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Abstract

This paper is a review of some interesting restiiett has been obtained in the study of the
categories of A-branes on the dual Hitchin fiberd aome interesting phenomena associated with
the endoscopy in the geometric Langlands corresgwed of various authoritative theoretical
physicists and mathematicians.

The geometric Langlands correspondence has beerpiieted as the mirror symmetry of the
Hitchin fibrations for two dual reductive groupshi$ mirror symmetry reduces to T-duality on the
generic Hitchin fibers. Also from this work we'va@wved that can be obtained interesting and new
mathematical connections with some sectors of Nuriheory and String Theory, principally with
the modular elliptic curves, p-adic and adelic nerskand p-adic and adelic strings.

In the Section 1 we have described some equations regarding th@sGaoup and Abelian class
field theory, automorphic representations of ;(8lg) and modular forms, adéles and vector
bundles. In th&ection 2 we have showed some equations regarding the mswhdes of Sp.and

SO; Higgs bundles on an elliptic curve with tame racaifion at one point. In th8ection 3 we
have showed some equations regarding the actidneofVilson and ‘t Hooft/Hecke operators on
the electric and magnetic branes relevant to gemmehdoscopy. In thé&ection 4 we have
described the Hecke eigensheaves and the notiraational Hecke eigensheaves. In &ection

5, we have described some equations concerningta¢ and global Langlands correspondence. In
the Section § we have described some equations regarding tieenagphic functions associated to
the fractional Hecke eigensheaves. In 8eetion 7 we have showed some equations concerning
the modular elliptic curves belonging at the probfFermat’'s Last Theorem. In ti8ection § we
have showed some equations concerning the p-adi@delic numbers and the p-adic and adelic
strings. In the Section 9 we have described the P-N Model (Palumbo-Nardetidel) and the
Ramanujan identities, solution applied to ten disi@mal [IB supergravity (uplifted 10-dimensional
solution) and connections with some equations aoieg the Riemann zeta function.



In conclusion, in th&ection 10 we have described the possible mathematical obione obtained
between some equations regarding the various sectio

1. Galois group and Abelian class field theory, automghic representations of GLx(Ag)
and modular forms, adeles and vector bundles. [1]

With regard the entire groufal (If/F), it has been known for some time what is the maxi
abelian quotient ofGal (If/F). This quotient is naturally identified with thealis group of the

maximal abelian extensioR® of F . By definition, F* is the largest of all subfields & whose
Galois group is abelian. Fdf =Q, the classical Kronecker-Weber theorem says tieatrtaximal

abelian extensio®® is obtained by adjoining t® all roots of unity. In other wordKQ® is the
union of all cyclotomic fieIdsQ(ZN). Therefore we obtain that the Galois groGpl (Qab/Q) is
isomorphic to the inverse limit of the grou(:Z/NZ)x with respect to the system of surjections
Puw :(ZINZ) = (Z/MZ) for M dividing N :

Gal(Qab/Q)Dli[n(Z/NZ)x. (1.1)

By definition, an element of this inverse limitascollection(x, ), N >1, of elements o{Z/NZ)"
such thatp, (xy)=x, for all pairs N,M such thatM divides N . This inverse limit may be

described more concretely using the notiop-aidic numbers Recall that ifp is a prime, the p-
adic number is an infinite series of the form

a P +a.,p " +a.,p "+ .., . (1.2)

where eachg, is an integer between 0 arg- , dnd we choos&[1Z in such a way thah, # 0

One defines addition and multiplication of such resgions by “carrying” the result of powerwise
addition and multiplication to the next power. Qrtecks that with respect to these operatibes
p-adic numbers form a field denoted byQ,. It contains the subring Z, of p-adic integers

which consists of the above expressions vikth . ItQs clear thatQ, is the field of fractions of
Z,. Note that the subring d ; consisting of all finite series of the form (1\ith k>0 is just the
ring of integersZ . The resulting embedding — Z gives rise to the embeddif@— Q. It is
important to observe th&, is in fact a completion of. To see that, define a nodﬁ@) on Q by

the formula‘pka/b‘p =p™*, where a,b are integers relatively prime tp. With respect to this

norm p* becomes smaller and smallerlas- +o . That is why the completion & with respect
to this norm is the set of all infinite series bétform (1.2), going in the wrong direction. Thés i
precisely the fieldQ,. This norm extends uniquely @Q,, with the norm of the p-adic number (1.2)
being equal top™. In fact, according to Ostrowski’s theorem, anynptetion of Q is isomorphic
to eitherQ, or to the fieldR of real numbers.



Now observe that if N =T1 ppm” is the prime factorization oN , then Z/Nz 00N .2/ p™Z. Let

Z be the inverse limit of the ring&/NZ with respect to the natural surjectiodg NZ - Z/MZ
for M dividing N :
Z=limZ/NZ 0z, @3)
- P

It follows that i
ZO[limz/p'z], hence Z=limz/Nz O[]z, O[]limz/p'Z),
|_p|(‘_ ) - |:| P |:|(‘_ )

where the inverse limit in the brackets is takethwespect to the natural surjective homomorphism
ZIp'Z - ZIp°Z, r>s.So we find that

Z O[12,- (24)

Note thatZ defined above is actually a ring. The Kroneckeréfetheorem (1.1) implies that
Gal (Qab/Q) is isomorphic to the multiplicative grouIE)x of invertible elements of the riné . But
we find from (1.4) thatZ* is nothing buthe direct product of the multiplicative group Z; of
the rings of p-adic integers wherep runs over the set of all primesWe thus conclude that

Gal(Q®/Q)nZ* O Mz @s
p

The abelian class field theory (ACFT) describes its Galois grougal(F®/F), which is the
maximal abelian quotient oal (If/F). It states thatGal (Fab/F) is isomorphic to the group of
connected components of the quoti€it\ A®. Here A° is the multiplicative group of invertible
elements in the ring A. of adéles of F, which is a subring in the direct product of all
completions of F. We define the adeles first in the case whelr =Q. In this case, the
completions of Q are the fieldsQ, of p-adic numbers, wherep runs over the set of all primes
p, and the field R of real numbers. Hence the ringA, is a subring of the direct product of

the fields Q,. More precisely, elements d%, are the coIIectionﬂfp)pDP, fm), where f, 00Q, and
f, OR, satisfying the condition that,[1Z for all but finitely many p’s. It follows from the

definition that
A, 0(Z 0, Q)xR.

We give the ringﬁ defined by (1.3) the topology of direct produ@,the discrete topology and
its usual topology. This defines, the structure of topological ring oA,. Note that we have a

diagonal embeddin@ — A, and the quotient

Q\ A, 0Zx(R/Z)



is compact. This is in fact the reason for the a&boondition that almost alf ;'s belong toZ ;. We
also have the multiplicative group A, of invertible adéles (also called idélesand a natural
diagonal embedding of grouf®* — A, . In the case whefr =Q, the statement of ACFT is that

Gal (Qab/Q) is isomorphic to the group of connected compamenthe quotienQ™\ A;. It is not
difficult to see that

Q\A O[]Z; %R, (1.6)
p

Hence the group of its connected components is asoinic to |_|Zp in agreement with the
P

Kronecker-Weber theorem.
Now we discuss cuspidal automorphic representatjtblﬁl_z(A) = GLZ(AQ) and how to relate them

to classical modular formson the upper half-plane. We will then consider the-dimensional
representations ofal (GIQ) arising fromelliptic curves defined over Q and look at what the
Langlands correspondence means for such represastdn this special case the Langlands

correspondence becomes the statement of the TaniyarShimura conjecture which implies
Fermat’s last theorem The cuspidal automorphic representation@bg(A) are those irreducible
representations of this group which occur in tlreedite spectrum of a certain space of functions on
the quotientGL,(Q)\ GL,(A).

We start by introducing the maximal compact subgroki 0 GLZ(A) which is equal to

M pGLZ(Zp)x O,. Let z be the center of the universal enveloping algebréne Lie algebragl, .
Then z is the polynomial algebra in the central elemkntgl, and the Casimir operator

c=1x+lx x +ixx., an
4 2 2

where

are basis elements af, [ dl, .
Consider the space of functions dBL,(Q)\GL,(A) which are locally constant as functions on
GLZ(Af), where A" =M’ Q,, and smooth as functions oBL,(R). Such functions are called

smooth. The group;Lz(A) acts on this space by right translations:

(gcr )h)=f(hg), gOGL,(A).

In particular, the subgrouL,(R) 0 GL,(A), and hence its complexified Lie algebgh and the
universal enveloping algebra of the latter also @be groupGL,(A) has the centeZ(A) O A"
which consists of all diagonal matrices. For a ahtar x : Z(A) - C* and a complex numbep let

¢, ,(GL(Q\GL,(A)



be the space of smooth functiorfs: GL,(Q)\GL,(A) - C satisfying the following additional
requirements:
0] (K -finiteness) the (right) translates df under the action of elements of the compact
subgroupK span a finite-dimensional vector space;
(i)  (central characten)f(gz)=x(z)f(g) for all gOGL,(A), zOZ(A), and CI[f = ¢ ,
whereC is the Casimir element (1.7):
(i)  (growth) f is bounded orGL, (A);

(V)  (cuspidality) jQ\NAf((; lljjgjduzo.

The spacec)(’p(GLz(Q)\GLz(A)) is a representation of the group

eL(A")= [eL@,) @8

p(prime)

and the Lie algebral,, whose actions commute with each other. In aduitibe subgrou, of
GLZ(R) acts on it, and the action @, is compatible with the action ajl, making it into a module
over the so-called Harish-Chandra pif,,0,). It is known thate, ,(GL,(Q)\ GL,(A)) is a direct
sum of irreducible representations GILZ(Af)x gl,, each occurring with multiplicity one. The
irreducible representations occurring in these epaare called the cuspidal automorphic
representations oGLz(A). An irreducible cuspidal automorphic representatii may be written

as a restricted infinite tensor product
m= 0O ‘m0m,, (1.9)
p(prime)
where 77, is an irreducible representation GLZ(QD) and 7z, is a gl,-module. For all but finitely
many primes p, the representationr, is unramified, which means that it contains a mern
vector invariant under the maximal compact subgr@jg(zp) of GLZ(QP). This vector is then
unique up to a scalar. Let us chodsez(zp)-invariant vectorsv, at all unramifiedprimes p.

Then the vector space (1.9) is the restricted itefitensor product in the sense that it consists of
finite linear combinations of vectors of the form, w, 0w, , wherew, =v, for all but finitely

manyprime numbers p. It is clear from the definition of A" = M',Q, thatthe groquLz(Af)
acts on it. Suppose now that is one of theprimes at which 7z, is ramified, so7z, does not
contain GLZ(Zp)-invariant vectors. Then it contains vectors inaati under smaller compact
subgroups o’GLZ(Zp).

Let us assume for simplicity that = . Then one shows that there is a unique, up t@alarsaon-
zero vector insz, invariant under the compact subgroup

. a b n
Kp:{( dJ|CEOmodp”Zp} (1.10)

c



for some positive integen, . Let us choose such a vectgr at allprimes where 72 is ramified. In
order to have uniform notation, we will sef = a@thoseprimes at which 7z, is unramified, so at
such primes we haveé | :GLZ(ZP). Let K'= |_|pK'p. Thus, we obtain that the space Ikf-
invariants in7n is the subspace

m,=0,v,0m, (1.11)

which carries an action dfgl,,0,). The space7, of K'-invariant vectors inn is realized in the
space of functions on the double quotiéit,(Q)\ GL,(A)/K".

Now we use the strong approximation theorem toiolitee following useful statement. Let us set
N = |_| ) p™ and consider the subgroup

r(N)= {i Zj lc= OmodNZ}

GL,(Q)\GL,(A)/K'OM,(N\GL(R), (1.12)

of SL,(Z). Then

where GL;(R) consists of matrices with positive determinantudhthe smooth functions on
GL,(Q)\GL,(A) corresponding to vectors in the spage given by (1.11) are completely
determined by their restrictions to the subgrelg (R) of GL,(R) 0 GL,(A).
Consider the case whem, is a representation of the discrete serie$ghf(C),0(2)). In this case
o =k(k-2)/4, wherek is an integer greater than 1. Then, asigamodule, 7z, is the direct sum
of the irreducible Verma module of highest weighk and the irreducible Verma module with
lowest weightk . The former is generated by a unique, up to aschighest weight vector, such
that

Xov, =-kv,, X, =0,

[ [

0 *

1 0
and the latter is generated by the lowest Weigbtore(o —lj v

Thus, the entireglz(R)-moduIe 7T, is generated by the vectgg, and so we focus on the function
on ,(N)\S,(R) corresponding to this vector. Let, be the corresponding function @, (R).
By construction, it satisfies

2(w)=¢0),  yOT,(N),

cosgd sind o
=¢ 0<d<2n.
wn[g(_ g oo SQD #.(9)
We assign tag, a function f, on the upper half-plane
H={rOC|Imr>0}.

Recall thatH 09, (R)/ SO, under the correspondence
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a b a+bhi
<,(R)0g = OH .
(RIDg (c d]Hc+di

We define a functionf, on SL,(R)/ SO, by the formula

f.(g)=lg)(ci +d)*.

When written as a function af, the functionf satisfies the conditions

f”(ar+3j:(cr+d)kf,,(r), (i bJDFO(N). (1.13)

CT+ d

In addition, the “highest weight conditionX, ¥, =0 is equivalent tof, being a holomorphic

function of 7. Such functions are calledodular forms of weight k and level N .
Thus, we have attached to an automorphic represemta of GL,(A) a holomorphic modular

form f_ of weightk and levelN on the upper half-plane. We expand it in the Femseries

fa)=>aa", q=¢"". (1.14)
n=0

The cuspidality condition om means thatf, vanishes at the cusps of the fundamental domain of
the action off,(N) on H . Such modular forms are called “cusp forms”. Intipalar, it vanishes at
g=0 which corresponds to the cugp=ic, and so we have, = .CFurther, it can shown that

a # 0, and we will normalizef,, by settinga, =1. The eq.(1.14)in related also to the following
conjecture: for each elliptic curve E over Q there should exist a modular cusp form

fe(a)=>"_aq",

with a =1 and
a, = p+1-#E(F,) (1.14b)

for all but finitely many primes p. This is in fact the statement of the celebrated ahiyama-

Shimura conjecture that has recently proved by A. Viles and others. It implies Fermat’s Last
Theorem.

The normalized modular cusp forrfi (q) contains all the information about the automorphic

representatiom. In particular, it “knows” about the Hecke eigelues of 72.
Let us give the definition the Hecke operators.sTikia local question that has to do with the local
factor 7z, in the decomposition (1.9) of at a prime p, which is a representation GLZ(QP).

Suppose thatz, is unramified, i.e., it contains a unique, up tscalar, vector, that is invariant
under the subgroup‘;Lz(Zp). Then it is an eigenvector of the spherical HealgebraH , which is
the algebra of compactly support&t,(Z,) bi-invariant functions orGL,(Q, ), with respect to the



convolution product. This algebra is isomorphic¢ie polynomial algebra in two generatdt

andH, ,, whose action ow, is given by the formulas

2,p?

Hy, V) j p,(0),dg, (1.15) H,, IV, = j (9)0p,dg, (1.16)

wherepp:GLz(Z ) - End 7z, is the representation homomorphlsm'( ) =12 are the double

cosets
0 0
M;(Zp)=GL2(Zp{8 JGLZ(Zp), MZZ(ZP)ZGLZ(Zp{g pJGLZ(Zp)
in GLZ(QP), and we use the Haar measure @hz(Qp) normalized so that the volume of the

compact subgrouﬁSLz(Zp) is equal to 1.

