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Abstract—This article solves the Conjecture using the Addition
Method that I proposed
Index Terms—algorithm

I. DEFINITION OF THE BEALE’S CONJECTURE
If:
A"+ B™ = Cl,
where A, B,C,n,m,l € N* and n,m,l > 2;
then A, B, C have a common prime divisor.

D

N* be natural numbers without zero.
II. ALGORITHM FOR PROOF OF THE BEALE’S
CONJECTURE
A. Proof for the option of even A, B, C
If A, B,C are even numbers, then their common divisor is
2 and the Beale’s Conjecture for (II-A) is true.
B. Detailing the initial conditions
Let:
y be a natural odd number.

2)

Then (1) for the remaining options can be represented as
follows:

st = (28ys) 3)
where k € N*,
or:

Y+ (28)™ = s, 4)
where k € N*.

C. Proof of the converse for the option of the multiplicity of
both terms

Let:
(yo > 3) be a odd prime. 3)
Then (3) and (4) can be represented as follows:
(you1)™ + (oy2)™ = (2%ys)", (6)
iKY *
where yi ¢ N*,
or:
(Yo1)"™ + (2"yoya)™ = 45, (7
Y3 *
where 22 ¢ N*.
Let’s transform (6) and (7):
Yolys T + st tyst) = (28us), (®)

where £ ¢ N*,
Yo
or:
volys 'yt +yerH(2Ry2)™) = v, ©)
Y3 *
where 72 ¢ N*.
The left side of (8) and (9) will be a multiple of y,,
while the right side will not. Le.:
(yoyl)n + (yoy2)m 7é (2ky3)la

where z—i ¢ N*,
or:

(10)

(Yor1)™ + (25yoy2)™ # 1, (11)

Y3 *
where 72 ¢ N*.
The Beale’s Conjecture for (II-C) is true.

D. Proof of the converse for the option of multiplicity of one
term and sum

Expressions (3) and (4) can be represented as follows:

Y+ Woy2)™ = (2"yoys)’, (12)
Y1 *
where 1 ¢ N*,
or:
Ui+ (2%%oy2)™ = (voys)', (13)
U1 *
where £ ¢ N*,
or:
(yoyl)n + (2ky2)m _ (yoyg)l, (14)
where #2 ¢ N*.
Let’s transform the (12), (13) and (14):
Yoy ' (2Fya)! — ylys") = o, (15)
Y1 *
where ¥ ¢ N*,
or:
volys s — o (25y2)™) =yt (16)
N *
where - ¢ N*,
or:
Yoy s — v Myl) = (25g)™, (17)

where £2 ¢ N*,
Yo



The left side of (15), (16) and (17) will be a multiple
of y,, while the right side will not. Le.:

Y+ (Yoy2)™ # (28yoys)', (18)
Y1 *
where o ¢ N*,
or:
yl + (25Yoy2)™ # (Vous)', (19)
Y1 *
where o ¢ N*,
or:
(Yoy)™ + (27y2)™ # (yoys)', (20)

Y2 *
where #2 ¢ N*.

The Beale’s Conjecture for (II-D) is true.

E. Proof of the converse for a variant without a common
divisor

Let the terms and the sum in (3) and (4) not have a
common divisor.

II.E.1. Features of addition and subtraction of odd numbers

The proof for (3) and (4) without a common divisor
should consider the following:
Let y,1 > yzo. Then, if:

Yz + Y2 = 22%03, (21)
where (z > 2) € N*;
then:
Yzl — Yaz2 = 2yx4 (22)
And vice versa, if:
Yo1 + Yoo = 2Yz3, (23)
then:
Yzr1 — Ya2 = 222914, (24)
where (z > 2) € N*.
II.E.2. The option of (3) without a divisor, when
(2%y3) <y < 1.
Let’s consider the (3). Let:
Y1 + yo = 2%, (25)
where d € N*.
Let (2¥y3) < y2 < 91 in (3). Then:
(2%ys +y5)™ + (2%ys + y6)™ = (2%y3)", (26)
where:
ys and yg correspond to (2). 27

Let’s substitute the terms in brackets in (26) instead of y; and
yo in (25):

2 ys + ys + 28y3 + yo = 2% (28)

Let’s express (2¥y3) from (28):

okys — 24y, —2y5 — Y (29)
Let’s substitute (29) into (26):
(2dy4 + (ys — ya))” N <2dy4 —(ys — ya))m _
2 2
= <2dy4 —(y5 + y6))l G0
— -

IL.LE.2.1. The option when d = 1 in (30), and the Addition
Method

Let d =1 in (30). Then, according to (23) and (24):

ys + ye = 2yr, 3D

and
Ys — Yo = 2°Ys, (32)

where (e > 2) € N*.
Substituting (31) and (32) into (30) and dividing the

expressions in brackets by 2, we obtain the following
expression:

(ya+2°""ys)™ + (ya — 27 'ys)™ = (ya —yr)',  (33)
where:
_ Ys — Ye
26 1 _
Ys 2 ) (34)
_ Y + Yo
T

The Beale’s Conjecture will now be proved using the Addition
Method.

Addition Method (on the example of (II.E.2.1))

Let’s consider the (33). Then:

(ya +2°71yg)™ is the same as the expression (y4 + 27 1yg),
folded (y4 + 2¢tyg)™ ! times;

(ys — 2 1yg)™ is the same as the expression (y4 — 2 yg),
folded (y4 — 2¢71yg)™ ! times;

(ys — y7)! is the same as the expression (y4 — yr7), folded
(ys — y7)! ! times.

ILE2.1.1
Let in (33):
(ya+271ys)" ™ > (s — 27 1ye)™ T (395)
Then in (33) it is possible:
all (y4 — 2° 'yg) to add with the same number of 36)

(ya + 2 'yg) in pairs.

Let’s change the terms of (36) so that a term appears that is
equal to the expression in brackets on the right side of (33).



To do this, let’s decompose all the terms into parts and select
the term we need using the expressions from (34):

(ya +2°"ys) + (ya — 2 'ys) =

ST L LN L
2 2 2 T
37
Y4 B 9 Ya B) 5

= (ya —y7) + (ya + y7)-
Let’s substitute (37) into the left side of (33) taking into
account (36):
(ya — y7)(ya — 2 ye)™ 1 + (ya + y7) -
(ya =271 yg)™ T+ (ya + 297 ys) -
. ((y4 4 23—1y8)n—1 _ (y4 _ 2@—1y8)m—1).
Let’s try to select (y4 — y7) from the last two terms of (38),

so that as a result we can only get expression (ys — yr),
folded (y4 — y7)!~! times.

