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In the framework of the special theory of relativity, elementary formulas are used to derive 

the formula for determining the relativistic angular momentum of a rotating ideal uniform ball. 

The moment of inertia of such a ball turns out to be a nonlinear function of the angular velocity 

of rotation. Application of this formula to the neutron star PSR J1614-2230 shows that due to 

relativistic corrections the angular momentum of the star increases tenfold as compared to the 

nonrelativistic formula. For the proton and neutron star PSR J1748-2446ad the velocities of 

their surface’s motion are calculated, which reach the values of the order of 30% and 19% of 

the speed of light, respectively. Using the formula for the relativistic angular momentum of a 

uniform ball, it is easy to obtain the formula for the angular momentum of a thin spherical shell 

depending on its thickness, radius, mass density, and angular velocity of rotation. As a result, 

considering a spherical body consisting of a set of such shells it becomes possible to accurately 

determine its angular momentum as the sum of the angular momenta of all the body’s shells. 

Two expressions are provided for the maximum possible angular momentum of the ball based 

on the rotation of the ball’s surface at the speed of light and based on the condition of integrity 

of the gravitationally bound body at the balance of the gravitational and centripetal forces. 

Comparison with the results of the general theory of relativity shows the difference in angular 

momentum of the order of 25% for an extremal Kerr black hole. 
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1. Introduction 

In the general theory of relativity, the angular momentum of a ball can be calculated using 

the metric [1], since it is necessary to take into account both the effect of gravity and centripetal 

acceleration, which change the metric properties of the volume of the ball. In the special theory 
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of relativity in the slow-rotation approximation, the influence of the metric in the first 

approximation can be neglected. 

The angular momentum of an ideal uniform ball in classical mechanics is calculated by the 

formula: 
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= = ,                                                  (1) 

 

where 
0  is the mass density of the ball’s matter,   is the angular velocity of rotation, a  

is the ball’s radius, m  is the ball’s mass. 

 

However, formula (1) does not take into account the relativistic effect of the momentum’s 

dependence on the velocity for each of the ball’s particles, so that (1) is applicable only at low 

rotation velocities. According to the special theory of relativity, in a body moving at a constant 

linear velocity, the mass density increases in proportion to the Lorentz factor 
2 2

1

1 v c
 =

−
, 

where v  is the velocity of the body, c  is the speed of light. At the same time, the volume of the 

body decreases in inverse proportion to the Lorentz factor, as a consequence of the Lorentz 

length contraction. As a result, the body mass m  as the product of the mass density by the 

volume remains unchanged. The same applies to the mass element 
0dm dxdydz= . 

In the case under consideration, the ball’s mass element is moving along the rotation 

circumference and not along a straight line. Thus, our calculations will be limited to the 

accuracy, with which the special theory of relativity approximates rotation of bodies, and 

inertial reference frames approximate rotating non-inertial reference frames, where acceleration 

of rotation occurs. 

We will first try to calculate the relativistic angular momentum of the ball in the Cartesian 

coordinates , ,x y z . In these coordinates, the volume element of a fixed uniform ball is given 

by the formula dV dxdydz= . Multiplying the volume element by the mass density 0  we find 

the mass element of the ball: 0dm dV= .  Suppose the ball rotate at the angular velocity   

about the axis OZ  of the fixed coordinate system with the origin at the center of the ball.  

Let some mass element be at a distance 2 2 2R x y z= + +  from the ball’s center and have 

the relativistic momentum 
rd dm=p v , while the linear velocity of motion of the mass element 

[ ]= v ω R  is given by the vector product of the angular velocity ω  by the radius-vector R . 



3 

 

Since the vector ω  is directed along the axis OZ , only two components of the linear 

velocity are not equal to zero: ( , ,0)y x = −v . To calculate the angular momentum of the 

mass element we need to multiply vectorially the radius-vector by the momentum: 

[ ]d d= J R p . Then we need to integrate dJ  over all the ball’s mass elements in order to find 

the total angular momentum J . The components 
xdJ  and 

ydJ  are proportional to x  and y , 

accordingly, so that after integration over the entire volume of the ball, the components 
xJ  and 

yJ  will be equal to zero. 