Since the integrals are ov@Lz(Zp)-cosets,Hlyp W, andH, [V, are GLZ(ZP)-invariant vectors,
hence proportional te, . Under our assumption that the cenfdi) acts trivially on 7y =1) we
have H, v, =v,. But the eigenvaluen, ; of H,, on v, is an important invariant ofz,. This

invariant is definedor all primes p at which 7z is unramified. These are precisely the Hecke
eigenvalues.
Now we should consider automorphic representatidribe adélic group GLn(A). Here A=A is

the ring of adélesof F , defined in the same way as in the number fiekkc&or any closed point
x of X, we denote byF, the completion ofF at x and byO, its ring of integers. If we pick a

rational functiont, on X which vanishes atx to order one, then we obtain isomorphisms
F, Ok ((t,)) andO, Ok [t ]|, wherek, is the residue field ok (the quotient of the local rin®,

by its maximal ideal). This field is a finite exsan of the base fieltk and hence is isomorphic to
F, » Whereg, = q®®. The ring A of adéles of F is by definition therestricted product of the

fields F,, wherex runs over the set of all closed pointsXf

Note thatGL,(F) is naturally a subgroup oBL,(A). Let K be the maximal compact subgroup
K = [,0xGLa(O,) of GL,(A). The groupGL,(A) has the centeZ(A) DA which consists of the
diagonal matrices. Ley : Z(A) — C* be a character aZ (A) which factors through a finite quotient
of Z(A). Denote by GX(GLn(F)\GLn(A)) the space of locally constant functions
f :GL,(F)\GL,(A) - C satisfying the following additional requirements:

0] (K -finiteness) the (right) translates df under the action of elements of the compact
subgroupK span a finite-dimensional vector space;
(i)  (central character¥ (gz) = x(z)f(g) for all gOGL,(A), zOZ(A);

(i) (cuspidality) letN,, ,, be the unipotent radical of the standard paralsallogroupP,, .,
of GL, corresponding to the partitiom=n, +n, with n,n, >0. Then

[#lug)du =0, OgOGL,(A). (1.17)

Npy g (F)\Ngy o, (A)
The groupGL,(A) acts one€, (GL, (F)\ GL,(A)) from the right: for
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foe (GL(F)\GL,(A), gOGL,(A)

we have (g o )(h) _ (hg) _— DGLn(F)\GLn(A)' (1.18)

Under this actiorﬁX(GLn(F)\GLn(A)) decomposes into a direct sum of irreducible repredions.
These representations are caliagducible cuspidal automorphic representations of GLn(A). We
denote the set of equivalence classes of theses@amations by, .

Now let 7 be an irreducible cuspidal automorphic represemtaif GLn(A). One can show that it

decomposes into a tensor product
= DDX'H;(, (1.19)

where eachrz, is an irreducible representation 6L, (F,). Furthermore, there is a finite subs®t
of X such that eachrr, with xO X \S is unramified, i.e., contains a non-zero vectey stable
under the maximal compact subgroGh, (O, ) of GL,(F,). The spacél, 7z, is by definition the
span of all vectors of the forml,., w,, where w, (177, and w, =v, for all but finitely many
xOX\S. Therefore the action o6L (A) on 7 is well-defined. Letx be a point of X with
residue fieldF, . By definition, H, be the space of compactly supported functionsth(Fx)

which are bi-invariant with respect to the subgrcmpn(ox). This is an algebra with respect to the
convolution product

(f,0%)9)=[, ., hlon?)r.(n)an, (1.20)
where dh is the Haar measure oL, (F,) normalized in such a way that the volume of the

subgroquLn(Ox) is equal to 1. It is called trepherical Hecke algebra corresponding to the point
X.
Let H,, be the characteristic function of tié,(0,) double coset

Mi(0,)=6GL,(0,)mdiaglt,,....t, 1...) GL,(0,)OGL,(F) (1.21)

of the diagonal matrix whose firstentries are equal ty and the remaining—i entries are equal
to 1. Note that this double coset does not depertth® choice of the coordinate. ThenH, is the
H +1 .

n-1,x? nx-"*

commutative algebra freely generatediy,,...,H

H, OC[H, o Ho o HE | (1.22)

n-1,x?

Define an action off, UH, on vz, by the formula

f,ov=|f(g)lghg. (1.23)



Since f_is left GL,(O,)-invariant, the result is again 6L,(O,)-invariant vector. If 7z, is
irreducible, then the space GILn(OX)-invariant vectors iz, is one-dimensional. Let, [177, be a
generator of this one-dimensional vector spacenThe

fX |:'\I)( = df)()v)(

for some¢(f,)OC. Thus, we obtain a linear functiongt H, — C. In view of the isomorphism
(1.22), a homomorphismil, - C is completely determined by its values bRy ,...,.H ., which
could be arbitrary complex numbers, and its valoeHy, ., which has to be a non-zero complex
number. These values are the eigenvalues, oaf the operators (1.23) of the action §f=H, ,.

These operators are called tHecke operators. It is convenient to package these eigenvaluesas
n-tuple ofunordered non-zero complex numbeg,...,z,, so that

H,, v, =q"%5(z,...z, v, i=1..n, (1.24)

where § is theith elementary symmetric polynomial. In other wortle above formulas may be
used to identify
S

H, Oc[z,.. 22", (1.25)

Now, we show the interpretation of automorphic esentations in terms of the moduli spaces of
rank n vector bundles.

We will restrict ourselves from now on to the imeible automorphic representations Gf, (A)

that are unramified at all points of . Suppose that we are given such a representaticof
GL,(A). Then the space oBL,(0)-invariants in 7, where O=[] O, is one-dimensional,

spanned by the vector
V= )EXVX 0 EX .=, (1.26)
Hencev gives rise to &L, (O)-invariant function onGL, (F)\ GL,(A), or equivalently, a function
f. on the double quotient
GL,(F)\GL,(A)/GL,(0). (1.27)

This function is an eigenfunction of the spheridatke algebrasi, for all xI X .

Let X be a smooth projective curve over any figldand F =k(X) the function field ofX . We
define the ring A of adéles and its subringO of integer adelesin the same way as in the case
whenk = F,. Then we have the following:

Lemma

There is a bijection between the set GL, (F)\ GL,(A)/GL,(0) and the set of isomorphism classes of
rank n vector bundleson X.

We consider this statement in the case wberns a complex curve. Any rank vector bundlev
on X can be trivialized over the complement of finitehany points. This is equivalent to the

10



existence ofn meromorphic sections of whose values are linearly independent away from
finitely many points ofX .
Let x,,...x, be the set of points such that is trivialized overX \{x,,...,x,}. The bundlevV can

also be trivialized over the small dis€s, around those points. Thus, we consider the cogenfn
X by the open subsets \{xl,...,xN} andD, ,i =1,...,N. The overlaps are the punctured difs,
and our vector bundle is determined by the tramsifunctions on the overlaps, which aB& -
valued functionsg, on D;,i=1...,N. The difference between two trivializations ¥f on D,
amounts to &L, -valued functionh on D, . If we consider a new trivialization oD, that differs
from the old one by, then thei th transition functiong, will get multiplied on the right by

h: g+ gh |D;, whereas the other transition functions will remdéihe same. Likewise, the

difference between two trivializations ¥f on X \{x,,...,x,} amounts to &L, -valued functionh
on X \{x,....x,}. If we consider a new trivialization oX \{x,...,x,} that differs from the old one
by h, then thei th transition functiong; will get multiplied on the left byh g, = h|_, g, for all

i =1,...,N. We obtain that the set of isomorphism classesaok n vector bundles onX which
become trivial when restricted t6 \{x,....,x} is the same as the quotient

GL X\ V] 6003 I 6L (0, ) (.28)

Here for an open sdt) we denote byGLn(U) the group ofGL,-valued function onU , with
pointwise multiplication. If we replace eadd, by the formal disc at;, then GLn(D*,) will

becomeGLn(FX), where F, DC((tX)) is the algebra of formal Laurent series with respe a local
coordinatet, at x, and GL,(D, ) will become GL,(O,), where O, OC[[t,]] is the ring of formal
Taylor series. Then, if we also allow the sgt..,x,, to be an arbitrary finite subset of, we will

obtain instead of (1.28) the double quotient
GL,(F)\[,., GL(F)/ [, GL(O)).  (1.29)

where F = C(X) and the prime means the restricted product. Batishexactly the double quotient
in the statement of the Lemma. This completes thefp

Thus, when X is a curve overF,, irreducible unramified automorphic representation are
encoded by the automorphic functioris, which are functions oL, (F)\ GL,(A)/GL,(0). This

double quotient makes perfect sense whénis defined overC and is in fact the set of
isomorphism classes of rank bundles on X. But what should replace the notion of an
automorphic functionf, in this case? We will argue that the proper anaoig not a function, as

one might naively expect, butsheaf on the corresponding algebro-geometric object:ntloeluli
stack Bunp of rank n bundles onX . Let V be an algebraic variety ovéf,. Then,the “correct”
geometric counterpart of the notion of a Q,-valued) function on the set ofF,-points of V is

the notion of acomplex of 7/ -adic sheavesn V. Let us just say the simplest example of an-
adic sheaf is an/ -adic local system, which is a locally constar®, -sheaf on V. For a general
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¢ -adic sheaf there exists a stratification of V bydcally closed subvarieties Vsuch that the
sheaves¥ |, are locally constant

The important property of the notion of an /-adic sheaf¥ on V is that for any morphism
f:V'- V from another variety V' to V the group of symmetries of this morphism will acon

the pull-back of & to V'. In particular, letx be an F -point of V and X the Ifq-point
corresponding to an inclusioR, Ifq Then the pull-back off with respect to the composition
X — X - V is a sheaf orx, which is nothing but the fibeg of  at X, a Q, -vector space. But
the Galois groupGal (Ifq/Fq) is the symmetry of the map - x, and therefore it acts og,. In
particular, the (geometric) Frobenius elemé&ng, which is the generator of this group acts®n
Taking the trace ofr, on %, we obtain a numbefr (Fr_,%)0Q, . Hence we obtain a functiof
on the set ofF,-points ofV , whose value ak is

f,(x)=Tr(Fr,%). (1.30)

More generallyjf K is a complex of/ -adic sheaves, one defines a functioh(K) on V(Fq) by
taking the alternating sums of the traces ofFr, on the stalk conomologies oK at X :

fK(x)zzi:(—l)iTr(Frx,HiX(K)). (1.31)

The mapK - f, intertwines the natural operations on complexesgds with natural operations
on functions.
Thus, because of the existence of the Frobeniusmauphism in the Galois groual (lfq/Fq)

(which is the group of symmetries of &)-point) we can pass from-adic sheaves to functions on
any algebraic variety oveF,. This suggests that the proper geometrization of theotion of a
function in this setting is the notion of/ -adic sheaves

2. On some equations concerning the moduli spaces df Sand SG; Higgs bundles on an
elliptic curve with tame ramification at one point. [2]

We consider a Higgs fielg that is a section of
KDO(p)OW =0%,K 00(p) 00(g)™.

For eachi, we can pick a section, of K 0O(p)’ 00(q)™", namely u =(dx/y)(x—¢), with
Tru? =(dx/ y)’(x— ). The general form of the Higgs field is
3
¢ :Zaiui , (2.1)

i=1

with complex constants, . This gives
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Tr ¢* :(d_;(J Zaf(x—q). (2.2)

Letting z= x™"'? be a local parameter at infinity, the polar pdrtTo ¢? is 4(dz/ z)zzi a’.

Setting this to202(dz/ z)°, we require

=2 (23

This affine quadric describes a Zariski open aeMiH(C;SLE). The constant term multiplying
(dx/y)2 on the right hand side of (2.2) is—zie,af. This enables us to describe the Hitchin
fibration; it is the map fronfa,,a,,a,) to

W= 68 . (2.4)

A fiber of the Hitchin fibration is given by thetersection of the two quadrics (2.3) and (2.4). The
parameter g, can be scaled out of these equations, assuming ithid nonzero. We set

W, =—o;w/2, and b = ai(\/E/UO) to put the two quadrics in the form

b’ +b;+bf= ;1 eb’+ebj+ebf=w. (2.5)

For genericw, this intersection is a smooth curve of genusifl) some points omitted because we
have assumeW to be stable. Now, if f = zi b’-1, g =ziqh2 —-w, then a singularity of the
fiber is a point with f =g =df Cdg= 0 A short calculation shows thatf Cdg = recisely if
two of b,b, and b, vanish. If is non-vanishing for some and b, = Ofor j #i, then we must

have
w=g (2.6)

and
b=+1 (2.7)

Moreover, each singular fibeff,, contains two singular points, given in egn. (21Me singular

fibers consist of two components of genus 0 joiaetivo double points. To see this, take . Ifl
w =g, then a linear combination of the equations arf®lg = Ogives

(e,-&)o} +(e,~e)ol =0,

or

b, =tb,\/-(e,-¢)/le,-€). (2.8)

This describes a curve, , that is a union of two genus zero components mgeit one point,
b, =b, =0. Now solving forb, via b? =1-b’(e,-e,)/(e,—¢&) gives a double cover d,,. The
double cover, which is the fibef, of the Hitchin fibration, is branched over two pisi in each

13



component off, ;. A double cover of a curve of genus zero brandteddo points is still of genus
zero. SoF, consists of two components of genus zero, meeiinthe two pointsb, =b,= 0
b, =+1. On of the most important properties of the modplaceM ,, of stable Higgs bundles is

that it can be approximated dsM , where M is the moduli space of stable bundi@d is a

Zariski open set the moduli space that parametsrade and semi-stable bundles). The reason for
this is that the cotangent space My, at a point corresponding to a stable bunde is

H°(C,K Oad(E)). So a point inT"™ s a pair (E,¢ ) or in other words a Higgs bundle. This
gives an embedding of M as a Zariski open set iN , . This has an analog for ramified Higgs
bundles. In this case, one takds to be the moduli space of stable bundles withlpam@ structure
at a pointp, and M, to be the moduli space of stable ramified Higgadbes. ThenM,, has a

Zariski open set that is not quifeM but is an affine symplectic deformation BfM . We denote
such an affine symplectic deformation &M . Here T"M denotes a complex symplectic variety

with a map toM, such that locally inM T™ is symplectically isomorphic t&"M . For
applications to geometric Langlands, it is importenrestrict the fibers of the Hitchin fibration

from M, to T™™ or T™, since this is an essential step in interpretipranes in terms of) -
modules.