(38)

For  this, let us present  the third term
of (38 as expression (ya +2°7 Lyg), folded
((ya +2¢7Lyg)" =t — (yg — 27 1yg)™™ 1) times, the
second term of (38) - as expression (ys — 2°lyg),

folded (y4 + y7)(ya — 2 tyg)™ 2 times.

Let’s add each (y; —2° 'yg) with the same number of
expressions (y4 + 2¢~1yg) in pairs.

Then, according to (37), let’s divide the sum into two terms
and add expression (y4 — y7)(y4 + y7)(ya — 2 1ys)™ 2 to
the first term of (38).

We get the following expression:

(ya —yr)(ya — 2° "ys) ™ 2 (2ya + yr — 2 ys) +
+ (ya + y7)? (ya — 2 1ys) ™2 + (ya +2° ys) -
: ((y4 + 267 yg) " — (yg — 297 Hyg) ™2

“(2ys +yr — 267198))’

Let’s try to select (y4 — y7) from the last two terms of (39) in
the same way, in order to achieve only expression (y4 — y7),
folded (y4 — y7)' ! times.

We get the following expression:

(ya — yr)(ya — 2 Tyg)™ 2 ((y4 — 27 hyg) -

(39)

(2ys +yr — 2 ys) + (ya + y7)2)+(y4 +y7)?-
(ya — 257 ye)™ 3+ (ya 2 ) -

. ((y4 =+ 26—1y8)n—1 _ (y4 _ 26—1y8)m—3 X (40)

: ((y4 =27 Yys) (2ya +yr — 29 Mys) +

+ (ya + y7)2>).

Expression (40) has only become more complicated.

If we continue to extract expression (y4 —y7) from the
sum of the second and third terms, then the expression will
become more complicated and the moment will come when

x becomes greater than m in the exponent m — x.

Then all terms will leave the set of natural numbers without
Zero.

Thus, in addition to the term multiple of (y4 — y7), there will
always be two other terms not multiple of (y4 — y7).

That is, a situation is unattainable when (40) will be equal to

only (ys —yr)".

Thus, returning to (3):
yi + 5t # (20ys),
without a common divisor, when (2¥y3) < y» <, in (3),

d = 1 (30) and (yq+2° tyg)" 1 > (yg — 2 Lyg)™ 1
in (33).

The Beale’s Conjecture for (IL.LE.2.1.1) is true.
ILE2.1.2

Let in (33):
(ya+2°"ys)" " < (ya—2°yg)" .

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(ya — yr)(ya + 2 1yg) 3 ((y4 + 27 yg) -
“(2ya +yr + 25 tys) + (ya + y7)2)+(y4 +y7)® -
(ya+271ys)" T 4 (g — 2 Mys) -

. ((y4 o 2671y8)m71 o (y4 + 2@71y8)n73 . (41)

: ((y4 + 27 ) (2K ya + yr +2° Tys) +

+ (ya + 97)2)> # (ya — 7).
Thus, returning to (3):
i+ st # (25ys),
without a common divisor, when (2¥y3) < yo <, in (3),

d = 1in (30) and (ys +2° tys)" ! < (yq — 2¢7 Lyg)™ !
in (33).

The Beale’s Conjecture for (IL.E.2.1.2) is true.
ILE2.1.3

Let in (33):
(ya +2°71yg)" 1 = (ya — 29 Tyg)"

Then (33) becomes a special case of the option of the
multiplicity of both terms, for which Beale’s Conjecture was
proved in (II-C).

Therefore, in the future, expressions, where A"~1 = B™~1,
will not be considered.



The Beale’s Conjecture for (ILE.2.1) is true.

IL.LE.2.2. The option when d > 1 in (30)

Let d > 1 in (30). Then, according to (23) and (24):

Ys — Yo = 2Ug, (42)

and

Ys + ye = 2°yr, (43)

where (e > 2) € N*.

Substituting (42) and (43) into (30) and dividing the
expressions in brackets by 2, we obtain the following
expression:

29 yatys) "+ (2 g —ys)™ = (27 -2 yr)!, (44)
where:
Ys — Ye
2 )
Y5+ Ys
==

Ys =

2°7 1y,
1I.LE2.2.1

Let in (44):
(2d—1y4 + ys)n—l < (2d—1y4 _ yg)m—l-

Calculating by the Addition Method (II.LE.2.1.1), we obtain the
following expression:

2" s — 27 ) (27 s — )

: ((2d*1y4 —ys) (27 ys + 27y —ys) +

+ (2% s + 2671y7)2)+(2d71?!4 +2¢7 yr)® -
27 ys =)™ (27 s ) -

(45)
. ((Qd_1y4 + yg)n—l _ (2d—1y4 _ yS)m—S X

(2% ys —ys) (29 ya + 27 Tyr —ys) +

+ 2%y + 26_13/7)2)) # (297 y, —2¢7 Ty )l
Thus, returning to (3):
yr e+t # (25ys),
without a common divisor, when (2Fy3) < o <y in (3),

d>1 in (30) and (29 lyy +yg)" 7t > (29 Lyy — yg)™ !
in (44).

The Beale’s Conjecture for (II.LE.2.2.1) is true.
ILE22.2

Let in (44):

(Zd_1y4 + ys)n—l < (2d—1y4 _ yS)m—l.

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(2" s — 25 yr) 27 M+ ys)" ((2d_1y4 +ys) -
2y 4+ 25y ys) + (29 s+ 26_197)2)—1—
+ 2 a2 )2 (2 s ys) P
+ (2 s — ys) ((2d1y4 —yg)" ! — (46)

— 2%y +yg)? ((2d_1y4 +ys) -

2y 25y 4 ys) +

+ (24 + 2611/7)2)) # (2% 1yy — 257 Tyl
Thus, returning to (3):

yr + st # (2",

without a common divisor, when (2Fy3) < yo < y1 in (3).
The Beale’s Conjecture for (IL.E.2) is true.