Since the vector J  has only one non-zero component 
zJ  which is directed along the axis 

OZ , then taking into account the dependence of the Lorentz factor 
2 2 2
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the coordinates, for this vector’s magnitude 
zJ J=  we find the following: 
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We will substitute the limits of integration in the volume integral (2) and integrate with 

respect to the variable z : 
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                     (3) 

 

Apparently, the integral with respect to the variable y  in (3) refers to elliptic integrals and 

does not reduce to elementary functions, which makes it difficult to calculate it. Therefore, the 

clearness is lost in predicting the dependence of the angular momentum J  on the angular 

velocity, mass or radius of the ball. 
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Nevertheless, calculation of the relativistic angular momentum of the ball is possible with 

the help of elementary functions. We will illustrate this in the next section. 

 

2. Calculation of the relativistic angular momentum of the ball 

In the cylindrical coordinate system , ,r z , the volume element of a fixed uniform ball is 

defined by the formula dV rdrd dz= , and the mass element of the ball is: 

0 0dm dV rdrd dz  = = .  

The current coordinate r  is directed perpendicularly both to the rotation axis and to the 

velocity v . For the relativistic angular momentum of the ball’s mass element we can write: 

rdJ rvdm= . Let us cut the ball perpendicularly to the axis OZ  to a number of parallel layers 

with thickness dz  and calculate the angular momentum 
idJ  for one of such layers, which has 

a certain maximum radius 
ir  . Given that v r= , 

2 2 2

1

1
r

r c

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=

−
, we have the following: 
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Now we need to integrate (4) over all the ball’s layers, that is, with respect to the variable z

. If the ball’s radius is equal to a , we can integrate with respect to the variable z  from zero to 

a , that is, over one hemisphere, and then double the result in order to take into account the 

second hemisphere. Inside the upper hemisphere the radius 
ir  of an arbitrary layer is connected 

with the variable z  by the following relation: 2 2 2

ir a z= − . This relation can be substituted into 

(4) and then integrated over all the layers: 
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The result is as follows: 
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At low angular velocities of rotation  , we can expand the logarithm in (5) up to the terms 

containing the multiplier 
7c  in the denominator. This gives the standard angular momentum of 

the ball and the first order addition: 
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Another limiting case is obtained if we assume that the surface at the ball’s equator moves 

due to rotation at the velocity reaching the speed of light. In (5) this corresponds to the fact that 

the ratio 
a

c


 tends to unity. If we take into account that 
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then in (5) the third term with logarithm disappears, and for the ball’s limiting angular 

momentum with a c =  we obtain: 

 

5 2

lim 0

3 3

4 4
J a m a mca   = = = .                                           (7) 

 

Within the framework of the special theory of relativity no spherical body can reach the 

angular momentum equal to (7). For gravitationally bound bodies there is a softer condition for 

the maximum rotation velocity associated with the stability of matter at the equator, where the 

linear velocity has the largest value. Here the centrifugal acceleration must not exceed the 

acceleration from the gravitation force, which leads to the inequality: 
3

Gm

a
  . Substituting 

this angular velocity in (5) and in (6), we can estimate the maximum angular momentum of 

gravitationally bound bodies, knowing only their mass and radius. 
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In the general theory of relativity, the extremal Kerr black hole with the largest possible 

rotation has the angular momentum 
2

K

Gm
J

c
=  and the surface radius of events 

2K

Gm
a

c
= . If 

we substitute 
Ka  in (7), we will obtain 

2

lim

3

4
K

Gm
J J

c
=  . Thus, in the general theory of 

relativity the limiting angular momentum of extremal objects increases by 25% in comparison 

with the result of the special theory of relativity. 

 

3. Calculation of the angular momentum of a neutron star and a proton 

The results obtained are useful for estimating the angular momentum and the moment of 

inertia of such rapidly rotating objects as neutron stars and nucleons. The moment of inertia can 

be determined as the ratio of the angular momentum to the angular velocity of rotation: 
J

I


=

. The mass of a uniform ball depends on the mass density and the volume of the ball: 

3

04

3

a
m

 
= . Substituting it into (5), we obtain the formula for the moment of inertia of a 

uniform ball rotating at the angular velocity  : 
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We will use (8) to estimate the moment of inertia of the pulsar PSR J1614-2230, for which, 

according to [2], we know the angular velocity of rotation
31.994 10 =   rad/s, the radius 