Now let us consider the fibers of the Hitchin fitboa. Their intersection with the quadrf:EM IS
obtained by supplementing the defining equatiothefquadric with the equation

eb’ +ebl +ebl =w, (2.9)

giving an algebraic curvé&,,. This curve can be projected k, and gives a double cover df .
So the fiberF,, of the Hitchin fibration ofM , is really, for generion, the smooth projective curve
that corresponds to the affine curve just described

We can describé, as a projective curve by simply adding anotheiatée b, , whereb,...,b, are

understood as homogeneous coordinate€®h and obey
3 3
Y bP=bi, > eh’=wb;. (2.10)
i=1 i=1

Missing when one approximaté4,, by an affine deformation of the cotangent bundéethe four
points with b, =0. These points correspond to stable Higgs bunéﬁiw) where the parabolic
bundle E is unstable. They form a single orbit of the gr&@@g Z, x Z, of pairwise sign changes of
b.b,,b,. Explicitly, the values oz corresponding to these four points are

zzi\/e‘?_el i\/%_el. (2.11)
€6 €8

To gain some insight about th®-modules arising in the geometric Langlands prognam must
describeF,, as a curve ifT "M . For this, we use the coordinatesy and find, after some algebra,
that we can describe the fibE[, by an explicit quadratic equation far, of the form

A(zV2 +B(zV +C(2)=0, (2.12)
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with
Az)=(e, - &)z" +(4e - 2¢,- 2¢,)7" + (e, - &)
B(z)=-4z((e, - e,)2* + 26 -e, - &,)
C(z)=4(e,-e)22 +¢ -w). (2.13)

Note that

g=-9A (2.14)
dz

Then, the eq. (2.12) can be rewritten also

e, -e)2* +(4e - 26, - 20)2" + (e, - v + |- 42(e, - 0)2" + 26, -, -e i +
+4((e,-e)2 +e-w)=0. (2.14b)

If we let z approach one of the four values in eq. (2.11)n thee of the roots of the quadratic
equation forv goes to infinity. So at any of those values &of a point in the Hitchin fiber is

“missing” if we restrict toT ™M . In fact, the four critical values of are precisely the zeroes of the
polynomial A(z). Let z” be any one of the zeroes &{z).The behaviour of the polar branch of

nearz” is v=-ag,B(z)/ A(z), which using eq. (2.14) reduces to

V=0, (2.15)

z2-2"

For the geometric endoscopy, we must examine imaéas way the singular fibers of the Hitchin
fibration. For example, we take=g, so that the fibeir, splits into componentﬁj defined by
the ratio ofb,/b;, as in eq. (2.8). Compactifying the two componentprojective space, we see
that of the four points ab, =0, two lie on F; and two onF_ . If we restrict toT M, the two

curves Fef behave near the two relevant critical valuez ofSo each fractionalA-brane has two
points with this sort of behaviour.

3. On some equations concerning the action of the Wds and ‘t Hooft/Hecke operators
on the electric and magnetic branes relevant to getetric endoscopy. [2]

A Wilson operator in"G gauge theory is associated to the choice of atppilC and a

representation"R of “G. For simplicity, we will take "R to be the three-dimensional
representation ofG = SO, and we writeW, for the corresponding Wilson operator. The actbn

W, on B -branes can be described as follows. 8ebe aB -brane associated with a coherent sheaf
K - M. ThenW, [ is the B-brane associated with the she& W/, where W|  is the

restriction ofW to M, x p. (We understandV as a rank 3 vector bundle with structure group
0O;,). Thus, the action dV, on coherent sheaves is

K- KOW,. (3.1)
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We take the case of a brane supported 2} @rbifold singularity r M, . Such a singularity is
associated with ar80, local system whose structure group reduce®©toWe recall thatO, is
embedded irSO, as the subgroup

* * O
* » 0| (3.2
0 0 #1

and that anySO, local system whose structure group reducejiohas symmetry groufz,,
generated by the central element@f.

-1 0 0
0 -1 0|. (3.3)
0o 0 1

We will consider a generic local systems of thigetyvhose group of automorphism is precisely this
Z,. In the present contexW|, , the restriction oW to r xC, is a local system whose structure

group reduces t@®,, so it has a decomposition
W[, =U Odetu, (3.4

where U is a rank 2 local system, with structure groOp, and detU is its determinant. The
central generator of, acts as —1 o and as +1 ometU .

The category of branes supported at the orbifohdjudarity r is generated by two irreducible
objects B, and 8B_. Each is associated with a skyscraper sheaf stgupat r. They differ by

whether the non-trivial element &, acts on this sheaf as multiplication by +1 or k. —
Since B, and $_ both have skyscraper supportrgtW, acts on either of them by tensor product

with the three-dimensional vector spavé

the fiber of W atr x p. In view of eq. (3.4), there

rxp?
is a decomposition \.ryxp =U‘p 0 detU‘p, where the non-trivial element &, acts as — 1 on the
first summand and as +1 on the second summande3mve

w, 3, =(8 0U|,)0 (8, Ddet|,)
w, 38 =(8, 0U[,)0(8 Oden|,). (35)

Note thatdetU|, is a one-dimensional vector space on wiighacts trivially, sof, U detU| is
isomorphic, non-canonically, t@8, . And U‘p is a two-dimensional vector space on which the-non

trivial element ofZ, acts as multiplication by — 1. S8, [ U‘p is isomorphic, non-canonically, to
the sum of two copies aB. . Thus up to isomorphism we have

W B, =B, +28; W B =8+28. (3.6)
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The magnetic dual of a Wilson operatd is an ‘t Hooft operatoil,. An A-brane A that is an
eigenbrane for the ‘t Hooft operators, in the sethsg for every ‘t Hooft operator,,

T,IA=ADV, (3.7

for some vector spac¥,, is known as a magnetic eigenbrane. Wilson opeyatb ‘G gauge

theory are classified by a choice of representatiorG, and ‘t Hooft operators o& gauge theory

are likewise classified by representations "&f. Electric-magnetic duality is expected to map
Wilson operators to ‘t Hooft operators and eleagigenbranes to magnetic eigenbranes.
Let us review the action of an ‘t Hooft operaffiyy on a Higgs bundle(E,¢). In caseg = Qthe

possible Hecke modifications are the usual onesidered in the geometric Langlands program;
they are parametrized by a subvariety of the affimassmannian known as a Schubert varigty

which depends on a choice of representati@nof the dual grougG. For instance, ilG = 9., and
'R is the three-dimensional representatiorf®f= SO,, then a generic point i) corresponds to a
Hecke modification of arfL, bundle E of the following sort: for some local decompositiof E
as a sum of line bundle¥, O N,, E is mapped toN,(p)d N,(- p).

Letting N, and N, vary, this gives a two-parameter family of Heckedifications of E. A family

of modifications ofE of this type can degenerate to a trivial modifmat and? contains a point
corresponding to the trivial Hecke transformatidininstead ¢ # Q one must restrict to Hecke

modifications that are in a certain sengeanvariant. ForG =38.,, and assuming to be regular
semi-simple at the poinp, ¢ -invariance means that the decompositiér N, O N, must be
compatible with the action ap, in the sense thapp: E -~ EJ K mapsN, to N, K andN, to

N, O K. These are precisely two possible choice®pfand N, : locally, as¢(p) is regular semi-

simple, we can diagonalizg
a o0
= : 3.8
¢ [O _aj (3.8)

and N, and N, must equal, up to permutation, the two “eigensgace

Now let us see what thg -invariant Hecke modifications look like from theipt of view of the
spectral curvenn:D - C. We consider first the case of a generic specuale, given by an
equation det(z—¢):O. A ¢-invariant Hecke modification leaves fixed the dweristic
polynomial of ¢ and hence maps each fiber of the Hitchin fibration to itself.

A point pOC at which ¢ is regular semi-simple lies under two distinctrpeip’, p"’ D . The
bundle E is 77,(£) for some line bundle? — D, and ¢ = 77,(z). The latter condition means that
the eigenspaces oﬁ(p) correspond to the two distinct values bflying above p, or in other
words to the two pointg and p " This being so, a non-triviah -invariant Hecke modification of
(E,¢) at the pointp comes from a transformation & of the specific form

£ LOO(p-p") (3.9

for one or another of the two possible labellinfthe two pointsp’, p 'lying abovep.
Now we can see why aA-brane A supported on a fibeF of the Hitchin fibration and endowed
with a flat line bundle® is a magnetic eigenbrane, that is an eigenbranthéo‘t Hooft operator
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T,. Firstof all, T, mapsF to itself, since it preserves the characteristitypomial of ¢ . Since

T, preserves the support &, it is conceivable forA. to be an eigenbrane for,. Now,
assuming that we choose so that¢(p) is regular semi-simple, the evaluation QffA. comes
from a sum of contributions from the thrgg-invariant Hecke modifications that were just
described. One of them is the trivial Hecke modtiien, and this leave# . invariant. The other
two come from transformations€ — £ 0 O(p-p"). Such a transformation can be interpreted as
an isomorphism®: F - F of the Hitchin fiber. If the labelling of the twpoints p'and p "is

reversed, thertd is replaced byd™. F is a complex torus, and is a “translation” ofF by a
constant vector. In general,® - F is a flat line bundle over a complex torus ahdF - F is a

translation, then®“(®)=R 0V for some one-dimensional vector spa¢eFrom this it follows
that A is an eigenbrane for, . In fact, we have

T A, =A.0(COv0vY), (3.10)

where the three contributions on the right com@eetvely from the trivial Hecke modification

and the non-trivial modifications that involve and ®™.
Now, we consider a special fibdf of the Hitchin fibration that is a union of tworeducible
components, and F, that intersect each other on a divisor. This bemgwe can construct rank 1

A-branesA, and A, supported onF, or F,. These branes are uniqueRf and F, are simply-
connected, as in the case of a curve of genush.goint of ramification. In the derivation of eq.
(3.10) describing the action off ), a key ingredient was the mapgb:F - F by

£ - LOO(p-p"). The essential new fact in the case tiatis reducible is simply thatb
exchanges the two component Bf. Likewise ®™ exchanges the two components. Hedzeor
®™ exchangeA, andA, . SinceT, acts byl+® + @™, it follows that we have up to isomorphism

T,IA =A +2A,; T, [A,=A,+2A,. (3.11)

This is in perfect parallel with the formula (3f6) the electric case.
If A, and A, have moduli, this should be described a little enprecisely.A, depends on the

choice of a suitable line bundlg - F,, and we should také, to be the brane associated with the

line bundle ®*(£) - F,. Note that®(£) and (dJ‘l)D(B) are isomorphic, though not canonically

SO.
One expects to get the more precise result anato¢gmy3.5). One uses standard methods of

algebraic geometry to constru€f [A, and T [A, as B-branes in complex structure. This will
give a result more precise than (3.11):

T A, =(A05)0A,05); T,m,=(A,05)0(A05), @12

with vector spaced,, J,, etc., of dimensions indicated by the subscriptstifdse admit naturaK -
valued endomorphismg, 8,, etc., coming from the Higgs field, ar(dl,Hl), etc., are Higgs bundles

over C. Relating these Higgs bundles to local systemsHitahin’s equations, one expects to
arrive at the analog of (3.5),
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T, =(a,00],)o(a, 0de],);  T,m,=(a,0U],)0(A,0det],). 313

For gauge grouf®.,, the basic Wilson operator to consider is the ameNT/p associated with the
two-dimensional representation. Roughly speakitgacts by the obvious analog of eq. (3.1).
Letting (E,#) denote the universal Higgs bundle ower, (SL,)xC, W, acts on the sheak
defining aB -braneB by

K-KOH, (3.14)

WhereE‘p is the restriction taM ,, x p of the universal rank two bundle - M, xC.. VVP obeys

~

W2=1+W,,  (3.15)

expressing the fact that the tensor product oftth®dimensional representation with itself is a
direct sum of the trivial representation and the¢hdimensional representation; they correspond to

the terms 1 andlV, on the right hand side of eq. (3.15).

If we write B and B' for the ordinary and twisted versions of the braslated to the skyscraper
sheaf, then the action of the Wilson operator is

W, (B =B'0E W, B'=BUE

xp ) p- (3:16)

The sumB =B [0 B' is therefore an electric eigenbrane in the uselde:

W, B=BOE (3.17)

rxp*
The action of the ‘t Hooft operatd"?p on branesA,, and A}, is schematically
T, A, =A+AY; T, A, =A+A}, (3.18)

and similar formulas withA, and A’ exchanged. These formulas and the analogous oneef
action of the ‘t Hooft operatof, dual to the three-dimensional representation anepatible with
the relation

T2=1+T (3.19)

p*

This relation is dual to eq. (3.15).

4. On the Hecke eigensheaves and on the notion of “thonal Hecke eigensheaves”. [2]

Let us recall the traditional definition of Heckey@ensheaves used in the geometric Langlands
Program.
These are® -modules on Bug the moduli stack ofs -bundles on a curv€, satisfying the Hecke

eigenobject property. Recall that for each finibeensional representation of the dual grougG
we have a Hecke functdd,, acting from the category dD -modules on Bugto the category of
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D -modules onC xBung. Let £ be a flat"G -bundle onC . A Hecke eigensheaf with “eigenvalue”
£ is by definition a collection of data

(g'(av )VDRep("G))’ (41)

where  is a ®-module on Bug and (a, ) is a collection of isomorphisms

a,:H,(%)-V.KF, (4.2)

where
V,=egxV
LG

is the flat vector bundle o€ associated td/ . For a Hecke eigensheaf (4.1), by restricting the
isomorphismsz, to x, we obtain a compatible collection of isomorphisms

aV,x : HVx(“;) _’V

£,X

0%. (4.3)

Here
ngx =g, L><GV ,

where g, is the fiber ofe at x, is a vector space isomorphic\o
Let us discuss the category of Hecke eigensheawvesin endoscopic example, whéh=39_,,
‘G =90,, andl =Z,. We expect that in this case aymodule satisfying the Hecke eigensheaf

property is a direct sum of copies ofZa=module, which we will denote b¥. The 9 -module ¥
corresponds to ar-brane A on a singular fiber oM, (G), which is a magnetic eigenbrane with
respect to the ‘t Hooft operators. This-branes is reducible:

A=A, 0OA_,

where the A-branesA, are irreducible. Furthermore, there is not a prete one among them.
Therefore we expect that tl#®-module ¥ is also reducible:

0

ﬁ\:\

=

.,S\:\

and eachZ is irreducible. We also expect that neither ofithe preferred over the other one.
Recall that the notion of an eigensheaf, inclutkesisomorphismsr,, for all representationy of
SO,. By using the compatibility with the tensor protistructure, we find that everything is
determined by the adjoint representation $9,, which we denote byV, as before. A Hecke
eigensheaf may therefore be viewed as a(ir), where

a:H,(%)-WKF. (4.4

£
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In the endoscopic case the structure group of $y-local systeme is reduced to the subgroup

O, =2, 0C". Denote byU the defining two-dimensional representation®f ThendetU is the
one-dimensional sign representation induced bydmomorphismO, - Z,. We have

W=(detu O1)OUOS),

as a representation dd,xZ,, where Z, is the centralizer ofO, in SO,, and S is the sign

representation oZ,, and | is the trivial representation of,. Therefore we have the following
decomposition of the corresponding local system:

W, =(detu, 01)0(U,0S). (4.5)

Now we suppose that we are given'@-local systems on a curveC, and letl be the group of
its automorphisms. We will identiff” with a subgroup of-G by picking a pointxOC and
choosing a trivialization of the fibes, of £ at x.

Suppose that we are given an abelian subcate@oyf the category of®-modules on Bug
equipped with an action of the tensor category (R¢pin other words, for eactR ORep(I") we

have a functor
M +— RCM,

and these functors compose in a way compatible thghtensor product structure on F@Ié)) The
category of Hecke eigensheaves with eigenvalwell have as objects the following data:

7.0 herenlre):  (4:6)

where # is an object of¢, and thea, are isomorphisms defined below. Denote by Ré$ the

restriction of a representation of "G to I . If Rep(r) is a semi-simple category, then we obtain a
decomposition

Res(v)=[]F OR,

where theR are irreducible representationsiofand F, is the corresponding representation of the

centralizer of I in "G. Twisting by £, we obtain a local system (Rf(‘sz’))E on C with a
commuting action of” , which decomposes as follows:

Res(v).=O(F).OR.