II.E.3. The option of (3) without a divisor, when
(2%ys) <1 < 1.

Let (2%y3) < y2 <y in (3). Then:
(253 +y5)" + (2%ys + ye)™ = (2%ys)",

where (27) is true.

(47)

Expression (47) coincides with (26).

Let’s substitute the terms in brackets from (47) instead of
y1 and yo in (25). Let’s express (2¥y3) from the resulting
expression. Substituting it into (47), we obtain the following
expression:

(Qdy4 - (2y5 y6)>n n (Qdy4 + (2y5 96)>m _
<2dy4 — (s +y6))l.
2

(48)

Problem (II.E.3) is solved in the same way as (IL.LE.2); only n
and m, y5 and yg are swapped .
Thus, returning to (3):

yl + g # (25y3),

without a common divisor, when (2Fy3) < y; < y» in (3).
The Beale’s Conjecture for (I.E.3) is true.

II.E.4. The option of (3) without a divisor, when
Y1 < y2 < (2Fys).

Let y; < y2 < (2¥y3) in (3). Then:

(2Fys — y5)™" + (2Fys — y6)™ = (2"y3)", (49)



where (27) is true.

Let’s substitute the terms in brackets from (49) instead
of y1 and g5 in (25). Let’s express (2¥y3) from the resulting
expression. Substituting it into (49), we obtain the following
expression:

(2dy4+(y6—y5)>" <2dy4—(ys—y5))"”_
) () =

2
. (50)
_ 2%y, — (y6 +ys)
2

IL.LE.4.1. The option when d = 1 in (50)
Let d =1 in (50). Then, according to (23) and (24):

Ys — Y = 2°Us, (51)
where (e > 2) € N*,
and

Ys + Yo = 2y7. (52)

Substituting (51) and (52) into (50) and dividing the expres-
sions in brackets by 2, we obtain the following expression:

(ya — 27 y)™ + (ya + 27 Tye)™ = (ya +y7)',  (53)
where:
26_1?/8 g5 ; yﬁa
_ Y5 t+Ys
Y7 B
IIL.E4.1.1
Let in (53):

(@/4 _ 25—1y8)n—1 < (y4 + 26_12/8)7"_1.

Calculating by the Addition Method (II.E.2.1.1), we obtain the
following expression:

(ya + yr)(ya — 2 1ys)" 3 ((y4 —2¢7lyg) -

(2% ys —yr — 2 Mys) + (ya — y7)2)+(y4 —y7)?
(ya — 27T wyg)" T+ (ya 25 Tys) -

: ((y4 + 257 )™ — (ya —
: ((y4 — 27 ye) (2 — y7 — 2°7 ys) +

+ (ya — y7)2)> # (ya +y7)h.

)n73 . (54)

2¢ lys

Thus, returning to (3):

Yo +yst # (2Fys),

without a common divisor, when y; < yo < (2Fy3) in (3),
d=1 in (50) and (ys —2° 1yg)" 1 < (ya + 2¢ Lyg) ™!
in (53).

The Beale’s Conjecture for (ILE.4.1.1) is true.
ILEA4.1.2

Let in (53):
(ya—2°"ys)" " > (ya+2°Tys)" L.

Calculating by the Addition Method (II.E.2.1.1), we obtain the
following expression:

(s + yr) (s + 2 1)"™ 2 (g2 + 2 g)
(2ys — Y7 + 27 ys) + (s — y7)2)+(y4 —yr)°®
(ya 27 ys) P+ (ya+ 27 ys) -

((y4 _9e— 1 )= 1 (ya + 2@—1y8)m—3 ) (55)

((

(ya+ 2 1ys) (2ys — y7 +2° 1ys) +

+ (ya — y7)2)) # (ya +y7)".
Thus, returning to (3):
yi +ust # (2%ys),

without a common divisor, when y; < yo < (2
and d = 1 in (50).

ys) in (3)

The Beale’s Conjecture for (I.LE.4.1) is true.

IL.LE.4.2. The option when d > 1 in (50)

Let d > 1 in (50). Then, according to (21) and (22):

Ys — Yo = 2Ug, (56)

and

ys +ys = 2°yr, (57)

where (e > 2) € N*,
Substituting (56) and (57) into (50) and dividing the

expressions in brackets by 2, we obtain the following
expression:

(27 yy —ys)" + (27 ys +ys)™ =

_ _ (58)
_ (2d 1y4+ (2e 1y7)>l7
where:
_ Ys — Ye
Ys 9 )
ge—1 Ys + Yo
7 2



ILL.LEA42.1

Let in (58):
(2d—1y4 _ yS)n—l < (2d—1y4 + yS)m—l.

Calculating by the Addition Method (II.LE.2.1.1), we obtain the
following expression:

(29 ya + 2y (29 gy —ys)" P ((2d‘1y4 —ys)-
Sy =2y — ) + (27 s — 26_1y7)2)+
+ (27 =2y (2 g - ye)" T
+ (2% ys + ys) ((2d1y4 +ys)™ Tt — (59)

- (2" - ys)"’_S((Qd_lyzx —Ys) -

Sy =2y — ) +

+ (2% ys — 2613/7)2)) # (247 y, + 2oy )l
Thus, returning to (3):

yr +ys # (28s),

without a common divisor, when y; < yo < (2Fy3) in (3),

d>1 in (50) and (29 1y, —ys)" ! < (29 Lyy + yg)™ !
in (58).

The Beale’s Conjecture for (IL.LE.4.2.1) is true.
ILE4.2.2

Let in (58):
(2d71y4 o ys)nfl > (2d71y4 + ys)mfl.

Calculating by the Addition Method (II.E.2.1.1), we obtain the
following expression:

2y + 2y 2 g - ys) ™

: ((2d_ly4 +us) (27 s — 27y +us) +

+ (2% yy — 26_1y7)2)+(2d_1y4 — 27 yp)?
2y ys)™ T+ (2 s — ) -

| (60)
. <(2d1y4 o yS)nfl o (2d71y4 + ys)mfd .

29 gy +ys) (29 Tyy — 297 yr 4 ys) +

+ (29 s — 2'3_1117)2)>3"é (2" gy + 257yl
Thus, returning to (3):
ui st # (28),

without a common divisor, when y; < yo < (2Fy3) in (3).

