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An exact solution of the Navier-Stokes equation is given which represents steady three-dimensional flow of a viscous

fluid impinging on Rigid Cylinder obliquely. Numerical discussions of the relevant functions as well as the structure of
the flow field are made. A comparison with an existing theory is also given.
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Due to the inherent nonlinearity of the Navier-Stokes equation, only three true exact three-
dimensional solutions are known. Namely:

- Homan flow [2], modified by Karman [3] for the case of a rotating disk;

- the conical jet of Slezkin [4], generalized to the case of swirling flow by Holstein [5] and Yih [6];
- Himenz flow [1], generalized to the case of an oblique flow by Stuart [7] and Dowgialo [8].

This note presents a new exact solution to the Navier-Stokes equation, which belongs to the same
class as the three listed above. This is the case of a spatial flow obliquely running onto a rigid
cylinder.

To construct a solution of this class, the corresponding ideal fluid flow is used as a basis, which is
at the same time a solution of the Navier-Stokes equation, which is nonlinear, and a simpler, linear
equation of the vortex-free flow
(1) Q=VAi’=0,
in which the velocity field, represented as a vector product of the gradients of its integral surfaces
(//1.0 =12
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the variables in equation (1) are separated, which makes it possible to reduce it to a system of
ordinary differential equations.
Further, in order to extend the ideal solution (3) to the case of a viscous flow, the form of the

function £, (x,) is preserved, and the remaining functions are searched again, assuming their
asymptotic desire for their “ideal” analogues:

4) v, :fo(x1)+ﬁ(x1)f20(x2)al//2 =
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We choose the Cartesian coordinates (x, y) in the plane of the cylinder section and the coordinate

z in the direction of its axis. A non-viscous version of the current stream given in terms i =1,2

of the coordinates of the source function, [x, y,z] — [[,0,z], where

In(x* +y?)

2
after substituting (3) into the vortex-free flow equation (1), the differential equations for

[ = ,0 = arctan(y, x)
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£, 12D, £, (0), £ (1) take the form
O" O" 0’ . d2 2()
5) O

0
As a result, for the flow of an ideal fluid, we obtain

21
3) v’ =al+(l+b)o,y’ =z—cje7dz

where, a,b and c are scale constants. The ideal flow functions are shown in Fig. 1 & 2. The velocity
field of the ideal flow in this case has the form

) i’ = [((a+0)sin(0) + (I + b)cos(o))e ", (b + 1) sin(0) — (a + 0) cos(0)Je ' ,c]

Fig. 1. y,z=0 Fig.2. yv;,y=0.

If fluid viscosity is taken into account, a boundary layer appears along the wall. We assume a
generalization of (3 *) in the form of (4), assuming £, (0)=o0:

[
4 Re-y, :fo(l)+f](l)-0,t//2:z—J.—f3()dl
Si()
ud .
Where Re = —— is the Reynolds number.
1%

Then the stationary Navier-Stokes equation
VA Re Qi +V A0)=0,
gives ordinary differential equations for £, (), f, (1), f5(I):

(6) W=+ +2f,+4) /=0,
(7) fo=U D= fo+(N+ /i +Df, =0,
)] fzm_(f] +2)f2”_(f1’_2f1)f2’:0,
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where the dashes denote differentiation by / . Suitable boundary conditions follow from the
expression for the flow rate

©)  Reii =|(of/ +¢' £, )sin(0) + £, cos(o) e, (f; sin(0) — (of + €' ;) cos(0) e ' £, ]
and have the form:

£,(0)=0, £,(0) =0, £1(0) =0, £,(0) = 0
J1(@) =0, i (00) = 0, £i(o0) = 1, f3(20) = v,

The solutions of equations (6) - (8) and the components of the velocity field are presented in Figs. 3
& 4.
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Fig.3. Fig.4.
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