Note that sincd is the group of automorphisms ef, the structure group of is reduced to the
centralizer ofl in G, and F, is a representation of this centralizer. Therefreanay be twisted

by £, and the resulting local system (or flat vectondie) on C is denoted by(Fi)g. The
isomorphismsz, have the form

a,:H,(M)- Res(v), M =0(F),B(R M), MDe, (@7)
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and they have to be compatible in the obvious s&fieewill denote the category with objects (4.6)
satisfying the above conditions jut, . The category of Hecke eigensheaves of this tyatemes
more closely the structure of the categorie®\efand B -branes. What does the categdxyt, look
like in our main example of geometric endoscopy?his case the categor@ should have two
irreducible objects# and &, which are the® -modules on Bug corresponding to the fractional
A-branesA, and A_. The category Re(ﬁz) acts on them as follows: the sign representaBon
of ' =Z, permutes them,

s

i<
K

while the trivial representatioh acts identically.
Since the category of representationsSt, is generated by the adjoint representattin it is

sufficient to formulate the Hecke property (4.7)yofor the adjoint representatioV of SO, . It

reads
H,(%)0(detu,®%)0U,X%), H,(7)0(detu,®F)0U,KZ), (4.8)

wheredetU, andU, are the summands &, defined in formula (4.5). This matches the actén

the ‘t Hooft operators on thé-branes given by formula (3.13). Since that formidscribes the
behaviour of the fractional branes,, we will call the property expressed by formulds7f and

(4.8) the fractional Hecke property, and the corresponding®-modules fractional Hecke
eigensheaves.

5. On some equations concerning the local and globakihglands correspondence. [2]

The ring A. of adélesof F is by definition the restricted product
A=T1F., (1)
[]

where the word “restricted” refers to fact thelements of A. are collections (f,) where

xac !

f, 0O, for all but finitely many xOC. Let Gal (If/ F) be the Galois group ofF , the group of

automorphisms of the separable closureF of F, which preserve F pointwise. We have a
natural homomorphisnal (If/ F) - Gal (E/k). The groupGal (E/k) is topologically generated by

the Frobenius automorphisrr : y— y9, and is isomorphic to the pro-finite completiénof the

group of integersZ . The preimage o [ Z in Gal (If/ F) is the Weil groupN: of F . The Weil
group is the arithmetic analogue of the fundamegaiip of C. Therefore the arithmetic analogue
of a "G-local system orC is a homomorphism

oW, -'G. (5.2

The global Langlands conjecture predicts, roughly geaking, that to eacho corresponds an
automorphic representation 77(0’) of the group G(AE). This means that it may be realized in a

certain space of functions on the quotiéh@F)\G(AE). The groupW. may be realized as a
subgroup of the global Weil grofy. , but non-canonically. However, its conjugacy clias8V. is
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canonical. Hence the equivalence classofW,. - "G as above gives rise to an equivalence class
of homomorphisms
g W, -'G.  (5.3)

We have the infinite-dimensional representatmor [ |' 77, of G(A:). (We note that A. is the
ring of adéles of F ). We takeK to be the product

K:rlKX
xO

of compact subgroupsK, 0 G(F,) OG((t)). A typical example is the subgroud(0,)=Gl[[t]].
Any vector in 71 is invariant under the subgroup that is the prd)(dlji(G(Ox) for all but finitely

many x. If 71 is automorphic, themr* is realized in the space of functions on the dewjlotient
G(F)\G(A.)/ K , which are Hecke eigenfunctions for allC for which K, =G(O, ).

THEOREM 1

The representation

[]'m, (54)

xOc

of SLZ(AE), where A is the ring of adéles of , is an automorphic representation if and only if
#S iseven.

Denote by S, the group of automorphisms of our homomorphissnW. — PGL,, that is, the
centralizer of the image of in PGL,. Let S) be its connected component. Likewise, for each
xtC, let S, be the group of automorphisms of, :W. - PGL, and ng its connected

component. We have natural homomorphisrs -~ S, and S} - S}, and hence a

homomorphism
S, /S - SUX/Sf,’X. (5.5)

In our case, for generio in the class that we are considering here we ave S /S) =Z,,
generated by the element
1 0
5.6
55 e

of PGL, (this is the centralizer dd, 0 PGL,).

The Theorem 1 may then be reformulated as sayiag(84) is automorphic if and only 8 /S>
acts trivially on the corresponding representatioh mec S, /ng , Vvia the diagonal
homomorphism

S, /S0 - Hsgx/sgx. (5.7)
xO
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Note that, according to the above discussiorx, is split, then the homomorphism (5.5) has trivial
image, even if the groupSgX/Sf,’X is non-trivial. Therefore we may choose eithertloé two

irreducible representations oL,(F,) from the locall -packet associated to such a point/as

and in both cases the corresponding representattosay will simultaneously be automorphic or
not. In this sense, the split points do not afteetautomorphy of the representation (5.4), urtie
non-split points, for which it is crucial which ooéthe two members of thie-packet we choose as
the local factor of (5.4).

Suppose now that & is even and so the representation (5.4) is autohmar Then the one-
dimensional vector space

O(z)  (5.8)

xadc

may be realized in the space of functions on

SLZ(F)\SLZ(/*)/FIKX, (5.9)

where A is the ring of adéles ofF and, for the eq. (5.1) the eq. (5.9) can be writiso

SLZ(F)\SLZ(rl'FXj/rlKX. (5.9b)

Moreover, any non-zero vector in (5.8) gives rigeatHecke eigenfunctiorf on (5.9) with the
eigenvalues prescribed by the conjugacy ctagd&r, ). This means that it is an eigenfunction of the
Hecke operatofl,, , corresponding to the adjoint representatinof PGL, and a pointxOC,

that is,
T, OF =Tr(o,(Fr)W)f, (5.10)

where Fr, is the Frobenius conjugacy class corresponding to W; . HereT,, , is a generator of
the spherical Hecke algebra &f, bi-invariant compactly supported functions 612(Fx). For
either choice of K, this algebra is canonically isomorphic to I@BGLZ), and under this
isomorphismT,, . corresponds to the class of the adjoint repretientaf PGL, .

6. On some equations concerning the automorphic funans associated to the fractional
Hecke eigensheaves. [2]

Now we replace a complex curve by a cu@edefined over a finite fielk = F,. We have the

moduli stack Bug of G -bundles on our curv€ defined overk. This is an algebraic stack over
k. Therefore we have the notion of a Hecke eigerishiedurs corresponding to an unramified
homomorphism o:W,. - "G. We view ¢ as an /-adic “G-local systeme on C. Hence, for

each representationV of "G the corresponding twist

V., =exV
LG

24



is a locally constant/-adic sheaf onC, and these sheaves are compatible with respettteto
tensor product structure on representationsGf We also have Hecke functoks, , V [ Rep(LG),

defined in the same way as ov€r. A Hecke eigensheaf with “eigenvalue”s (or o) is, by
definition, a perverse (¢-adic) sheaf ¥ on Bung together with the additional data of
isomorphisms

a,:H,(%)-VvKF. (6.1)

We recall that for any algebraic varie¥ over F , we may assign a function on the setfgf

points of Y to any/ -adic sheaf(or a complex)¥ on Y.
Indeed, lety be anF -point of Y and y the Ifq-point corresponding to an inclusidf, — Ifq

Then the pull-back of & with respect to the compositiony — y - Y is a /-adic sheaf on a
point Speclfq. The data of such a sheaf is the same as theflat®, -vector space, which we may
think of as the stall% of § at'y. There is an additional piece of data on thisaespace. Indeed,
the Galois groupGal (Ifq/Fq) is the symmetry group of the morphisyn- y, and therefore it acts
on & . In particular, we have an action of the (georsgtirobenius elemenkr,, corresponding
(the inverse of) the generator of the Galois grofig=,, acting asx+ x%. This automorphism
depends on the choice of the morphigm- y, but its conjugacy class is independent of any
choices. Thus, we obtain a conjugacy class of aotphisms of the stallg, . Therefore the trace of

the geometric Frobenius automorphism is canoniasbigned to¥ and y. We will denote it by
Tr(Fr,.%). If & is a complex of-adic sheaves, we take the alternating sum of theates of

y
points of Y, whose value ayDY(Fq) is

A )= (0T (Fr, Hi(#).

Fr, on the stalk cohomologies off at y. Hence we obtain a function; f on the set off,-

Similarly, for eachn> lwe define a function f. on the set of , -points ofY by the formula

Ao (V)=X (el Hy(5), yOvlF.). (62

g i

If Y =Bung, then the set oF,-points of Y is naturally isomorphic to the double quotient

G(F)\G(A:)/G(QOXJ. (6.3)

(Also here A is the ring of adéles offF ). Therefore any perverse sheafon Burg gives rise to a
function f; . on the double quotient (6.3). Suppose now f#ta; ) is a Hecke eigensheaf on

Bunc. Consider the corresponding functiory .f on the set BU@(Fq), isomorphic to the double
quotient (6.3), and its transform under the Heckecfor H,, , restricted to
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(cxBun, )(F,)=C(F,)xBun.(F,)-

The action of the Hecke functdd,, on sheaves becomes the action of the correspoitioge
operatorsT,, , on functions. Hence for eaclxDC(Fq) the left hand side of (6.1) gives rise to the
function T, , [f ; - , whereas the right hand side beconTasﬁFrx,Vg)fg’Fq . Hence the isomorphism
(6.1) implies that

Ty, Oy =Tr(FL V) =Tr(o, (Fr)V)f, .. OxOC(F,).  (6.4)

We have that theA-brane A corresponding tc#, which is represented by a rank one unitary local
system on the singular Hitchin fiber, which has tweducible components. We have thatsplits
into two A -branes,A, and A_ supported on the two irreducible components ofHtehin fiber.

Therefore we expect that tl#-module ¥ also splits into a direct sum,
F=30%, (6.5

of two irreducible D -modules on Bug_  corresponding to the twd\ -branes on the singular

Hitchin fiber. Moreover, since thé -branesA, are fractional eigenbranes with respect to the ‘t
Hooft operators, we expect that the shea#fessatisfy the fractional Hecke property introduced

precedently.
This leads us to postulate thhé same phenomenon should also occur for curves over a finite field

F,- Namely,the regular Hecke eigensheat# corresponding to an/-adic local systeme on a
curve C defined over F,, should also split as a direct sum (6.5Moreover, these sheaves should

satisfy the fractional Hecke property and henceegisse to a category of fractional Hecke
eigensheavedn the setting of curves over finite fields we carpass from /¢ -adic perverse
sheaves on Bug , to functions Then, we started witth-brines and ended up with automorphic

functions satisfying the fractional Hecke propef8ghematically, this passage looks as follows :

overC overC overFy

A-branes - 2-modules - perverses sheaves. functions.

Let C be a curve over F, and & and endoscopic /-adic PGL,-local system onC

(corresponding to an unramified homomorphisen:W: - PGL,). This means that its structure
group is reduced t®,, but not to a proper subgroup. Then the groupiadraorphisms of is Z, .
Let D be a finite set of closed points 6f. Denote by#®° a regular Hecke eigensheaf Bung(f)

with the “eigenvalue”e. Motivated by our results orA-branes in the analogous situation for
curves overC, we conjecture thaf® splits as a direct sum

F°=3°0%" (6.6)

of perverse sheaveg” which satisfy the following fractional Hecke propewith respect tos
(and so we also call them tfractional Hecke eigensheaves):

a, H,(7°)- [detu,®5°)0 (U,®5°),  (6.7)

&
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Bg°)0 (detu,®2°).  (6.8)
HereW is the adjoint representation 8GL, and we use the decomposition of the rank threa loc
systemW. on C with respect to the action of its grod) of automorphisms as in formula (4.5),

W, =(detu,01)0U,0S), (6.9)

where| and S are trivial and sign representationsf, respectively, andletU, andU, are the
rank one and two local systems @Gndefined as follows.
Recall that by our assumption tfR&L, -local systeme is reduced tdO,, so we view it as a®,-
local system. We then set

ngséu,

whereU is the defining two-dimensional representatiorOgf The formula (6.6) implies that
fP=fP+f°, (6.10)

where f° =f , _is the function onBung"® associated to the regular Hecke eigenshe&f

Fq

Furthermore, the functions corresponding to thetivaal Hecke eigensheavés are:

f, :%(f £ ). (6.12)

In addition to the “proper” Hecke functoid,, acting on the categories @ -modules onBungL(zD),

there are also “improper” Hecke functdl:lsX acting from the category dP -modules onBunSL(ZD)

to the category ofP-modules on BungL(zD”). They are defined via the Hecke correspondence

between the two moduli stacks consisting of paifsrank two bundlesMDBungL(zD) and

M'OBung®* such thatM OM" as a coherent sheaf.

In formula (3.18) we have computed the action @& improper ‘t Hooft operators on the branes
A,. Based in this formula, we conjecture that theroper Hecke operators should act on the
fractional Hecke eigensheavés as follows:

Hx(ngD) 00 [0 0%, Hx(g—D) 00 [0 0% | (6.12)

This should hold for all pointxOC if C is defined over C, and all split points,d is defined
over F,. This formula indicates that the improper Heckector fails to establish an equivalence

o(D)

between the categories of fractional Hecke eigems® on Bung ' and BungL(zD”) for the

endoscopic local systems. This may be viewed asoangtric counterpart of the vanishing of the
improper Hecke operator acting on functions whilelosely related to the structure of the global
L -packets of automorphic representations assoctateddoscopico :W: - PGL, .

For a regular Hecke eigenshe&f = 4° 0 #° we have
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H (#°)ovoge™,  (6.13)

whereV is a two-dimensional vector space.
Recall that the functiond °, , corresponding to the sheav@,Si on BungL(zD), are given by formula

(6.11),

£2, :%(ff £12).  (6.14)

With regard the fractional Hecke eigensheaves, we mevisit them in the case when the
underlying curveC is defined overF,. It is instructive to look at the correspondingétions on

the sets ofF,-points of Bu and to express them in terms of the ordinary Hessgenfunctions,

the way we did in the endoscopic example®+ S, above (see formula (6.14)).
Consider first the case whea is a one-dimensional torus. The corresponding hagace, the
Picard variety Pic, breaks into connected compan®nt ,nJZ , andthe Hecke eigensheaff,

corresponding to a one-dimensional -adic representation o of the Weil group W, breaks
into a direct sum
%=01%,  (6.15)

ndzZ

where &, | is supported on Pjc This is an analogue of the decomposition (6.@x £, (resp.,
f, .) be the function on P(Eq) (resp., Pig(Fq)) corresponding t@#, (resp.,%, ). Then we have

f, =ngyn.

nOdz

This is analogous to formula (6.10). We now wishetqress the functiond,  in terms of
(ordinary) Hecke eigenfunctiong., similarly to formula (6.14).

This is achieved by a simple Fourier transform. Wmfor each non-zero numbgtJC* (in what
follows we identify Q, with C) we define a one-dimensional representaionof W as the
composition of the homomorphism

ressW, - W, =Z,  (6.16)
obtained by restricting to the scaldfsl F , and the homomorphism

Z—»Cx, 1|—)y

Now let g, =g U a, be the twist ofo by a,. Then we have the following obvious formula

1 —n—
f,,==—|  f,y"dy, 6.17
on =5zt iy (6.17)

expressing the function$, | as integrals of the ordinary Hecke eigenfunctiomsesponding to the

twists o, of o by a,,[)1=1.
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In our most detailed example @f-branes corresponding to the elliptic curves intisa2, we have
considered some equations concerning a slightheréiit moduli space corresponding to ramified

Higgs bundles. In this case the relevant modulcksia BungL(z'?,)p which parametrizes rank two

vector bundles o€ with determinamO(D) and a parabolic structure at a fixed pombof C. It is
instructive to look at how the story with L-packetays out in this case.
Let C be again defined ovef,. Then the set of -points of Bun‘S’L(z'?l)p is isomorphic to the double

guotient

S_Z(F)\S_Z(A\E)/(DKXXIPJ. (6.18)

(Note that also heréy. is the ring of adéles off- ). Here | = K'p N K',; is the Iwahori subgroup
of SLZ(FP), and K =K, for xOD, K =K, , otherwise. Let us suppose thatis a non-split
point of C, with respect to the unramified covering' - C affiliated with an unramified
homomorphism g :W: - O,. Then the local L-packet corresponding ffoand a homomorphism
o:W. - PGL, constructed as above consists of two irreducigpeasentationszz, and 77, but

now both(ﬂ'p)"’ and (ﬂ;)"’ are one-dimensional.
Let us fix the local factorsz,x # p. Then we have two non-isomorphic irreducible repnéstions

of 9,(A),
(JmOm, and [Jm O,

X£p X£Ep

According to Theorem 1, only one of them is autorharpthat is, may be realized as a constituent
of an appropriate space of functions 8in,(F)\ S,(A. ). However, their spaces of invariants with
respect to the subgroup

X p

|_|K x|

X£p

are both one-dimensional. Therefore no matter whreh of them is automorphic, we will have a

one-dimensional space of Hecke eigenfunctions erdtiuble quotient (6.18). Thus, the function on

the set ofF,-points of Bung’L(B,)p associated to a regular Hecke eigensheaf will ezeoo. Then,

we obtain that the functions,” associated to fractional Hecke eigensheaves acerain-zero in
this case.