The Beale’s Conjecture for (IL.E.4) is true.

IL.E.S. The option of (3) without a divisor, when
Yo < y1 < (2%y3).

Let yo < 31 < (2%y3) in (3). Then:
(Qkys —ys)" + (Qki% —ye)" = (2ky3)l,

where (27) is true.

(61)

Expression (61) coincides with (49).
Let’s substitute the terms in brackets from (61) instead of
y1 and g5 in (25). Let’s express (2¥y3) from the resulting
expression. Substituting it into (61), we obtain the following
expression:
20y — (ys —ye)\ ", (2%a+ (5 —ve)\ _
- e 7 + _— =
2 2
l
_ <2dy4 + (y5 + ye))
> .

Problem (IL.E.5) is solved in the same way as (IL.LE.4); only n
and m, y5 and yg are swapped.
Thus, returning to (3):

Y+ # (2Fys),

without a common divisor, when 5 < y; < (2Fy3) in (3).

(62)

The Beale’s Conjecture for (ILE.S) is true.

II.E.6. The option of (3) without a divisor, when
y1 < (2%y3) < yo.

Let y; < (2%y3) < yo in (3). Then:
(253 — ys)™ + (2%ys + ye)™ = (2%ys)",

where (27) is true.

(63)

Let’s substitute the terms in brackets from (63) instead
of y; and s in (25). Let’s express (2¥y3) from the resulting
expression. Substituting it into (63), we obtain the following
expression:
2%y — (ys +96)\" | (2%t (ys +36)\" _
+ - - - =
2 2
1
_ <2dy4 + (Y5 — ya))
- |-

(64)

IL.LE.6.1. The option when ys > yg in (63)

Let y5 > yg in (63).

II.E.6.1.1 The option when d =1 in (64)

Let d =1 in (64). Then, according to (23) and (24):

Ys +Ye = 2°Ys, (65)



where (e > 2) € N*,
and

— Y6 = 2y7. (66)

Substituting (65) and (66) into (64) and dividing the expres-
sions in brackets by 2, we obtain the following expression:

(ya — 27 ye)™ + (ya + 27 ys)™ = (ya +y7)', (67
where:
e— Ys + Y
2 1y8 = > 9 63
_ Ys — Ys
Y7 5

Expression (67) coincides with (53), therefore, problem
(ILE.6.1.1) is solved in the same way as (ILE.4.1).
Thus, returning to (3):

yr + st # (2Fs)',

without a common divisor, when y; < (2¥y3) < yo in (3),
and d = 1 in (64).

The Beale’s Conjecture for (ILE.6.1.1) is true.

II.E.6.1.2 The option when d > 1 in (64)

Let d > 1 in (64). Then, according to (23) and (24):

Ys + Ys = 2ys, (68)

and
ys — Yo = 2°Yyr, (69)

where (e > 2) € N*. Substituting (68) and (69) into (64)
and dividing the expressions in brackets by 2, we obtain the
following expression:

(2d71y4_y8)n+

where:

29y tys)™ = (29 Ty 27y, (70)

Ys + Ys
2 b

27 yr =

Ys =

Ys — Ye
5

Expression (70) coincides with (58), therefore, problem
(ILE.6.1.2) is solved in the same way as (IL.E.4.2).
Thus, returning to (3):

yr + g # (28y3),

without a common divisor, when y; < (2¥y3) < yo in (3),
and ys > yg in (63).

The Beale’s Conjecture for (ILE.6.1) is true.

IL.LE.6.2. The option when ys < yg in (63)

Let y5 < yg in (63).
Then (64) can be represented as follows:

(2dy4 — (ys +y5)>n (Zdy4 + (6 +y5)>m B
2 * 2 B

. (71)
_ 2%, — (ys — ¥s)
s E—

II.E.6.2.1 The option when d =1 in (71)
Let d =1 in (71). Then, according to (21) and (22):

Y6 +ys = 2°ys, (72)
where (e > 2) € N*,
and

Yo — Ys = 2y7. (73)

Substituting (72) and (73) into (71) and dividing the expres-
sions in brackets by 2, we obtain the following expression:

(ya — 257 ye)™ + (ya +2°71ye)™ = (ya — ), (74)
where:
_ +
26 1y8 — Ye 5 y57
_ Yo — Ys
Y7 5
ILE6.2.1.1
Let in (74):

(y4 _ 2e—ly8)n—1 < (y4 4 26—1y8)m—1.

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(ya — yr)(ya — 2 Tys)" ™ 3((1/ -2 lyg) -

2y +yr — 2 tys) + (ya + y7)2)+(y4 +y7)?
(ya — 257 Tyg)" P 4 (g + 25 Hyg) -
(75)

m—l

_ (y4 _ 26—1y8)n—3_

(ya — 2% 'ys)(2ya + yr — 2 1ys) +

(7w
(«

+ (ya + y7)2)) # (ya — 7).
Thus, returning to (3):

Y+ # (2Fys),

without a common divisor, when y; < (2Fy3) <y
in 3), ys<wys in (63), d=1 1in (71) and
(ya — 27 1yg)" ™ < (ya +2°7yg)™ ! in (74).

The Beale’s Conjecture for (II.LE.6.2.1.1) is true.

II.LE6.2.1.2



Let in (74):

(ya —2¢ tyg)" 7t

Calculating by the Addition Method (II.E.2.1.1), we obtain the
following expression:

> (ya + 2 yg)™

(ya — yr)(ya + 2 1yg)™ 3 ((y4 + 27 1yg) -

(2ys +yr + 2 ys) (s + y7)2>+(y4 +y7)*-
(ya + 27 ys) ™0 4 (s — 27 ys) -
( Yo — 257 Lye) "1 (g + 2° Lyg) B (76)
<y4+2e 8)(2ya +y7 +2° 1ys) +
+ (ya + y7)2)>7é (ya — y2)".
Thus, returning to (3):
yr + 5 # (2Fs),

without a common divisor, when y; < (2Fy3) <y in (3),
ys < yg in (63) and d =1 in (71).

The Beale’s Conjecture for (ILE.6.2.1) is true.

