -1 271)( e _q 2njdt
:J'm( —27T/\/E + \/E + 1 \/_Jdte
o (ezn/a _1)(6271 _1) t(ezn _1) t\/;(ezn/a _ ) 2712

ez[ jw-( 717) Ji.. k2>2+£é*kz(—k7jé(k)dk=r¢’¢, (4.4)

1
(1 r( 1+itjzco{2tlogﬂjdt_
2 4

1+t -
2 co{lt Iog(a)j
2 dt>

1+t2

ﬁ{y ogt2rp) +n2¢(n/3}

tliery
N Z(ij‘( 71T) sz . 'xkg(—k—;Jé(k)dk:%o , (45)

With regardn, we have these possible mathematical connecthmis/een egs (4.4) and (4.5) with
some Ramanujan’s equations ((2.69) and (2.70)gddd

1 i zco{;tlogaj i . ]
o (ztjr( j 1+t2 j( T _q an( Pila _] 2]det
Io( 2,1;,2_”/\/__1)+t(ez{?—1)+t\/5(e21’”" _1)—;/_7;;Jdt9
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( j¢ (2nP (o b e 'XKZ( kzjw( Jak=-2 >
éj‘wl"‘(b+1)2 D1+(Xj (a+;jr(b+1)r(b_a+;j |
| 1+( j ( j 2 (a)r(b+;jl'(b—a+1)

2CO{ tIogaj
_ 1 jmz(ltj ( j = j( j( /1 B ajdt:
\/; 0 2 1+t2 27t _1 o \ et 1 on
~2nlJa Ja . G
( 2itla _ 9|27t )+t(e2n _1)+t\/5(ezn/a _1) 2H2Jdt9

>0 g Lo @ 5 0= 2
ef", o1 X = T 1 @

0 (1+ xz)(1+r2x2)(1+r4x2),,, B 2(1+r +r3+r6+r1°+,__)' )

We have also some possible mathematical connecotrdhghe egs. (1.19b), (1.34), (1.36) and eq.
(3.6). Indeed:

1
=2 arctart dt 1=-lo arccoypl— | >
¢0)=2[; g\/ ( ¥ 02879}
R O
0 Jt cos® \/1 £°5%2%sin’ ¢
:IZtan‘l(SS"'\/af3(—q5)/f3(—q)) 1 d =\/§J»2tan (51’4qu( ) ()) 1 d¢9
0 J1-£°5%2sin? ¢ 0 J1-€52sin’ ¢

E :i ixk _k_2 -~ :i
>4, (zﬂ)ofkg_gzﬂﬂe Z( 2jco(k)dk 2. a9

Z 2] arctart dt 1——Iog\/2(arcco$ogij9

0,2879
eﬁf(—t)f(—ts)f(—t )f( t15 dt—— 2tan’ 1/(

111vv
- sm

1 _1tan(3f)

ml2 1
= o [ T8 0ES ]—,7d¢ >
972t [1+v53 (1—v5‘1)(1+v5‘5)] 1_81lsin2¢ 4- ( ) (1+v5)1+v€ 1_3-_2Sin2¢

oY Galrs o =Kok =2
ez(zjw (277') J-k2 k2>2+£ Z( sz(k)dk 1_¢_ (4_9)
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In conclusion, we have also some possible mathealatonnections between the egs. (1.32) and

(1.39) with the following equation 7—;=Llog \/(Mj+ (%j , related ton

V142 4

and with the physical vibrations of the superstinthence, we have:

8ryila)da_, 1+ (V5 -2
5~[¢/q5 ; Iog(u v3)+\/§log(1~_¥m%j9

9%r: 8 \/(10+11\/§J+ (1o+47\/§] 410)

——=lo
V142 J 4

0 ) o)tz 2 [ - 99>
o2 e [, ’
64

9’_;:L|og \/[10+11\/§j+ [10+47*/§J . (411)
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