7. On some equations concerning the modular ellipticuzves belonging the proof of
Fermat’'s Last Theorem. [3]

Let Tl(N,q) be the ring of endomorphism dq(N,q) generated by the standard Hecke operators.
One can check thdtl , preserves B either by an explicit calculation grrimting that B is the
maximal abelian subvariety ole(N,q) with multiplicative reduction at g. We set
J, =J,(N)x J,(N). More generally, one can considér(N) and J,, (N,q) in place ofJ,(N) and
J,(N,q) (where J,,(N,q) corresponds tox,(N,q)/H ) and we writeT,,(N) and T, (N,q) for the
associated Hecke rings.
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In the following lemma ifm is a maximal ideal oﬂ'l(Nq“l) or Tl(qu) we usem@ to denote the
maximal ideal ole(q)(qu,q”l) compatible withm, the ring Tl(“)(Nq’,q”l)D Tl(qu,q”l) being
the sub-ring obtained by omittind, from the list of generators.

LEMMA 1.

If g# p isaprimeand r =1 then the sequence of abelian varieties

0- Jl(qu"l)i 3,(Ng)x Jl(qu)i 3,(Ng g ) (7.2)

where & = ((ﬂlr o r1f~(rm,, o n)D) and &, =(r},,7.) induces a corresponding sequence of p-
divisible groups which becomes exact when localized at any m'@ for which p., isirreducible.

Now, we have the following theorem:

THEOREM 2.

-1
Assume that p, is modular and absolutely irreducible when restricted to Q( (—1)p7 pj. Assume

also that p, isof type (A), (B) or (C) at each q# p in Z. Thenthemap ¢, : R, - T, (remember
that ¢, is an isomorphism) is an isomorphism for all D associated to p,, i.e, where
D = ([=,0,M) with 1=Se, str, fl or ord. In particular if 1=Se, str or fl and f isany newform for
which p; , isadeformation of o, of type D then

#HL(Q:/QV, )=#(01n, )< (7.2)
where 77, , istheinvariant defined in the following equation (17) = (7, ;)= (7(1)).
We assume that
p=1nd%:Gal(Q/Q) - GL,(0) (7.3)
is the p-adic representation associated to a CllmraCK:Gal(E/L) -~ O of an imaginary
guadratic fieldL .

Let M_ be the maximal abelian p-extensionldf’) unramified outsidep .

PROPOSITION 1.

Thereis an isomorphism
HL, (Q:/Q.Y7) = Hom(Gal (M., /L(v)), (K 10)p) =) (7.4)

where H?

unr

denotes the subgroup of classes which are Selmer at p and unramified everywhere el se.
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Now we write H;r(Qz/Q,YnD) (where Y,’=Y, and similarly forY,) for the subgroup of
H: (Qz/Q,YnD):{aD H: (Qz/Q,YnD):crp :OinHl( p,Y,]D/(Yn'])o)} Where(YnD)0 is the first step in the
filtration under D, thus equal tdYn/Yno)D or equivalently to(YD)in where (Y'j)0 is the divisible

submodule ofY” on which the action ofp is via £2. It follows from an examination of the action
|, onY, that

HL(Q/QY,)=H,(Q/QY,). (7.5
In the case off" we will use the inequality
#HL (Q/QY)#HL, (Q/QYY). (7.6)
Furthermore, for n sufficiently large the map
HL(Q/Q.Y) - HL (/YY) (7.7)

is injective.
The above map is then injective whenever the comgehbmomorphism

HO(L,..(K/O)v)) - HYL,.(K/O)v),)
is injective, which holds for sufficiently large Rurthermore, we have
#HL (Q/QY,) _ 0( 0 D)#Ho QY.
#H;r(Qz/QnYnD) #H Qp’(Yn) #HO Q,YnD : (7-8)

Thence, settingt =inf #(0/(1-v(q))) if vmodA =1 or t=1if vmodl#1 (7.8b), we get

#HL(Q./Q,Y)< %[L‘J ¢ BHom(Gal (M, /L)), (K /0)p))** " (7.9)

where :#HO(Q ,YD) forqz p, ¢, = Lim#Ho(Qp,(Yno)D). This follows from Proposition 1, (7.5)-
(7.8) and the elementary estimate

#HHLQ/IQY)HL (Q/QY))s [N, (7.10

qOz-{p}

which follows from the fact tha#Hl(ch;nr,Y)Gal(anr/Qq)

representation
Let w, denote the number of roots of uniy of L such that{ =1modf (f an integral ideal of

=(,. (Remember that is the /-adic

O,). We choose anf prime to p such thaty, = .1Then there is a grossencharacgerof L
satisfying ¢((a))=a for @ =1modf . According to Weil, after fixing an embeddin® + Q, we
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can associate a p-adic charagpgrto ¢ . We choose an embedding corresponding to a priroeea
p and then we findg, = x Uy for somey of finite order and conductor prime to p.
The grossencharacter (or more preciselygoN_,, ) is associated to a (unique) elliptic curve E

defined overF = L(f), the ray class field of conductdr, with complex multiplication byO, and
isomorphic overC to C/O, . We may even fix a Weierstrass model of E o@erwhich has good

reduction at all primes abovp. For each primeéB of F abovep we have a formal grouﬁB,
and this is a relative Lubin-Tate group with respectF, over L,. We let A =/1EB be the

logarithm of this formal group.
Let U, be the product of the principal local units at piienes abovep of L(fp°°); ie.,

U, = DUW,B where U, =IlimU ,B.
P -

To an elementu =limu, JU_ we can associate a power serids, (T)DOB[T]x where O; is the

ring of integers ofF,. For B we will choose the prime abovp corresponding to our chosen
embedding Q — Gp. This power series satisfies, ; = (fu’B)(a)n) forall n>0,n= O(d) where
d=|F:L,] and {w} is chosen as an inverse system &t division points ofE,. We define a
homomorphismg, :U, - O; by

5k(u):=5k,3(u)={ ! i]klogfu,B(TXT.o- (7.12)

Then
5(u)=6(c)a W) (7.12) for rOGa(F/F)

where § denotes the action om‘:[p”]. Now 6=¢, on Gal (lf/F). We want a homomorphism
on u, with a transformation property correspondingvtoon all of Gal (E/L). We observe that
v=¢; on Gal(F/F).

Let S be a set of coset representatives (Eml(f/ L)/ Gal (E/ F) and define

®,(u)= Zv‘l(a)dz(u”)m Oxlv]. (7.13)

ols

Each term is independent of the choice of cosetsgmtative by (7.8b) and it is easily checked that
®,(u7)=v(o)e,(u).

It takes integral values i@B[V]. Let Uw(v) denote the product of the groups of local prinicipats
at the primes abovep of the field L(v). Then ®, factors throughU,,(v) and thus defines a
continuous homomorphism

®,:U, (V) C

p*
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Let C_ be the group of projective limits of elliptic usiin L(v). Then we have a crucial theorem of
Rubin:

THEOREM 3.

Thereis an equality of characteristicideals as A = Z,[[Gal (L(v)/ L)]]-modules:
char 0(Gal(M., /L(v))) = char O(U, (v)/C,).

Let v, =vmodA . For anyZ[Gal(L(v,)/ L)]-module X we write X“?) for the maximal quotient
of XJO on which the action of Gal(L(v,)/L) is via the Teichmuller lift ofv,. Since

GaI(L(V)/ L) decomposes into a direct product of a pro-p gemgba group of order prime to p,
Gal(L(v)/L) 0Gal (L(v)/ L(v,))x Gal (L(v,)/ L),

we can also consider anzp[[GaI(L(v)/L)]]-module also as aZp[GaI(L(VO)/L)]-moduIe. In

particular X is a module overz [Gal (L(v,)/ L)*) 0o. Also A% oo[[T].

(Vo)

Now according to results of lwasawd,, (v) is a free A" -module of rank one. We extert,

O-linearly to U, (v)0, O and it then factors through,, (v)**). Suppose that u is a generator of

U.(v)") and B an element ofc). Then f(y-Lu=p for some f(T)OO[T]] andy a
topological generator ofGal (L(v)/ L(v,)). Computing®, on bothu and 8 gives

f(v(y)-1)=@(B) ®,(u). (7.14)

We have thav can be interpreted as the grossencharacter wisgseiated p-adic character , via
the chosen embedding — Gp, isv, andv is the complex conjugate of.

Furthermore, we can computbz(u) by choosing a special local unit and showing ND@(U) is a
p-adic unit
Now, if we have that

#HL(Q /QY)=#lora™L, (2,17))[|‘!zq ,

qQ

and #(o/n )04, (7.15)

q0z-{p}

where /7, =#H°(Qq,((K/O)(t//)D K/O)D) and h,_is the class number @, , combining these we
obtain the following relation:

#Hée(Qz/Q,V)s#(O/Q‘ZLfO(2,17))@(0/hL)E|_!£q, (7.16)

oo

where ¢, :#HO(Qq,VD) (for q# p), ¢, =#H°(Qp,(Y°)D). (Also here, we remember thdt is p-
adio).
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Let p, be an irreducible representation as in (5). Supgbat f is a newform of weight 2 and
level N, A a prime of O, above p ando; , a deformation ofg,. Let m be the kernel of the
homomorphismT,(N) - O, /A arising from f .

We now give an explicit formula fop developed by Hida by interpretir(g) in terms of the cup

product pairing on the cohomology (Xl(N), and then in terms of the Petersson inner proofict
f with itself. Let

():H(X,(N)O, JxH(X,(N)O, ) ~ O,  (7.17)

be the cup product pairing with, as coefficients. Lep, be the minimal prime ofT,(N)J O,
associated td , and let

L, = HY(X,(N),0, |p,].

If f =Zanq” let f” =Z§nq”. Then f” is again a newform and we defihe, by replacing

f by f# in the definition ofL,. Then the pairind,) induces another by restriction
():L xL, - O,. (7.18)

ReplacingO by the localization 0O, at p (if necessary) we can assume thaiandL , are free
of rank 2 and direct summands @s -modules of the respective cohomology groups. &,eb, be
a basis ofL,. Then alsod,,d, is a basis of L., =L,. Here complex conjugation acts on

Hl(Xl(N),Of) via its action ornO, . We can then verify that
(6,6):=dets,9,)
is an element 00; whose image irO, , is given byn(fyz) (unit).
To give a more useful expression I@T 5) we observe thaf and f# can be viewed as elements

of HY(X,(N),C)OHLL(X,(N),C) via f > f(z)dz, f2r> f2dz. Then{f,f*} form a basis for
L, 0o, C. Similarly {f,f7} form a basis forL,, O, C. Define the vectorsag = (f, #)

w =(f,f7) and writeay =C& and e, =C& with COM,(C). Then writing f, = f,f,=f*
we set B B
)=cel(s )= (5. 3)oedcc)

Now (a),w) is given explicitly in terms of the (non-normali)ePetersson inner produ(c)z :

(w@)=-4(f,f)° where (f,f) =J'D/FI(N) ffdxdy . Hence, we have the following equation

() AU ffdxdy) (7.19)
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To computedefC) we consider integrals over classesHr{X,(N),0, ). By Poincaré duality there

exist classeg,,c, in Hl(Xl(N),Of) such thatde(jcvd) isaunitinO, . HencedetC generates

the sameO, -module as is generated t{yde(jo f, j} for all such choices of classes,€,) and

J

with {f,, f,}={f,f*}. Letting u, be a generator of th®, -module {de(j fij} we have the

following formula of Hida:
alp?)=(f, 1) Ju,g, x (unitin O, ,).

Now, we choose a (primitive) grossencharagperon L together with an embeddin@ne(jp

corresponding to the primp above p such that the induced p-adic charagfemnas the properties
(i) ¢,modp =«, (Pp= maximal ideal ofQ,).

(i) ¢, factors through an abelian extension isomorphig 61 T with T of finite order prime to

p.
(i) ¢((a))=a for @ =1(f) for some integral ideaf prime to p.

Let p, = kery, :Tl(N) - O, and let A, = Jl(N)/ pOJl(N) be the abelian variety associated to f by
=(E/F+)“ whered :[Of :Z].

We have that the p-adic Galois representation &dsdcto the Tate modules on each side are
equivalent to(lndFF+¢0)sz K, , whereK, /=0, 0Q, and whereg, :Gal (F/F) = z is the p-

p

Shimura. OverF" there is an isogenyA_ .

f.p
adic character associatedgoand restricted td- .WWe now give an expression f<)f¢, f¢> in terms

of the L-function ofg . We note thalt, (2,7) =L, (2v)=L, (2,¢2)7() and remember thatis the p-
adic character, and is the complex conjugate of, we have that:

I F G R
<f¢’f¢>_ﬁN q”(l q] LN(2’¢X)LN(1'¢I)’ (7.20

qSy

where x is the character of f, and j its restriction to L; ¢ is the quadratic character
associated to L; L, ( ) denotes that the Euler factors for primes dividing N have been removed;
S, is the set of primes q|N such that g = qg' with gq| cond ¢ and q,q" primes of L, not
necessarily distinct.

THEOREM 4.

Suppose that p, is an irreducible representation of odd determinant such that p, = Ind«, for a

character k, of an imaginary quadratic extension L of Q which is unramified at p. Assume also
that:

(i) deto,|, =w;

(i) p, isordinary.
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Then for every D = (=, 0,¢) suchthat o, isof type D with [= Seor ord,

Ro UTo
and T, isacomplete intersection.
COROLLARY.

For any p, asin the theorem suppose that

p:Gal(Q/Q) - GL,(0)

IS a continuous representation with values in the ring of integers of a local field, unramified outside
a finite set of primes, satisfying p [0, when viewed as representations to GLZ(lfp). Suppose
further that:

0] p‘Dp isordinary;,

(i) detp‘,p:)(g"‘1 with y of finiteorder, k> 2.

Then o isassociated to a modular form of weight Kk .
THEOREM 5. (Langlands-Tunnell)

Suppose that p: Gal (6 / Q) - GLZ(C) is a continuous irreducible representation whose image is
finite and solvable. Suppose further that detp is odd. Then there exists a weight one newform f
such that L(s, f)=L(s, p) upto finitely many Euler factors.

Suppose then that

Po :Gal (Q/Q) - GLZ(Fs)
is an irreducible representation of odd determin@his representation is modular in the sense that
over F,, p, = P, modu for some pair(g,/,l) with g some newform of weight 2. There exists a

representation
i:GL,(F,) - GL,(zV-2)) o 6L, (c).