II.E.6.2.2 The option when d > 1 in (71)

Let d > 1 in (71). Then, according to (23) and (24):
Yo + ys = 2ys, (77)

and
Y — Ys = 2°yr, (78)

where (e > 2) € N*,

Substituting (77) and (78) into (71) and dividing the expres-
sions in brackets by 2, we obtain the following expression:

(y472671y8)n+(y4+2671y8)m — (2d71y472€71y7)l’ (79)
where:
_ Ys + ys
Ys 2 )
ge—1 Yo — Ys
2

II.LE6.2.2.1
Let in (79):

29y —ys)" Tt < (29 Ty ys)™

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(2 Yy, — 27 Ly) (27 yy — yg)nfs(@d*lyz; —yg) -
. (2dy4 4 2671y7 _ y8) 4 (2d71y4 4 2671y7)2)+

(20 Ny 425 )3 (20 Yy — )"
+ (27 'y + ys) ((2d_1y4 +ys)™ ! -

- (2" 'y - ys)nf‘g((?d*l% —Ys)-

: ((2d_1y4 —ys)(2%ya +2° 1 yr — ys) +

+ (27 y, + 2611/7)2)) # (27 yy — 2¢7 1y

(80)

Thus, returning to (3):

yr + st # (2%ys),

without a common divisor, when y; < (2Fy3) <y
in (3), ys<ysg in (63), d>1 in (71) and
(2d—1y4 _ yg)n—l < (2d_1y4 + yg)m—l in (79)

The Beale’s Conjecture for (IL.LE.6.2.2.1) is true.
I.LE.6.2.2.2
Let in (79):

(2d71y4 o ys)nfl

Calculating by the Addition Method (IL.E.2.1.1), we obtain the
following expression:

> (297 by +yg)™ L

(29 1yy — 2Ly ) (29 Lyy + )™ 0 -

: ((2d71114 +us) (2%ys + 2 yr +ys) +

(24 Ly, + 2671y7)2)+(2d71y4 2o 1y,)3 .

2%y )™+ (27 iy — ys) -

: ((2d_1y4 —y)" Tt =
(

(247 s + ys) (2% + 2°7

(81)
(2% Ly +yg)™ 3

Yyr + ys) +
+ 2y 26_1y7)2)> # (27 gy — 27yl
Thus, returning to (3):
vt + o # (28,
without a common divisor, when y; < (2¥y3) < o in (3).
The Beale’s Conjecture for (IL.E.6) is true.

II.E.7. The option of (3) without a divisor, when
y2 < (2%y3) <




Let y2 < (2%y3) < y; in (3). Then:
(2%ys + ys)™ + (2%ys — yo)™ = (27y3)",

where (27) is true.

(82)

Problem (ILLE.7) is solved in the same way as (ILE.6);
only n and m, y5 and yg are swapped.
Thus, returning to (3):

yr + g # (253),

without a common divisor, when 5 < (2Fy3) < y; in (3).
The Beale’s Conjecture for (ILE.7) is true.

II.E.8. The option of (4) without a divisor, when
y1 < (2Fy2) < y3

Let’s consider the (4). Let:

y1+ (282) = v (83)
Let y; < (2%y2) < y3 in (4). Then:
(y3 — 27 ys)™ + (y3 — v6)™ = y5, (84)

where (27) is true and f € N*,

Let’s substitute the terms in brackets from (84) instead
of y; and 2ky2 in (83):

ys — 2T ys +ys — ys = ya. (85)
Let’s express y3 from (85):
of
ys = Ya + 295“!‘3/6. (86)
Let’s substitute (86) into (84):
(a+ys) —27ys \" | [((a—ws) +27ys\"
+ - - =
2 2
; . 87
_ ((Watye) +27ys
B a— I
IL.E.8.1 The option when f =1 in (87)
Let f =1 in (87). Then, according to (21) and (22):
Ya — Yo = 2Ys, (33)
and
Ya +ys = 2y, (39)

where (e > 2) € N*.

Substituting (88) and (89) into (87) and dividing the
expressions in brackets by 2, we obtain the following
expression:

2 lyr —ys)" + (ys +ys)" = (2 'y +us)', (90

where:
Ya — Ys
2 b
_ Y + Ys

Ys =

2e—ly7

ILES.1.1

Let in (90):

(26—1y7 _ ys)n—l < (yg + y5)m—1.

Calculating by the Addition Method (II.LE.2.1.1), we obtain the
following expression:

(2 yr +ys5) (27 yr — )" ((2e’1y7 —ys) -
(2 yr — 2y5 4+ ys) + (ys + y5)2)+

+ (ys +95)° (2 yr —us)" P+ (ys +us) -

: <(y8 +ys)" = 2y — )0 Oh

: ((26‘11/7 —y5)(2° tyr — 2y5 +ys) +

+ (ys + y5)2)) # (2 tyr +ys)
Thus, returning to (4):
i+ (2Fy)™ # b,

without a common divisor, when y; < (2¥y2) < y3 in (4),
f=11in(87) and (2°'yr —y5)" " < (ys +ys5)™ " in (90).

The Beale’s Conjecture for (IL.LE.8.1.1) is true.
ILES8.1.2

Let in (90):
(2e—ly7 _ yS)n—l > (y8 + ys)m—l.

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(2 yr + ys) (ys +ys)" ((ys +ys5)2ys +
+ (ys — y5)2)+(y8 —u5)3(ys +y5)" 2 +

+ (2 tyr — ys5) ((261y7 —ys)" = (92)

—(ys +ys)™° ((ys +y5)2ys + (ys — y5)2>> £

# (2 'y +ys)"
Thus, returning to (4):
yr -+ (2Fy)™ # o,

without a common divisor, when y; < (2%ys) < y3 in (4)
and f =1 in (87).



The Beale’s Conjecture for (ILE.8.1) is true.

II.E.8.2 The option when f > 1 in (87)

Let f > 1 in (87). Then, according to (23) and (24):
Ya — Yo = 2°ys, 93)

where (e > 2) € N*,

and

(94)

Substituting (93) and (94) into (87) and dividing the expres-
sions in brackets by 2, we obtain the following expression:

(yr—27 " tys) "2 Tys+27 Tlys)™ = (yr+27 T lys)!, (95)

where:

Y4 + Yo = 2y7.