12.8a =  km, and the mass 1.97m M= , where M  is the mass of the Sun. Since for this pulsar 

28.51 10
a

c

 −=  , the surface of its equator moves at velocity of about 8.5% of the speed of 

light. With these data, it follows from (8) that the pulsar’s moment of inertia is equal to 

392.55 10I =   kgm2, and the angular momentum reaches the value 
425.08 10J =   kgm2/s. At 

the same time, if we would make calculation using the classical formula 
22

5

m a
J


 , then the 

angular momentum would be equal to 
415.11 10  kgm2/s. As we can see, in this case the 

relativistic formula for the angular momentum gives ten times larger value than the simple 

formula from classical mechanics. For a star, however, it should be taken into account that its 
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mass density increases at the center, where it exceeds the average density approximately 1.5 

times [3]. As a result, the angular momentum of the star must be less than the value 

425.08 10J =   kgm2/s, calculated for a uniform ball in case of its relativistic rotation. 

In quantum mechanics, it is known that the proton’s spin is equal to 
2

, where  is the 

Dirac constant. Suppose that this value is equal to the proton’s angular momentum 
pJ , and let 

us estimate how the proton rotates in this case. If we denote 
pa

c


 = , where 

pa  is the proton 

radius, then from (8) it follows: 
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In (9) the Dirac constant  and the proton mass 
pm  are well known, and for the proton 

radius we will use the value 
168.73 10pa −=   m, according to [4]. In this case (9) becomes the 

equation for  . The solution of this equation is the value 0.3
pa

c


 =  , from which we obtain 

the value of the proton’s angular velocity of rotation 
231 10 =   rad/s. In this case the velocity 

of rotation of the proton’s surface reaches 30% of the speed of light. 

 

4. Conclusion 

Using division of a ball into a number of parallel layers, we find in (5) a formula for the 

relativistic angular momentum of a uniform ball expressed in terms of elementary functions. 

According to (6), at low angular velocities of rotation   the relativistic correction to the 

standard angular momentum increases in proportion to 
3 , that is, in proportion to the cube of 

the rotation velocity. At sufficiently high rotation velocities the angular momentum changes as 

a logarithmic function. The limiting angular momentum of the ball is reached when the surface 

points at the equator of the ball move at the speed of light, while the angular momentum is 

expressed by formula (7). 

Formula (5) can be used to calculate the relativistic angular momentum of a thin spherical 

shell with thickness d : 
d a a dJ J J −= − , where 

aJ  is the angular momentum of a ball with the 
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radius a . In this case, a ball with reduced radius a d−  and angular momentum 
a dJ −

 is 

embedded in this ball. Thus, the angular momentum 
dJ  of the shell becomes a function of the 

radius, angular velocity of rotation, mass density and thickness of this shell. 

With this in mind, any rotating spherical body can be divided into a number of spherical 

shells, each of which has its own radius, angular velocity of rotation and mass density, and, 

accordingly, its own angular momentum 
dJ . To calculate the angular momentum of a spherical 

body it is only necessary to sum up the angular momenta of all the body’s shells. The accuracy 

of the result will depend on the number of the shells used and on the accuracy of the mass 

density distribution and of the angular velocity of rotation inside the body. 

We use the results obtained to calculate the angular momentum and the moment of inertia 

of the neutron star PSR J1614-2230. It turns out that the relativistic angular momentum is ten 

times larger than the angular momentum according to the nonrelativistic formula. 

For a proton we determine the corresponding angular velocity of rotation based on its 

quantum spin. In this case the velocity of the proton’s equatorial points reaches 30% of the 

speed of light. As for the star PSR J1614-2230, the velocity of its equatorial points reaches 

8.5% of the speed of light. We need to add that at present the fastest rotating pulsar [5] is PSR 

J1748-2446ad with the angular velocity of rotation 34,498 10 =   rad/s.  If we assume that by 

mass and size it is the analogue of PSR J1614-2230, then at the assumed radius 12.8a =  km 

the relative velocity at the star’s surface could reach the value 0.19
a

c


 . In this case, the star 

could rotate at the velocity at the equator of the order of 19% of the speed of light, which is 

comparable to the rotation of the proton surface.  
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