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Abstract 
 

The conjecture [1] stated that four colors are sufficient for any 2-dimensional plane map so 

that no two regions with a shared border are the same color. The conjecture is now a 

theorem [2], the result of a lengthy and complex proof, involving over 1000 

classifications of graph objects and over 1000 hours of computer time. Instead of 

considering all maps, this paper examines which elements of a map are possible and the 

issue of causality and redundancy. 

 

1. Method 

 
To simplify the analysis, map configurations will be transformed to graph objects. 

 

          
          fig. 1      fig.2      

 

The regions colored A, B, and C in fig.1, are represented by small circles (nodes) in fig.2. 

A line connecting the nodes represents any path crossing the border between any two 

regions in fig.1. This eliminates dealing with regions having highly irregular borders, and 

focuses on connectivity. Since borders cannot overlap, lines cannot cross. 
 

1.1 The color restriction for maps can be restated for the graph as: no paired nodes are the 

same color. 

 

2. Proposed cause 
 

The color of a node is determined by the nodes directly linked to it. It and the linked 

nodes form a complete object, defined as having all possible links formed. 

 



     
 

      fig.3     fig.4 

 

When 3 nodes form a closed boundary as ABC in fig.3, the surface is divided into 2 

independent portions. The blank node in the interior of ABC (fig.3) is isolated from a 

blank node in the exterior of ABC (fig.4). The color of the first blank does not affect the 

color of the second blank. The color of both is determined by the adjacent A, B,  & C 

nodes, requiring a 4th color D for both. 

 

3. Coloring the map 

 

  

       
 

     fig.5       fig.6 

 

Fig.5 shows a formation of regions with a general geographic form and an id number.  

After numbering the nodes in any random order, they are sorted into a sequence by 

decreasing link count, as shown in fig.7. 

 

links per node 

2 3 4 5 6 

1 2 3   

6 5 4   

     

 

         fig.7 

 

 

 

  



node A B C D plink 

3 1     

4 0 1   3 

2 0 0 1  3 4 

5 0 0 1  3 4 

1 0 1 0  2 3 

6 1 0 0  4 5 

 

         fig.7a 

 

A color assignment table can be formed satisfying 1.1 based on connectivity using this 

sequence (fig.7a). In general, the more links per node, the more color restrictions for that 

node, and the reason it is given priority. Colors are assigned using the set A to D.  The 

process for each node is to list preceding colored links (plink) on the right and place a 0 

in each column containing a 1 for each plink, which prohibits using its color. From left to 

right, place a 1 in the cell of the first available color. This method is based on the idea 

that nodes without color cannot affect the node being assigned a color. 

Processing the nodes from fig.5 assigns a color to each id as shown in fig.6. 

 

     
     fig.8        fig.9 

 

 

node A B C D plink 

3 1     

4 0 1   3 

5 0 0 1  3 4 

1 0 1   3 

2 0   0 1  1 3 4 

7 0 0 0 1 1 3 5 

6 1 0 0  4 5 

      

 

         fig.10 

 

Addition of a node adds links to some existing nodes, thus a new sequence is formed that 

modifies the previous table. Fig.10 is the revised table used to assign colors for fig.9.  



 

4. Map reduction and redundancy 

 

Inspection of fig.10 reveals nodes (1, 2, & 6) reuse (A, B, & C), and therefore do not 

force the need of a 4th color.  

 

node A B C D plink 

3 1     

4 0 1   3 

5 0 0 1  3 4 

7 0 0 0 1 3 4 5 

      

      

 

          fig.11 

 

Removal of the redundant nodes and a different sequence modifies fig.10 to fig.11. 

 

         
          fig.12 

 

The map of fig.10 is reduced to the complete 4c object in fig.12 which supports section 2. 

 

5. The causality issue and redundancy 
 

          
    fig. 13       fig. 14 

 

Some authors use fig. 13 as an argument against completeness as the cause of color 

number, reasoning that there are not 3 mutually connected nodes in fig.13, yet it still 

requires 3 colors. Fig. 14 is the 4 color counterpart for the same argument.  



      
       

     fig.15      fig.16 

 

Using the coloring table to remove redundant nodes, the revised maps are  fig.15, a 

complete 3c object and fig.16, a complete 4c object.   

 

The color number is determined by the complete object that remains after removal of the 

redundant parts of the configuration. In each case redundancy obscured completeness.  

 

6. Conclusion 
 

With a plane surface tiled with 3c objects as in fig. 2, the 4th color is required wherever a 

node is inserted within an arbitrarily selected boundary. This is independent of n. 

Sections 4, 5, & 6 show any map can be reduced to a 4c object, with the color being 

determined locally by adjacent contact supporting the proposed cause (section 2). The 

notion of causality spreading through the links, and therefore a larger map providing a 

possible configuration for the 5c object, has been shown to be a false assumption. 

 

        
         fig.17 

 

The only solution to defeat isolation is by adding another dimension, forming the torus  

(fig.17). 
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