:y4+y6
8 2 )

26—1y

y :y4_y6
7 5

II.LE.8.2.1

Let in (95):
(y7 _ 2f—1y5)n—1 < (26—1y8 + 2f—1y5)m—1.

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(yr +2/ " tys)(yr — 27 7 Hys)" ((Z/? — 2/ 1ys) -
Sy —2ys + 257 yg) + (27 s — 2f—1y5)2)+
+ (26—1y8 _ 2f—1y5)2)+(2e—1y8 _ 2f—1y5)3 )
(yr =27 ys) P 2y + 20 ys) -

(96)

: ((261%5 + 20 )™ — (yr — 20y R

(7 =27y (yr — 2y + 2 ys) +

+ (2 lys — 2f1y5)2)>7'é (yr + 27 7ys)".
Thus, returning to (4):

yp -+ (2Fy)™ # 4,

without a common divisor, when
y1 < (2%y)<ys in @), f>1 in (87) and

(yr — 2/ Tys)"~h < (27 ys + 277 1ys)™ 7 in (95).
The Beale’s Conjecture for (IL.E.8.2.1) is true.
I.LE8.2.2

Let in (95):
(yr — 27 ys)" ™t > (2 Tyg + 20 ys)

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(y7 + 27 7 Lys) (25 tyg + 27 “lys)™m 3
: ((267198 + 27 ys)2yg + (297 ys — 2f*1y5)2)+
+ (257 ys — 27 My )2 tys + 20y )P 4

+ (yr — 27 ys) <<y7 — 2/ )t —
— (2% yg 4+ 20 Ty B ((2871% + 277 y5)20ys +

+ (277 ys — 2f‘1y5)2>) # (y7 + 27 1ys)h

o7)

Thus, returning to (4):

yi + (25 y)™ # us,
without a common divisor, when 1 < (2Fy2) < y3 in (4).
The Beale’s Conjecture for (ILE.S8) is true.

II.E.9. The option of (4) without a divisor, when
(2%y2) <y1 <uys

Let (2Fy3) < y1 < y3 in (4). Then:
(ys — 27 ys)" + (ys — y6)™ = 5, (98)

where (27) is true and f € N*,
Expression (98) coincides with (84), therefore, problem
(ILE.9) is solved in the same way as (ILE.8).
Thus, returning to (4):
i+ (25y2)™ # v,
without a common divisor, when (2Fy,) < y; < y3 in (4).

The Beale’s Conjecture for (IL.E.9) is true.

II.E.10. The option of (4) without a divisor, when
ys <1 < (2%ys)

Let y3 < y1 < (2Fy2) in (4). Then:
(y3 +27ys)" + (y3 + y6)™ = u5, (99)

where (27) is true and f € N*,

Let’s substitute the terms in brackets from (99) instead
of y; and 2%y, in (83):

ys + 20 ys + y3 + ys = va- (100)
Let’s express y3 from (100):
—of e —
Yz = Ya Ys yG. (101)

2



Let’s substitute (101) into (99):
((?J4 —Y6) + 2fy5>n n ((y4 +Y6) — 2fy5>m _
2

2
. (102)
_((ya—ye) = 27 ys
)

II.E.10.1 The option when f =1 in (102)
Let f =1 in (102). Then, according to (23) and (24):

Ys + Yo = 2ys, (103)
and

Ys — ye = 2°yr, (104)

where (e > 2) € N*.

Substituting (103) and (104) into (102) and dividing
the expressions in brackets by 2, we obtain the following
expression:

(25 tyr +ys)" + (ys —ys)™ = (2°'yr —ys)',

where:

(105)

_ Yast+Ys
i
Y4 —Ys
-5

Ys

2efly7

II.E.10.1.1

Let in (105):
2 Yy +ys)" > (ys —ys)™ L

Calculating by the Addition Method (II.LE.2.1.1), we obtain the
following expression:

(2° 'yr —ys) (ys — ys)™° ((ys —ys) -
2y ys) + (2 yr + y5)2)+
+ (27 yr +ys) (ys — ys) "2 4 (27 Hyr + ys) -

106
: <(2e_1y7 +ys) T = (ys —ys)" P (106)

: ((yg —ys5) (2 Myr +us) + (27 Tyr + y5)2)) #
# (2 yr —ys).
Thus, returning to (4):
i+ (25y2)™ # v,
without a common divisor, when y3 < y; < (Zkyg) in (4),

f=1 in (102) and (2 'yr +ys)" ' > (ys —ys)"!
in (105).

The Beale’s Conjecture for (ILE.10.1.1) is true.

II.E.10.1.2

Let in (105):
(2 tyr +ys)" < (ys —ys)™ L

Calculating by the Addition Method (II.LE.2.1.1), we obtain the
following expression:

2y — )2 Myr )" 8 ((26’1117 +ys) -
(27 My + 2y5 4+ ys) + (ys + y5)2>+(ys +y5)?
2y 4 ys)" T + (Y8 — ys) ((ys —ys)™ T —
107)
— (2 tyr +ys)" P ((28_1197 +ys) -
(2% yr + 2y5 + ys) + (ys + y5)2>) #
# (2 'y —ys)
Thus, returning to (4):
Y+ (2Fy2)™ # yh,

without a common divisor, when y3 < y; < (2Fys) in (4)
and f =1 in (102).

The Beale’s Conjecture for (II.E.10.1) is true.

IL.LE.10.2 The option when f > 1 in (102)

Let f > 1 in (102). Then, according to (21) and (22):

Ya +Ys = 2°Ys, (108)

where (e > 2) € N*,
and

Y4 — Yo = 2yr7. (109)

Substituting (108) and (109) into (102) and dividing the ex-
pressions in brackets by 2, we obtain the following expression:

(yr + 27 Tys)™ 4+ (25 Tys — 27 T lys) ™ =

(110)
= (yr — 2/ ys),
where:
o +
9 1y8 _ Y4 . 1/67
yr = Ys — Yo
TS,
11.LE.10.2.1

Let in (110):
2/ =1

(y7 + 2f—1y5)n—1 > (26—1y8 _ yS)m—l.



Calculating by the Addition Method (IL.E.2.1.1), we obtain the
following expression:

(yr — 27 ys) (25 s —
: ((26_1y8 — 27 ys)20ys +

+ (2 s + 2f‘1y5)2)+(2€_1ys +2/ 7 ys)?
(297 yg — 2T Ty o (yr + 20y -

2f—1 )m—3 .