By composingi with an automorphism oGLZ(FS) if necessary we can assume thahduces the

identity on reduction m0({1+ V- 2). So if we considerio g, : Gal (GIQ) ~ GL,(C) we obtain an

irreducible representation which is easily seeba@dd and whose image is solvable.
Now pick a modular fornE of weight one such tha =1(3). For example, we can take = 6E,,

where E, , is the Eisenstein series withellin transformgiven by Z(S)Z(s,)() for y the quadratic

character associated (@(\/—3). Then fE= f mod 3 and using the Deligne-Serre lemma we can
find an eigenformg 'of weight 2 with the same eigenvalues Asmodulo a primeu 'above

(1+ N - 2). There is a newforng of weight 2 which has the same eigenvalueg afor almost all

T’s, and we replaceég',,u') by (g,,u) for some primeu above (1+ \/—2). Then the pail(g,,u)
satisfies our requirements for a suitable choicg qcompatible withy ).
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We can apply this to an elliptic cure defined overQ, and we have the following fundamental
theorems:

THEOREM 6.

All semistable eliptic curves over Q are modular.

THEOREM 7.

Supposethat E isan dliptic curve defined over Q with the following properties:

(i) E hasgood or multiplicative reduction at 3, 5,

(i) For p= 3,5 and for any prime q=-1modp either ﬁEyp‘Dq isreducible over pr or O |l is
irreducible over F,.

Then E ismodular.

8. On some equations concerning p-adic and adelic nurals, p-adic and adelic strings.

8.1 Measure and integration on the adelic space A concerning the adelic study of the zeta function.

[4]

We take the case wheréS=¢ is a minimal regular model of elliptic curve E over a global
field k. We will assume the setS™ of horizontal curves in S' contains the image of the zero
section of & - B. To work with the zeta integral we will need measand integration ofAx A)",

and also orBx B and (BxB)". The central object of this subsection is an uifiathzeta integral.
The zeta integral will be an integral with respech measure 0(1A>< A)x.

The spaceA’ coincides with the preimage of its image with edpto the projection mayp, .
Functions which we will integrate in the study betzeta integral will all be constant on groups
associated toA. Hence, it is sufficient to work with aR -valued measure o(ﬁv X A/)x which is

the pullback with respect tc(py, py) of a normalized one dimensional adelic measure on

(A X A¢y)» and with the measure dx A) which is their tensor product.

From the definition ofA we deduce thahe multiplicative group A is the restricted product of
A with respect to (OA/)X, yOS'. Similarly to the definition of A = Aj’ define an adelic space

AxA={alal),, all oK, @D)oAm=12. (1)

Define (Ax A)' as the restricted product b& x A J' with respect to(A, x A n OA xOA ).

We define as the tensor product of the normalized local IOEBEBSL/ )X,XD y. The

xK

X,z X,z

Hia,xa, )

definition of (Ay X A/)x implies that is a real valued measure. Defipg, . as the tensor

Hiaxay
product of /,I(AyxAy)x,yDS'. Define a space of functiorB(AyxAy)x as the linear space generated by

g, :Dxmy(fx(}z), fx(yzz)) with g, :hyo(py, py) for an integrable functiorh, on (Ak(y)XAk(y))x, and
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such thatfx(”;‘) is continuous onK f(m)chaer DR, forall xOy and fx(’“;) o =1 for almost

X,2? "%,z
X,z

all xOy,m=12. For f =0, fX,ZDR(AyxAy)X define

IOy =TTy ] My B2)

and extend by linearity tR(AyxAy)x .

Define a space of functionsR(AxA)x as the linear space generated byl o f, with

f,=(f% £@)0 Rixa ) Such that 0. f, induces a continuous md@x A) — C and

fdu, L (8.3)
y (a,xA))

absolutely converges in the compactified complexelC [ {oo} :
For f =00f, OR, - with f, 0 Riaea ) define

[ty = yﬂ [ty B4

and extend by linearity t@ JORE

Now we describe an exemple. Lét=0 .. U, f, , where for all non-archimedeanz

, (8.9)

X,Z X,z

f =| |S Char Cx,z,1 Cx,z,2
tixz Oxzitixz “Ox.z

1x,z 1x,z

and forallydS"'c

X,2Z,M

=0 for almost allx[ly, m= 12, and for almost aly [l S 'meyqixgm =1,

,

m=12. Define the components df over archimedean places as

f,(@8)=| [, extl-ep, @) +|n,(6) ), @)

for (a,[n’)DOw,y x0,,, where| | is the usual absolute valug, is the projection mape, = [ «
is a real embedding argl, = iR« is a complex embedding. Then

e[ 1)
I By O wn ) = Oy e )[ j |‘|I'w,y(s), (8.7)
aly

-s
xUy,na l_qx,z

where for yOS the factor [, (s)=m°T(s/2f’ if « is a real embedding and

w,y

r,.(s)=(27)"*r(s)’ if « is a complex embedding. So we get

wy

2
—=\C +C S 1
[t =[] 11,8 H s | [ e

_~-S
1 qx,z ayds™
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The product of the Euler factors ovgilS , up to finitely many removed, equals the squarthef
Hesse zeta function &f.
Now we define anR((X))-valued translation invariant measutg ,, on B, x B, which lifts the

discrete counting measure ddy)x k(y). Components of a measurable set with respectiso th

measure for almost alf (1S dre sets(py, py)_l(pt). Define a measurgy,; = DyDS.,uBYXBy .
For a subse§, of S and f =01, f,=0,,(f% {2){70Q .f,=g,°(p,. p,) where

yrly X,z27 'x,z

9, :(g(yl),g(yz)),g(ym) are integrable functions oA, define JB . f(B)du..(B8) as equal to
S0 " Pso

|_| Jos, Ik(y)xk(y)gydﬂk(y)xk(y) and extend to the space generated by such fuscfitre right hand side

can diverge if§, is infinite. Then, we have:

J.Bsosto f('B)d'quB(’B) - |_|yDSoJ-k(y)xk(y)gydyk(y)xk(y)' (8.9)

Since the measure dk(y) is discrete counting, we can take the inducedt bydasure ork(y)".
Define the measure O(’By X By)x as induced from the measure Bpx B, . So this measure is just
the pullback with respect thp,, p,) of the discrete measure ¢k(y)xk(y)). Define the measure
on (BxB) as the induced from the measure BxB. For a subset B = |_| (py, py)_l(By) of

(BxB) and f =0f, as above, define

_[B fdﬂ(BxB)x = |_| y_[By gyd'uk(y)xk(y) - (8.10)

Using the local transformg , one easily gets an adelic transfoffn Define space€,,Q,., as
adelic version of the local spad®@-. For a function f Q,,, and a finite subse§, of S',

all (A50 x ASO)X we get a summation formula which follows from tive dimensional formula

Jo. .o, T(@B)dts o, (5)= r‘lijsosto tla B, .o (B). (8.11)

8.2 Zetaintegrals.[4]

We will define zeta integrals in the local case anthen in the adelic caseThe general formula
for the zeta integral has a shape similar to theedsion one zeta integral:

2(o.x)=] Gxdu (8.12)

where g is a function in the spaces R or @, is a quasi-character on the group which describes
abelian extensions angl is its pullback to a quasi-character on the grduygocal or adelic, tildes

and J stand for a certain rescaling of the original fimmts and groups, the need for which is
dictated by dimension two theory needs. If onegiefo ignore the higher class field theory and K-
delic objects, in the unramified theory withoutessgal loss one can work with the zeta integral
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Zlof F)=1,8l [du. (8.13)

First, we define rescaling local homomorphisms' and an adelic homomorphismQO'. For a
non-archimedean two dimensional local figtdwith local parameters,,t, define

0T L FxF L fut)o By ): 6.9
in the archimedean case define
0:T - FxF, (alul’azuz)'_) (a1|a1|u1’a2|a2|u2)’ (8.15)

where a; OE",uy, D1+tE[[t]] and| | is the usual absolute value & Denote byo the bijection
o(T) - T.
On the adelic side defin@'=00", ,:T; - A;xA;, and the inverse bijectioro: o' (Ts) - Ts. For

a 0T we will use the notationa =0o'(a). For a complex valued continuous functidn whose
domain includesT and is a subset df xF form fo0:0'(T) — C, then extend it by continuity to
the closure of'(T) in FxF and by zero outside the closure, denote the rbguft : F xF - C.
Note that the closure off in FxF is OxO. Introduce an extensiory of a function
g="f,:FxF - C as the continuous extension @x O of

gla,,a,)=g(a,,a,)+ Zﬁisgg((apaz)‘/i)’ (0,0,)DF < F*, (8.16)

in the non-archimedean case, wherel:(tl‘l,tl‘l),vz:(tl‘ll),vsz(ltl‘l) and as the continuous
extension off_ in the archimedean case. So, for exampld, ﬁchar(thtlo) then fo(al,az):l for
(a,a,)0F xF* only if a 0t*U,a,0t2"0°, k=j,m=l, hence f, is not a continuous
function; but f :char(tsztZIO) is.
For a complex functiorg on the adelicT which is the tensor product of its local composegy,
define g as the tensor product of the loagl,, and extend the definition to the space genetayed
such functions. We will have different rescaling wartical and horizontal curves. For a curye
denote byT,, the kernel of the module map af). Choose a set of representativids, 0T, of
N, =‘Ty‘ which forms a group. So ilk(y) is of positive characteristic theN, is a cyclic group
generated by, , if k(y) is of characteristic zero the, is the multiplicative group of positive real
numbers. Define a mapO'=00,:T - T curvewise : O,(a)=0'(a) if y is vertical,
O,(my)=0'(m)y for mOM,, yOT,, if y is horizontal. Put

g=0(1), g,=0(1,). (8.17)

y

If k(y) is of characteristic zero thefj, =T, . Using the homomorphism t define for a functién
on K}(F) or on Jg the function f, is the pullback with respect to t to the locahdelic T . So| |21
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is the module function | on T. Now, for a functiong O R., or g R @nd a quasi-character

X K5(F) - C or x:Js — C*, x|Ps =1 define a generic local zeta integral as

<lo.x)=¢lgoxp) =], Trdu,., (8.18)

(T)

and amadelic zeta integralas
(9.x)=Cssl0.x.1) = [ GXH - (8:19)
For gUQg, andgll RNA)X the zeta integrals take complex values.
For the local non-archimedean zeta integral ircise whergu(O) =1, we have that

Z(g’)() = (1_ q_l)_z z (q_s)j+I J-Oxxox g(tlj ul’t]I.UZ)XO (t(ul’ u, ))dIUFxF (Ul’ Uz) , (8.20)

jloz

Where)(=)(0| |z X, is of finite order and trivial oft,,t,}. If, moreover, for fixedj,| the value
glt/u,,t'u,) is constant =g,(j,!), then

(g.x)= 00 (@)™ g0, . Hotlun, et (W) 8:22)

jioz

If g=0,¢9, then
¢:5(0.0)=[14,(0,.x) 0, x)=] G5k, (@22
yos' y

thence
Zeslo.)=[] ], BRIy - B23)
yI]' y

Write the quasi-charactey as |_| Xy, - If, furthermore,g, =0, g, ,, then we have the following
formulas. If y is a vertical curve thezfy(gy,)(): ngyzx,z(gx,z’)(x,z) is the product of the generic
local zeta integrals. Ify is horizontal in characteristic zero the’g(gy,)(): ﬂ@y(xyz(ngz,)(xlz)

where the local factor equals
J.Tx,z gx,z)(x,ztxvz d'uKi,zxKi,z (824)

and therefore differs from the generic local zettegral defined above, sincg, which differs
from o'(TX’Z) unlessF, , is archimedean. Ify is horizontal in positive characteristic then auluce
an auxiliary zeta integral

&3lo, I [)=f 8,@)a " dy .1 (@) ®25)

The latter is the product of
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J, 8,@)aldu,. . (@), (8.26)

to calculate which one can use the formulas foizbotal y in characteristic zero. If
¢y (gy’| |2) = ZnDNy,LLy g, (mny)d,u(A/xAy)x (y)n_S/z , (8.27)

m,OT,, [m| =n.then ¢,g,| )=, cn™.

The adelic zeta integral diverges unl€ds £ corresponds to an elliptic curve over a globddfie
since otherwisef,, will take the same value different from 1 forimfely many vertical curves.

Now, we assume tha = £ is a minimal regular model of elliptic curvé over a global fieldk ,
(see pg.9) and that the sBt of' curves contains the image of the zero secBoa B. From Tate’s
algorithm for the special fibre of a regular modéklliptic curve we know that for every point
on ¢ there is a branchz of a verticaly passing through such that the finite residue fielq(x)

coincides with the residue fielk(x) of x.
Now we define a kind of a centrally normalized ftioe f for which the calculation of the adelic
zeta integral is straightforward. Put

f=0,f f,=0,,f, (8.28)

yos' Ty ? xdy "X,z

and define the local factors as follows. For nothamedean(x, z) on vertical curvesy in a non-

singular fibre and horizontal curves in characterigero put f, , =char, . ). On a vertical curve
y in a non-singular fibrer = f, and i(fy)(a): fy(vfa) with v, T, . On a vertical curvey in

a singular fibre definef, (o) = char,_, \(e,.a) with (g,,)0T,, &,, (t1§*;,t1XZ ), such that for
f,=0,,f,, we have#(f,[a)= f,(/;'a) with v, OT,,. On a horizontal curvey in positive
characteristic defind, (@) = char,_, (&, @) with (g,,)0T, such that forf, =0, f,, we have

3(f, o) = 7, (0;%a) with p, OT,,,. Over archimedean places put

2 a.8)=exe.mp,(a) +[p,(8) ] ©.29)

w,y "

for (a,8)00,,, %0
So then

72 (a.8) = exd-e.p, (@) +[p,(8) ] (©:30)

For a fixed archimedeao chooser,,, [JR,, equal each other, such that

[1.765 =16y =€, (8.31)

wheren=|k:qQ|.
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For a horizontaly in characteristic zero definé, as having componentshar, o ) at non-
archimedean data andfwyy( = f0 l(\/_wy \/_wy)aJ at «,y. Then on horizontal curves in

characteristic zero we havé( y)(a = fy( Y ) with p, OT, . On vertical fibres pup, =v, and

define
p=0.sp,. (8.32)

Now, using the previous formulas it is easy to obthe following theorem of{(f | |Z)

THEOREM

For every vertical curve y we have

Xy X,Z

Zy(f | |Z): 61 (1_2_5 ]2 . (8.33)

For every horizontal curve y the zetaintegral ¢ y(f | |:) is a meromor phic function which satisfies

the functional equation Zy(f | |Z)=Zy(f | |§_S) and which is holomorphic outside its poles of
multiplicity two at s= 0,2 in characteristic zero and at q; = lqj in positive characteristic. For a

horizontal curve y in characteristic zero the zeta integral Zy(f | |Z) is the square of a one
dimensional integral at s/2 on k(y).

Recall that the (unramified) zeta function of aessdle S is
s}
Zs(s)= D (1—|k(x)| ) , (8.34)
S

where x runs through the set of closed points ®nit is equal to the produdf], ,, {5 (s), where

S, = Sxgb. Itis easy to see that,(s) absolutely and normally converges ®{s) > 2. Classically
we know even a stronger properi;(s) extends to a meromorphic function &(s)> 3/2 with

the only simple pole(s) as= & characteristic zero and® = ¢° in positive characteristic. The
previous theorem implies a comparison of the zgtsgral and the square of the Hasse function of
& which, in particular, implies the convergenceld reta integral on the half plaﬂe(s) >2.

COROLLARY

onw(e)>2  Coli][)zesl LRF. el f)zesl Rs (1)

The first factor cgvs.([ |Z)= HbDBoib(s) where

9= [ & k-] bk ) s
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where y runs through irreducible components of &, without multiplicities. The factor ib(s) equals
1 on all non-singular fibres &,. Furthermore, we have:

el = Mew 1[4 w) b ety e

yO&,

The second factor is the product of zeta integrals for horizontal curves and hence has a
meromorphic continuation to the complex plane and satisfies the functional equation

C.s —([ |Z)= C.s —([ |§_S) and is holomorphic outside its poles at s= 0,2 in characteristic zero and

at gq°=1,q° in positive characteristic. The zeta integral ZS’S.(f,| |Z) absolutely and normally
convergeon R(s)> 2.