Ys

(111)

. ((y7 + 2f*1y5)n71 _ (2671y8 _ 2f*1y5)m73 .

: <(26_1y8 — 207y 20 ys +

+ (2 'ys + 2f—1y5)2>)7’é (yr — 2/ " tys)t.
Thus, returning to (4):

vi o+ (28)™ # v,

without a common divisor, when
ys <1 < (2%y2) in (4, f>1 in (102) and

(y7 + 27 Lys)" L > (2571 % yg — 277 1y5)™ L in (110).
The Beale’s Conjecture for (ILE.10.2.1) is true.
II.LE.10.2.2

Let in (110):
(yr +2/Tys)" < (29 s — 20 T Tys)m L

Calculating by the Addition Method (II.E.2.1.1), we obtain the
following expression:

(yr =27 ys) (yr + 27 Tys)"? ((y7 +2/ 7y -
2 ys +20ys )+ (29 s + 2f—1y5)2>+
+ (25 ys + 20 s )P (yr + 27 s )R
=+ (26—1y8 _ 2f—1y5) ((2e—ly8 _ 2f—1y5)m—1 _ (112)
— (yr +2/ 7 ys)" 8 ((97 +2/ 7 ys) -
(2 ys + 2 ys +yr) + (2 Tys + 2f1y5)2>> #
# (yr — 27 ys)t.
Thus, returning to (4):
i+ (252)™ # b,
without a common divisor, when 3 < y; < (2¥ys) in (4).

The Beale’s Conjecture for (IL.E.10) is true.

II.LE.11. The option of (4) without a divisor, when
ys < (2%2) <w

Let y3 < (2¥y2) < y; in (4). Then:

(s +27ys)" + (y3 + y6)™ = v, (113)

where (27) is true and f € N*.

Expression (113) coincides with (99), therefore, problem
(ILE.11) is solved in the same way as (IL.E.10).
Thus, returning to (4):

Yo+ (2Fyo)™ # i,

without a common divisor, when y3 < (2Fy2) < y; in (4).
The Beale’s Conjecture for (ILE.11) is true.

II.E.12. The option of (4) without a divisor, when
Y1 < ys < (2%ys)

Let y1 < y3 < (2¥y2) in (4). Then:

(y3 = 27y5)" + (y3 + y6)™ = v,
where (27) is true and f € N*,

(114)

Let’s substitute the terms in brackets from (114) instead of
y1 and (2Fy,) in (83):

ys — 20 ys +ys + ys = ya. (115)
Let’s express y3 from (115):
2 e —
yg = Ya + 21/5 Yo (116)
Let’s substitute (116) into (114):
(ya — y6) — 25\ " (ya + yo) + 27 ys mi
- - + _— =
2 2 (117)
l
_ (ya — y6) + 27 ys
)
II.E.12.1 The option when f =1 in (117)
Let f =1 in (117). Then, according to (23) and (24):
Y4 + Yo = 2ys, (118)
and
Ya — ye = 2y, (119)

where (e > 2) € N*,

Substituting (118) and (119) into (117) and dividing
the expressions in brackets by 2, we obtain the following
expression:

2 tyr —ys)" + (s +us)™ = (2 yr —ys),

where:

(120)

_ Ya+Ys
==
_ Ys—Ys
=

Ys

2°7 1y,



IL.E.12.1.1

Let in (120):
2 lyr —ys)" < (s +ys)™

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(2 yr + 95) (2 yr = 0s)" (25 yr — ) -

(2 My 4+ ys — 2y5) + (ys — y5)2)+(ys —ys)*-

2y —ys)" P 4 (ys + vs) ((ys +ys)™ ! —
(121)

— (2 'yr — 95)"_3((26_13/7 —ys) -
(2 yr +ys — 2y5) + (ys — y5)2>>7é

# (2 tyr +y5)h

Thus, returning to (4):
i+ (252)™ # v,

without a common divisor, when y; < y3 < (Zkyg) in (4),
f=1 in (117) and (2°7'yr —ys)" ' < (ys +ys5)" "
in (120).
The Beale’s Conjecture for (ILE.12.1.1) is true.
ILE.12.1.2

Let in (120):
(26—1y7 _ ys)n—l > (y8 + y5)m—1.

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(2 yr +ys)(ys +y5)™° ((ys +ys5)2ys +
+ (ys — y5)2)+(ys —y5)3(ys +ys5)™ 3 +

+ (2 ryr — ys) <(26_1Z/7 —ys)" T — (122)

— (ys +ys5)"° ((ys +y5)2ys + (ys — y5)2)>75

# (25 yr +ys)

Thus, returning to (4):
yi + (25 ye)™ # us,

without a common divisor, when y; < y3 < (2Fy2) in (4)
and f =1 1in (117).

The Beale’s Conjecture for (IL.LE.12.1) is true.

II.LE.12.2 The option when f > 1 in (117)

Let f > 1 in (117). Then, according to (21) and (22):

Ya +Ys = 2°Ys, (123)

where (e > 2) € N*,
and

Y4 — Yo = 2y7. (124)

Substituting (123) and (124) into (117) and dividing the ex-
pressions in brackets by 2, we obtain the following expression:

(yr — 27 Tys)™ 4+ (25 ys + 27 T lys) ™ =

(125)
= (y7 + 2f_1y5)l7
where:
o +
9 1y8 _ Y4 y 1/67
yr = Ya — Yo
TS T
II.LE12.2.1

Let in (125):
(yr — 2/ Mys) < (25 Tys + 20 T hys)

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(yr + 27 ys) (yr — Qf_lys)"_g((?ﬁ -2/ 1ys5) -
(25 s+ yr = 2s) + (2 My — 27N )+
+ (2 s — 20 My (yr — 2 ys) P 4
+ (25 ys + 27 1ys) ((261% + 27y - (126)
_ (26—1y7 _ y5)n—3((2e—1y7 _ y5) .
(2 ys +yr — 20 ys) + (25 ys — 2f—1y5)2)>7'é
# (yr + 277 ys)t
Thus, returning to (4):
i+ (2%y2)™ # v,

without a common divisor,
Yy <ys<(2b,) in @), f>1 in (117)
(yr — 277 1ys)" ™t < (267 tys + 27 71ys)™ L in (125).

when
and

The Beale’s Conjecture for (ILE.12.2.1) is true.

ILE.12.2.2

Let in (125):

(yr — 27 7 ys)" 7t > (2 ys 4+ 20 Tys)



Calculating by the Addition Method (IL.E.2.1.1), we obtain the
following expression:

(yr +2/ " 1ys) (25 ys + 20 ys) 0

: ((26_1% + 20y )2%ys +

+ (2 tys — 2/ 1ys)? ) +(2yg *2f*1y5)2)+
+ (25 tys — 27 My )3 (25 tys + 27 Ty )R 4
+(

(127)
yr — 2071 )((y7—2f_1y5)n_1 -

Thus, returning to (4):

i+ (2Fy)™ # b,
without a common divisor, when y; < y3 < (2Fy3) in (4).
The Beale’s Conjecture for (IL.E.12) is true.

II.E.13. The option of (4) without a divisor, when
(2%y2) <ys <y

Let (2%y2) < y3 <y in (4). Then:

(ys +27y5)" + (y3 — y6)™
where (27) is true and f € N*.

=y, (128)

Let’s substitute the terms in brackets from (128) instead of
y1 and (2Fy,) in (83):

ys +27ys + ys — ys = va. (129)
Let’s express y3 from (129):
—9f
ys = Y4 2y5 + Yo (130)
Let’s substitute (130) into (128):
((y4 +y6) + 2fy5>n ((y4 —Y6) — 2fy5>m B
+ - - =
2 2
l (131)
_ ((atys) - 27 ys
B a—
II.E.13.1 The option when f =1 in (131)
Let f =1 in (131). Then, according to (23) and (24):
Ya — Yo = 2Ys, (132)
and
Ya — Yo = 2°yr, (133)

where (e > 2) € N*.

Substituting (132) and (133) into (131) and dividing
the expressions in brackets by 2, we obtain the following
expression:

7y )+ (s —us)" = (2 yr — ), (134)
where:
_ Yas — Yo
Ys 9 ’
26713}7 _ Ya + 96'
2
II.LE.13.1.1

Let in (134):

(2 ryr 4+ ys)" > (ys — ys)

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

m—1

(2 yr —ys)(ys —ys)" ((ys —Y5)2ys +

+ (ys + 295)2>+(y8 +ys)?(ys —ys)™ 2 +

+(2° 'y + ys) <(2“y7 +ys)" T — (135)

—(ys —ys)"° ((ys —¥5)2ys + (ys + y5)2>> £

# (2 yr —ys)"
Thus, returning to (4):
without a common divisor, when (2¥yy) < y3 <y in (4),

F=1 in (131) and (2°'yr +y5)" 1 > (ys —ys)™
in (134),

The Beale’s Conjecture for (ILE.13.1.1) is true.
ILE.13.1.2

Let in (134):

(2 'yr +ys)" < (ys — vs)

Calculating by the Addition Method (IL.LE.2.1.1), we obtain the
following expression:

(2 My — ) (2° (2 yr +35)

(2 Yyr +ys + 2ys) + (ys + y5)2)+(y8 +ys)?
2y ) T (2 Ty 4 ys) -

(

+ (ys + 1/5)2>>7'é (2 tyr —ys)'.

m—1

Yyr +ys)" 3

(136)

Y7 +ys) — 2y +ys)" P

26
(2° M7+ ys) (2° Tyr +ys + 2u5) +



Thus, returning to (4):
yr + (25y2)™ # v,
without a common divisor, when (2¥ys) < y3 <; in (4)
and f =1 in (131).
The Beale’s Conjecture for (IL.E.13.1) is true.

II.LE.13.2 The option when f > 1 in (131)

Let f > 1 in (131). Then, according to (21) and (22):

Ya — Yo = 2°Yys, 137)

where (e > 2) € N*,
and

Ya +Ye = 2yr. (138)

Substituting (137) and (138) into (131) and dividing the ex-
pressions in brackets by 2, we obtain the following expression:

(yr + 27 ys)™ 4+ (25 Tys — 27 Mys)™ = (yr — 27 ys)',
(139)
where:

— Ya — Ye
2°¢ 13/8 = 2 )

Ya + Ys

Yyr = B

ILE.13.2.1

Let in (139):

2f—1 )m—l.

(yr + 27 ys)" ™t < (2° tys — Ys

Calculating by the Addition Method (II.LE.2.1.1), we obtain the
following expression:

(yr — 27 tys) (25 Lyg — 27 1y B
: ((267198 — 27 ys) 2%y + (27 ys + 2f*1y5)2)+
+ (2°7 tys + 27 T 1ys)3 (20 s — 27 T hys)™ R 4

+ (y7 + 2/ ys) ((97 + 27yt — (140)
— (2 g —y5)" P ((2671 * s — Ys5)2Ys +
+ (25 Tys + 2f—11/€>)2)>7’é (yr — 27~ ys)t.
Thus, returning to (4):
i+ (2Fy)™ # o,
without a common divisor, when
(2%yy) <yz <y in (4, f>1 in (131) and

(yr + 277 ys)n =1 < (267 1ys — 277 1ys)™ =1 in (139).

The Beale’s Conjecture for (ILE.13.2.1) is true.

II.LE.13.2.2
Let in (139):

(yr + 27 ys)" 7t < (267 ys — 27 Thys)m

Calculating by the Addition Method (II.E.2.1.1), we obtain the
following expression:

(yr — 2/ ys) (yr + 27 Hys)" 0 ((y7 +27 7 ys) -

(2 sy + 2T ) + (25 s+ 20 My)? )+

+ (2 s + 27 ys) P (yr + 27y )" 0 4

+ (27 ys — 27 Mys) ((261y8 =27 = an
—(yr + 2f—1y5)n_3((y7 +2/71ys)

(2 ys Fyr +20ys) + (2 My 2fly5)2)> #

# (yr — 2/ " tys)h
Thus, returning to (4):

Yl + (2Fy2)™ # oy,
without a common divisor.

The Beale’s Conjecture for (II-E) is true.

Given the conclusions of (II-A), (II-C), (II-D) and (II-E), the
Beale’s Conjecture is proved.
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