The general case @ introduce a (renormalized) zeta integral

4 s,S'(g'| IZ,S)= DDWBO(Z pl(s),pl(s)b(ﬁ'| |Z,p1(s))g_lZ s,y(g'| IZSD Dy!;\'j s,y(g'| |Zs) (8.37)

y

For y in a non-singular fibre§, the y -factor £° of sty(g,| |ZS) is cancelled out by thie-factor

-1
of Zpl(B)(/Z,| |Z)g which is equal to its inverse. Definle similar to the functionf above. Similar
to the previous calculation one deduces that®(s) > 2 the zeta integral(ss(f | |ZS) equals the

product of ¢ (8)*"¢s(s)* and of Cs,qu |Z) which is the product of exponential and Euler
factors for vertical curves in singular fibres afdactors for horizontal curves i§ . '

8.3 Addlic strings and zeta strings. [5] [6] [7] [8]

Recall that the field of rational numbeg plays an important role in physics. @h there is the
usuaIQ.Lo) and p-adic(“p) absolute value, wherp denotes a prime number. Completion®fwith

respect td-L, and|.|p yields the field of rea(REQm) and p-adic(Qp) numbers, respectively.
The set of all adeles may be given in the form

A=UA(S), A(S)=Rx |‘1Qp X |‘lzp . (8.38)
s o o

A has the structure of a topological ring. Recadk t(uantum amplitudes defined by means of path
integral may be symbolically presented as

AK)= jA(x))([—%s[x]Jﬁ)x . (8.39)
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where K and X denote classical momenta and configuration spaspectively. We note that
x(a) is an additive characteS[X] is a classical action arful is the Planck constant.

Now we consider the simple p-adic and adelic basstiing amplitudes based on the functional
integral (8.39). We know that the scattering of tweeal bosonic strings in 26-dimensional space-
time at the tree level can be described in termh@fpath integral in 2-dimensional quantum field
theory formalism as follows:

gmjﬁ)Xex;{—So[X]j ”jd o, ex;{—k X“(o, J)J (8.40)
where DX = DX°(0,7)DX*(0,7)..DX*(0,7), d’0, =do,dr, and

(8.41)

U

s[x]= —%jdzoaaw'a”x
with @ = 01 and x = 0}1,..., 25 Hence, we obtain:

A, (k,...k,) = g jﬁ)Xex;{zn[ jdzoﬂ XH97X ngjdzaj ex;{z:fk( )X”(U,,T,)j

(8.41b)
It is possible to obtain the crossing symmetric &aano amplitude

A (I k) = g2 [ L X ax. (8.42)

As p-adic Veneziano amplitude, the p-adic analazfier. (8.42) is

Allk) =g [ X

where only the string world sheet, parametrizedxhys p-adic. Expressions (8.42) and (8.43) are
Gel'fand-Graev beta functions dr andQ,, respectively.

Now we take p-adic analogue of (8.40), i.e.

k3

dx, (8.43)

A (ke k) = gﬁjﬁ)xxp[—%so[x]jx ﬁ jdzo—j)(p[—%kg)xﬂ(a],rj )j , (8.44)

to be p-adic string amplitude, Wheng eden ) is p-adic additive character alﬁd}p S
the fractional part oiJQ, . In (8.44), all space-time coordinats,, momentak; and world sheet
(a, r) are p-adic. Evaluation of (8.44) leads to the follmy equation:

N gp|‘|jd a)({;/h_zkk log((o; -, + (ri—rj)z)}. (8.45)

i<j
Adelic string amplitude is product of real and@kdic amplitudes, i.e.
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In the case of the Veneziano amplitude 4aidz, )0 A(S)xA(S), whereA(S) is defined in (8.38),
we have

Hence, we take the adelic coupling constant as

g =9} []ldl; =1, 0#90Q. (8.48)
p

Furthermore, it follows that p-adic effects in #agelic Veneziano amplitude induce discreteness of
string momenta and contribute to an effective cimgptonstant in the form

g2 = gim |jjolzaj >1. (8.49)

Like in ordinary string theory, the starting poiof p-adic strings is a construction of the
corresponding scattering amplitudes. Now, for tlge @.42) we can write also the following
equations

A.(ab)=g?[ X -X"ax (8.50)
RECRR

_ ,<¢@-a)¢(-b)¢(-c)
@ B <0 (852

= g*[ DX exp(—%Tjdzaﬂ”XﬂaaX”jﬁ [d%a, exdik{’x#),  (8.53)
j=

where #=1, T=1/n, and a=-a(s)= —1—2, b=-a(t), c=-a(u) with the conditions

s+t+u=-8,i.e. a+b+c=1
The p-adic generalization of the expression (8.850) i

A (ab)=g? jQp|x|j)‘l|1— X dx, (8.54)

Where|.|p denotes p-adic absolute value. In this case stniyg world-sheet parameter is treated

as p-adic variable, and all other quantities h&edr tusual (real) valuation. A further adelic foriau
is
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A (ab)[]Alab)=1 (8.55)

p

where Ao(a,b) denotes the usual Veneziano amplitude (8.50). éleme obtain the following
equation

g*[ ] -x"ax[ A(ab)=1. (8.55b)

Now for the unified path integral approach to oedjnand p-adic N-point bosonic string amplitudes
at the tree level, we have that

A (k. k) = gVN‘ZﬂIdzajIXV[—%IB(X”,OHX”)dZin)VX . (8.56)

wherev=02,.,p .., 4=0L..25 a=01 and x,(a)=exp-27a), x,(a)=exd2s{a},).
The above Lagrangian is

L= _Izaaxﬂ(a’ 7)o" X (o, r)+\/—_1i kiIx“(o, r)é(a—aj )5(2'— Tj). (8.57)

Note that this approach is adelic and based offotteaving assumptions: (i) space-time and matter
are adelic at the Planck (M-theory) scale, (ii) m@pn’s path integral method is an inherent
ingredient of quantum theory, and (iii) adelic quan theory is a more complete theory than the
ordinary one. Consequently, a string is an adddjeat which has simultaneously real and all p-adic
characteristics. The target space and world-sheeadelic spaces. Adelic Feynman’s path integral
is an infinite product of the ordinary one and dadic counterparts. The corresponding adelic
string amplitude is

AkY,... kM) = Ao(kfj),...,kfo’“))n Ap(kgl),...,kgm)rl A KY,... kM), (8.58)
pd

pc

where k,(i) is an adele, i.e.

0= (010, K,.) 659

with the restriction thaikfj) 0z, for all but a finite setS of primes p. The topological ring of

adeles kﬂ) provides a framework for simultaneous and unifoeshsideration of real and p-adic

string momenta. Adelic string amplitude containatneial p-adic modification of the ordinary one.
Now we consider the cas&é — C with regard p-adic and adelic analysis. In thisechunctions are
complex-valued while their arguments are adeles.réla¢ed analysis is used in adelic approach to
guantum mechanics, quantum cosmology, quantum tieldry and string theory. Many important
complex-valued functions from real and p-adic asialgan be easily extended to this adelic case.
Adelic multiplicative and additive characters are:

x01, sOC, (8.60)

S
’
p

n) = =i,
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X(%) = ()T e (%) = €2 ] &k xoa. (8.61)

Since all except finite number of factors in (8.8 (8.61) are equal to unity, it is evident that
these infinite products are convergent. One canvshat 7TS(X)=1 if x is a principal idele, and

x(x)=1if x is a principal adele, i.e.

MK =1, x0Q", sOC, (8:62)
p

|_| )(p g 27 |—I 2n{x}p =1, x0Q. (863)

p

It is worth noting that expressions (8.62) and 33fr s= 1 represent the simplest adelic product
formulas, which clearly connect real and p-adigperties of the same rational number. In fact, the
formula (8.62), fors= 1 connects usual absolute value and p-adic norntheamultiplicative

group of rational number®”. Mapsg, : A » C, which have the form

4,(x)=4. (Xm)g ¢p(xp)|p;l Q,lx| ). ©64)

where ¢, (xm) are infinitely differentiable functions and fadl zero faster than any power|01£|w

as |xm|w - o, and ¢p(xp) are locally constant functions with compact suppare called

elementary functions o\. All finite linear combinations of the elementdunctions (8.64) make
the setS(A) of Schwartz-Bruhat functiong(x). A is a locally compact ring and therefore there is
the corresponding Haar measure, which is produttieofeal and all p-adic additive Haar measures.
The Fourier transform of the Schwartz-Bruhat funwig(x) is

j d(x)x(x&E)dx  (8.65)

and it maps S(A) onto S(A). The Mellin transform of #(x)S(A) is defined using the

multiplicative charactefx]S in the following way:

s1 dXx
P 1-pt’

Res>1 (8.66)

)= [0 = [ g b lclde T, gl

qD(s) may be analytically continued on the whole comp&ane, exceps= @nd s= 1 where it

has simple poles with residues(0) and #(0), respectively. Denoting by the Mellin transform
of @ then there is place the Tate formula

®(s)=d(1-s). (8.67)

If we take

009 =427 1,9, o)
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which is the simplest ground state of the adeliortwmic oscillator, then from the Tate formula
(8.67) one gets the well-known functional relationthe Riemann zeta function, i.e.

”_ZFGJZ( )= F(lzsjf(l—s). (8.68)

Its interesting this connection between the harmoscillator and the Riemann zeta function.
With regard the zeta strings, hence the Riemarmfaection applied to the strings, the equation of
motion for the zeta string is

oy 1 ixk _k_2 - -9
Z(Ej (Zﬂ)D Lg_lzz)zﬂ:e Z( ij(k)dk 1_¢ (869)

which has an evident solutiog = .(or the case of time dependent spatially homamene
solutions one has to consider the equation of motio

z(’%z)q(t) = (Ziﬂ) | e‘ikotz(ﬁ)é(ko)dko = lf(;()t) . (8.70)

2

In the weak field approximatioﬁ\g»(t] <<1) the above expressiop/(1- @) = ¢ and (8.70) becomes
a linear equation which can be written in the form

Le_ik"{( ]Qkol J2-¢)-1 }( k)dk, =0, (8.71)

where 6 is the Heaviside function. Slncé(kzoJ>1 when |k)|>+/2 the equation (8.71) has

solution only forg(k,) = 0. This also means the absence of mass.

Furthermore, with regard the coupled zeta stripgand @ which are open and closed respectively,
the equations of motion are:

(j jk( j k)dk = 29 . (8.72)

n=1

O — 1 ixk _k_2 n — n? n(n_l) n(r;—l)_l +1 _
Z(_jH_W [e z[ 4je(k)dk—n§{9 + 62 (9 -1)]. 873

4 2(n+1)

9. The P-N Model (Palumbo-Nardelli model) and thd&rkamanujan identities, solution applied
to ten dimensional 1IB supergravity (uplifted 10-dimensional solution) and connections with
some equations concerning the Riemann zeta functio[9]
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Palumbo (2001) has proposed a simple model of thle and of the evolution of the Universe.
Palumbo and Nardelli (2005) have compared this inedth the theory of the strings, and
translated it in terms of the latter obtaining:

1
I dx/g { 166 gg””g”"Tr(GWGpa)f(40)‘59”"#“‘“”}:

[

1/2 _o0 1)~ 2 K2 2
| R+49,00"®—=|H,| -=2Tr ()], (9.1)
g 2 o

0

A general relationship that links bosonic and femng strings acting in all natural systems.
It is well-known that the series of Fibonacci’s ruers exhibits a fractal character, where the forms

repeat their similarity starting from the reductifactor 1/¢ = 0,618033 _\/52—1 (Peitgen et al.
1986). Such a factor appears also in the famougtafrRamanujan identity (Hardy 1927):
0,618033= 1/(1):\/_5—_1 =R(q) + \/E (9.2)
2 3+f q fo(-t) ot
\/_ f ( tl/5) t4/5
and =20 - R(q) \/E , (9.3)
14 3+[ q fo(-t) ot
\/_ 0 f( tl/5) t4/5
where (OR £2+1.

Furthermore, we remember thatarises also from the following identity:

(2+5)3+v13) 24 10+11/2) | [[10+742
= \/130| g{ /2 } (9.3a) and ﬂ—ﬁlg ( 2 j+( 2 j

(9.3b)

The introduction of (9.2) and (9.3) in (9.1) proesd

1 Vo
—Id26x\/§ _1GGD —gg“pg Tr(GWGpU)f(qa)
ZCD—3 R(q) + V5
20 1+3+\/§ 1 ca £5(-t) dt
2 bt
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1, -~ R 3 V5
-~g"o =| —DR2d-—| R(q)+ O
5970,8,0]=], 7 205 RO — T
1+ ex 7.[ 1/5Y 14/5
2 J5% f(-t¥%)t
2

[d°x(-G)"2e**[R+40, 00" —%\ﬁ | - A Tr

20 -3 R(q) + V5

2Rg’
20 1+3+J§ 1 S(-t) dt Sio
2 ex \/—_L f(~ t1/5) t4/5

(1)1 (9.4)

which is the translation of (30) in the terms o fheory of the Numbers, specifically the possible

connection between the Ramanujan identity and élaionship concerning the Palumbo-Nardelli
model.

a. Solution applied to ten dimensional IIB supergavity (uplifted 10-dimensional solution).

This solution can be oxidized on a three sph&feto give a solution to ten dimensional IIB

supergravity. This 10D theory contains a gravitoscalar field, and the NSNS 3-form among other
fields, and has a ten dimensional action given by

= jdloxﬁ[% R—%(aq;)2 - Leoy W} (9.5)

We have a ten dimensional configuration given by

2134 .2 (/4 o 2
ds.f0 = (?j {— h(l’)dt2 + r2dX§’5 +mdr2} +(Ej {d@z + dl//2 +d¢2 +(dl// +cos&dg _ﬁdtj }

¢:_§|09L
4 72’

H, = -2 dr Dot O(dy + coséd¢)—%sin6d0 Odg Ody. (9.6)
r
This uplifted 10-dimensional solution describes Bi8ranes intersecting with fundamental strings

in the time direction.

Now we make the manipulation of the angular vaaalif the three sphere simpler by introducing
the following left-invariant 1-forms of SU(2):

o, =cogpd@ +singsin@g, o, =singdf—-cosysin@g, o, =dy +cosidg, (9.7)

and h, =0, —%isdt. (9.8)
r
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Next, we perform the following change of variables

4
5

r 5~ 1 - 1 - ~
—=p5, t=—t, dx,=——dX,, dx.==dZ, g=+/20, =422'Q, o 9.9
=P = =& &6 =5 g=+2§, Q=+22'Q . (9.9)

‘QI|H

It is straightforward to check that the 10-dimensilosolution (9.6) becomes, after these changes

~ 801 &) )
do d = 1+2 3 +pdZ7,
5, [selg!a G (a o ”pd

¢=-Inp,

I R -
Hg-—?almazmhg+&gp5 di OdpOh,, (9.10)

where we define
ds¢ =-h(p)dt > + £—dp’ + p®dX?, (9.11)
h(p)

and, after re-scaling M,

2M g2 Q
- 2 pt 4= 9.12
P 320 8 o . (9.12)

=)
I

We now transform the solution from the Einsteithe string frame. This leads to

2
P R e L N O S Ol
dsy —5,0 2[d562]+glaf +022+(03 w2 o° dtj ]+dZZ,
p=-2Inp,

H,=H,. (9.13)

We have a solution to 10-dimensional 11B supergyawiith a nontrivial NSNS field. If we perform
an S-duality transformation to this solution weiagabtain a solution to type-IIB theory but with a
nontrivial RR 3-form,F;. The S-duality transformation acts only on thermeind on the dilaton,

leaving invariant the three form. In this way we #&d to the following configuration, which is S-
dual to the one derived above

2
o 1101, 0% =2 =~ [ = 1
d%%-;[dsez]ﬁL?!UfﬁLUz“[Us w2 0° dtj ]+,0de2,
p=2Inp,
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F, =H,. (9.14)

With regard the T-duality, in the string frame wavh

[ds ]+ {J +0; +(03—% 1 dtj} +r2dz?. (9.15)

This gives a solution to IIA supergravity with etexl RR 4-form,C,. We proceed by performing a
T-duality transformation, leading to a solution I8 theory with nontrivial RR 3-form,C,. The
complete solution then becomes

2 2
S [dsﬁ] e {01 +0?+ (0'3—%%&) }szzz,

@=2Inr
C, = -9—120’1 Oo, Oh, _Tgr dt Odr Oh,. (9.16)

We are led in this way to precisely the same 10Dtem as we found earlier [see formula (9.14)].
With regard the Palumbo-Nardelli model, we havefttilewing connection with the eq. (9.5):

1
IdZGX\/_[ ﬁ gg'upgngr(Gvapa)f(w)__g'uvay@vw}:

_°°1
- 2

0

G)'%e 2‘D[R+4a qna”qn——\H i K1°T (R )}

lO

. jo|1°x\/@h|?—§(ago)2 —1—e‘2¢’HWH””} (9.17)

b. Connections with some equations comogng the Riemann zeta function.

We have obtained interesting connections betweare smlutions concerning ten dimensional 1IB

supergravity and some equations concerning the &iameta function, specifying the Goldston-
Montgomery theorem.

In the chapter “Goldbach’s numbers in short intesvaf Languasco’'s paper “The Goldbach’s
conjecture”, is described the Goldston-Montgoméagotem.

THEOREM 1

Assume the Riemann hypothesis. We have the follgwimplications: (1) IfO<B, <B, <1 and
B,

3 X

F(X,T)= %TT logT uniformly for <T < X%log® X, then

log
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Wi+ o)x)-w(x)- 5()dx~—o>< Iog— (9.18)

B — X

. 1 1
uniformly for B <0< B

(2)If1<A<A <o  and (w(@+0)x)-w(x)- xfdx = %é)(z Iog% uniformly for

B ey X

1
————ST<
Xl/A‘|093X xl/A2

—=_log® X, then F(X,T)zziT logT uniformly for
s
TASX<T?.
Now, for show this theorem, we must to obtain s@metiminary results .

Preliminaries Lemma. (Goldston-Montgomery)

Lemma 1

We havef(y)>0 [DOyOR andlet 1(Y)= fe‘zy f(Y+y)dy=1+¢(Y). If R(y)is a Riemann-

integrable function, we have:
b b
IR Y+ydy UR dyj1+£

Furthermore, fixed Rle'(Y) is little if [£(y) is uniformly small for Y +a-1<y<Y+b+ 1
Lemma 2

Let f(t)= 0 a continuous function defined of@,+e) such that f (t) << log?(t +2).
If

3(r)=[ (0t = 1+ £(T)TlogT

then

T(Si”k”jz f (u)du = (’_T + g'(k)jldog1
L u 2 k'
with |¢'(k) small fork — 0" if [¢(T) is uniformly small for
1
—_— —| k.
klog? k k o9’

Lemma 3.

54



Let f(t) = 0 a continuous function defined 0[Iﬁ),+00) such thatf (t) <<log®(t + 2) If

I (K) = T(Sirl‘]k“j f (u)du = (’—ZT + g'(k)jk Iog% . (9.19) then

I(T) = } f(t)dt = (L+£)T logT , (9.20)

with || small if |£(k)| < & uniformly for ! = <k s%long.

Lemma 4.
Let F(X,T)::kZT%. Then (i) F(X,T)=20; (i) F(X,T)=F@ X,T); (ii) If

The Riemann hypothesis is preserved, then we have

1 1 loglogT
F(X,T)=T| —=log®T +log X | —+0O /—
( ) (XZ g g j[ZZT ( logT D

uniformly for 1< X <T.

Lemma 5
_(@+oy-1
Let 501(01] anda(s)—T. If c(y)<1 Oy we have that
7 0 [y 0 [ 2),of L
ity — VLt = 12+iy)— | gt O(JZI 3-) O(—I Szj
T Ty o [igataring s avc{ o 5Jof S
for Z >1.
o
For to show the Theorem 1, there are two partsgévi® prove (1).
We define
T X 1¥ 2
JIX,T)=4||) ——— dt.
x.7) !gh(t—y)z

Montgomery has proved that ~ J(X,T)=2/F(X,T)+0(log°T)  and thence the hypothesis
F(X,T)::%TTIogT is equal to J(X,T)=(+0())T logT . Putting k :%Iog(1+ d), we have
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a(it)? = {S‘T“T.

2dt = (%T+ o(l)jk Iog% = (%T+ 0(1)j5|ogl

o

For the Lemma 2, we obtain that

[

ﬂa(it]2

0

X"
;1+(t-y)2

1
1
Jdlog® =
95

<T< 2

for

log

Qq_l B

3
o
For the Lemma 5 and the parity of the integrandhenee that

dt = (’—27 + o(l)jé'log% @)

. v
_ﬂ;ﬂa(p)1+(t -y

if Z 250931.
o o)

XV

From the S(t)= Y a(p) we note that the Fourier's transformed verifgtth

= 1 (t-yf

S(u)= ﬂ;ga(p)x Ve~ )™ .

From the Plancherel identity, we have that

T‘ > alp)xe(- W)(Ze_‘"d”du = (7—27+ o(l)jé'log%_ :

e

For the substitutionY =log X, —-2u =y we obtain

2

e?dy = (1+ 0(1))5Iog% . (b)

+

alo)e )
et

Using the Lemma 1 withR(y)=e” if 0<y<log2 and R(y)=0 otherwise, and putting

x=e""Y we have that
2X

[z

X MSZ

2

a(p)x?| dx = (g + 0(1))0)( 2 Iog%_ .

Substituting X with X 2!, summarizing on j1< j < K, and using the explicit formula faw(x)
with Z = X log® X we obtain

56



XJ:._K w((L+ o)) -9 (x) - ax = %(1— 22 4 o(1))ox 2 Iog%_ :

Furthermore, we puK = [Ioglog X] and we utilize, for the intervdl< x< X2, the estimate of
Lemma 4 (placingX 2™ for X). Thus, we obtain (1).

Now, we prove (2).

We fix an real numbeiX,. Making an integration for parts betweéf and X, = X,log*® X, we
obtain, remembering that for hypothesis we have

[ @l p)-w)- 5Fex = L x?log

1

1
5 1

that [+ a0 -w(6)- 8 xax = @ . o(l)jax;z oot ©

Xy

Utilizing the estimate, valid under the Riemann ¢iyyesis

w((a+0)x)-w(x)- 59 dx << X" |ogz§ ,

B — X

we obtain analogously as before that

(s b))~ << ac7ion L= axog ] (@

X,
Now, summarizing (c) and (d) and multiplying therstor X/ we obtain

2 2

Tmin(%,%j(tﬂ((ﬁ S~ 8F x“ac = 1+ ot)log .

1

Putting X, = X, Y =logX, x=¢e"" and using the explicit formula faw(x) with Z = X log® X ,
we obtain the equation (b).

Now, we take the equations (9.6) and (9.14) andigely ¢ = —%Iog% and @ =2In p. We note

that from the equation (9.20) fors':g and T = 12 , we have

P 5 1
JM) = fW)dt = A+ )T logT =—log—.
(T) {() (L+£)TlogT =~ log-

.
Furthermore, fore'= 3and T = 1/2, we havé(T) :J' f(t)dt = A+&")TlogT = 2Iog%.
0
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These results are related p= —%Iog% putting r = 1 and tog = 2In p putting o = 1/2, hence

with the Lemma 3 of Goldston-Montgomery theoremeffhwe have the following interesting
relations:

@= —;Iog% - —} f(t)dt = -[(1+&)TlogT], (9.21) @=2Inp= } f(t)dt = (1+&)T logT,=
= | d",/[g| [ R-= (ago) ’2’”HWH /M} (9.22)

hence the connection between the 10-dimensionatigos (9.5) and some equations related to the
Riemann zeta function.

From this the possible connection between cosmaddgiolutions concerning string theory and
some mathematical sectors concerning the zeta ifumcivhose the Goldston-Montgomery
Theorem and the related Goldbach’s Conjecture.

10. Mathematical connections.
Now we take the eq. (7.11) Bkction 7 We note that can be related with the Godston-gamery

equation, the ten dimensional action (9.5) andrétetionship of Palumbo-Nardelli model (9.1) of
Section 9 hence we have the following connection:

Jk(u):zéka(u)z[%()dqr] log f,6(T) 10 = 2Inp:>jf(t)dt—(1+£)rlogT =

= | d1°x\/@[ZR—§(ago)2 - '2¢’HWH”””}

:»jziz [dx(-G)"%e ’”{R+46 4D - —\H - lOT 0F| )}
10

0

-[d*xg { e gg”"g””Tr(GWGpg)f(40)-59‘”0;,@”0}- (10.1)

Now we take the eq. (7.20) &ection 7 We note that can be related with the equatioarndigg
the Palumbo-Nardelli model and with the Ramanujatestity concerningz. Hence, we have the
following connections:

(t,,%,)= 161773 N2 m(ri] LN(2,¢2)7)LN(lw)=>

q-Sy
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. . oo e
{ 7(f,, f¢>DN2 {m (1_;]}LN e~ [ ax
[ER+40 CDG“CD——‘H \ 1°T Q 2|2)}:

lO

== d*x/g|| ~ROT(f,, f,)B : -9 Tr(6,,G,, ) (o) +
NZ{ m (1—3]}% 2¢%). Le)e

Lo
Ly aywm} (10.2)

(f,1,)= 161773 NZ{”(1—§]}LN(2,¢2)7)LN(W):

qiSy

1

= 7N’ Q(l_éj LN(2’¢2)T()LN(:L¢/)'
NG 3y

EEHFEE

Now, we take the egs. (8.44) and (8.47pettion 8 We note that can be related with the Palumbo-
Nardelli relationship. Thence, we have the follogvoonnections:

3
1620 ——
20 R(Q)+

(10.3)

L

Ap(k1 ..... k4)=g,2)jDX)(p( SO[X]j |_“d a)(p( hk’)X”(J r)j
—jd”x\/_ [ 2 24#gT1(6,,6,, )1 (¢)-

167G 8

> g””a,j@m} =

[

1/2 —2¢. u 1~ 2 K120 2
R+49,®9 q:—E\Hg\ T )|, (10.4)
10

0

AA ..... gm.[ |x|k1k2|1 "2"3dx><|_lgp|_”d g, ><|_19p
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Idzsx\/_{ — —g”"g””Tr(GWGpg)f(qo)—

1,
~—ag*o @ =
1676 8 9% V(o}

2

00

- 2
oo™ reao0r0- UL i fef) . aos
10

0

While, if we take the egs. (8.40), (8.69) and (8.Gf3Section § we note that can be related with the
Ramanujan’s identity concerningg and with Palumbo-Nardelli model. Then, we obtane t
following connections:

..... gwIDX ex;{—so[x]j |_“d o exr{ X”(a T, )}

26 R 1 1, _
Id x\/_{ 1676 89 g Tr(GWGpU)f(qp) 9 aﬂ@m}
_°° 1 12 - 1i~p K2 2_
2 —i \/g i
= sEfoxen 2o R(q)+ 3+f o d [ [
\/_.[ —tYs t4/5
4 3 \/g |
Xl:lJ-dZUj exp, 2 ZCD—E) R(q) k(])x'u(a'j’rj)

3+f a £5(=t) dt \|[h*
\/_ f( t1/5) t4/5

(10.6)
1 o LS R
¢ 2= [ e Z( 2jw(k)olk o
1 iX k2 Pt — ¢
= D jké—R2>z+ge kZ(—;]{ﬂ(k)dk—m

2lop- 3 R(q)+ */E

20 1+ 3+[ jq f5(-t) ot
\/_ f( t1/5 t4/5

1
= -[d*x/g { o5 gg””g“”Tr(GWGpg)f(40)-59‘”6;,@4=

_7 1 10 U2 _-20 u 1152 Klzo q 2)
= [ = [dX(-G)*e™| R+49,00"® -Z|H,[ -=2Tr,|F,[*)|, (10.7)
o 2Kio 2 J10
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1
o=

Jere[ - ot o o 0™ (o)

2op-> R(q)+ */E

20 1+ 3+[ fq fo(-t) dt
\/_ f( t1/5) t4/5

e g v

n=1

d*x(-G)"%e 2‘{R+40 cbaﬂcb——\H\ 1°T RS )}:

lO

J’d X\/_|: ﬁ_ggﬂpgwﬁl—r(@‘ G )f(w)_zgﬂvaﬂwvw} (10.8)

Now, we take the egs. (6.17) 8kction 6and eq. (7.20) oSection 7 We have the following
connections:

itf, . _
8772jle fo y "y - < fo: f¢> ;

[ 1 y(-G)"?e2®
. f¢>DN2{H(1'3J}LN 27ty e
[ER+40 CDa”CD——‘H - 1°Tr Q 2|2)}:

lO

=-[d*x/g|| ~ROT(f,, f,)B : -29°g"Tr(6,,G,, ) (g)+
NZ{L‘J (1—2]}% 2¢7%).Le)e

1 .
P g” aﬂ@m}

(10.9)
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With regard the egs. (6.15) and (6.175efction § we have also the following connections with the
eg. (7.20) ofSection 7and the eqs. (8.44) and (8.47)Sxction 8

= g f =— f y"d
%= fon Jm Yy =

= [favn = 8n2j}4:1 fgyy_”_ldyD < f¢, f¢> —

N2 m(l—:J Lo (2677 )L o)

qSy

= Ak, k) = gf)J'.‘DX)(p( [X]j r“d a)(p( %kl xﬂ(aj,rj )j:
= Ay k) = 02 IXEP - X k2k3dxx|_lgp|_“d o Xl_lgp (10.10)

Now, with regard the eqgs. (5.1) and (5.9b)Safction §5 it is possible the following mathematical
connections with the eq. (7.20) $éction 7and with the eq. (8.47) &ection 8 hence:

A=[F =N m[l—ﬁj Lo R y)=

qSy

A(k,...k, ) = g2 [ [}“[1- X" dxx 217 (20 x 2 (10.11
= Ay k) = 2 [ XL Qgpgj *[]%. @0

SLZ(F)\SLZ(Q'FXJ/Q KX:#NZ |;|(1—§] LN(2,¢27()LN(W):>

qSy

IN

= Alky,eke) = g2 [ X5 dx [19:] [o%0, x [lo;- @012

p0l I=

Conclusion

Hence, in conclusion, also for some mathematicztibse concerning thienk between the structure
of A-branes observed in the homological mirror sygimy and the classical theory of automorphic
forms, can be obtained interesting and new conmregtivith other sectors of Number Theory and
String Theory, principally the p-adic and adelicnmhers, the Ramanujan’s modular equations,
some formulae related to the Riemann zeta functithres modular elliptic curves and p-adic and
adelic strings.

Furthermore, also the fundamental relationship eoring the Palumbo-Nardelli model, a general
relationship that links bosonic string action angeystring action (i.e. bosonic and fermionic
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strings acting in all natural systems), can betedlavith some equations regarding the p-adic
(adelic) string sectors and some sectors of Nuriheory.
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