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Abstract

The Taylor series is an important tool in mathematical analysis and it has wide ranging applications
.Nevertheless there are inconsistent features related to it. The article intends to demonstrate such

features.

Introduction

The Taylor series is well known for its application in mathematics and in physics. The article brings out

some anomalous features about the Taylor expansion
Various Inconsistencies
Case 1.
We consider
flx+2n) = f((x+h)+h) (1)

Expanding about (x + h)

h h? h3
fx+2h) =f(x+h) +ﬂf’(x + h) +§f”(x + h) +§f”’(x +h)+ -

Expanding about x = x

4h? 8h3

flx+2h) = f(x) +%f’(x+ h) +7f”(x + h) +?f”’(x +h)+ -

From (2) and (3)

h h? h3
f(x+h) +ﬂf,(x+ h)+§f”(x+h)+§f”’(x+h) + s

8h

2 3
=1+ 20 + 2y + 2y

(2

(3
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FOet B = FOO + BIF e+ ) = 2Ol + o 27 Ce + ) = 4 (o]

+ %fﬁ[f”'(x +h)—8f" ()] + .= 0(4)

fc+n)—f)1 [f'(x+h)—2f (x)]

E—— 2 S Gk ) — 4 GOT 4 SR G+ ) — 87 (o)
b= 0
f(x+hz_f(X)%+[f,(x+h2t_f,(x)] f}(lx) [f”(x+h) 4f”(x)]

+ %h[f”’(x +h) = 8f""(x)] + hl.....] =0(5)

Equation (5) is considered for h # 0. Even when we go for h — 0, h does not become equal to zero. It is
in the neighborhood of zero without becoming equal to zero]

[f(x + hz—f(x) —f ( )] [f (.X + h}z f (X)] + [fu( + h) 4f”(.X)]

+ ah[f”’(x +h) —8f"" ()] + h[....] =0

[f'(x+h) — f'(x)]
h

h) —
DS |2 im

Limh—>0

+ 21' Limp_olf" (x + h) —4f"(x)] + ! leh_,oh[f”’(x +h)—8f""(x)] + hl.....]

=0 (6)
We are considering a function for which
Limp_oh[f"" (x + h) — 8f""(x)] + h[.....] =0

Then

Limh—>0

[f(erh})l—f(x) f()] +f”(x)——f"(x)—0

fx+h)—-fx) 1 1,
[ - —f@ﬂﬁ—zf(w

Limh—>0

fethof) )
- =2 F ()

Limh—>0

We apply L’ Hospital’s rule*! to obtain

i[f(x+h)—f(x)
h h

-rw|
=2/

Limy,_, =
Mp_0 1 >
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£

Limh_,o
. 1 1 ! ! 1 n
Limp_o [—p(f(x +h) - f(x)) +ﬁ(f (x+h)—f (x))] =5

[~ (£G4 1) = F) o Limyg 3 (FCe 1) = £G0)] = 5 /@)

—o0+ () = 3/ ()
1
—5f"() =~

As claimed we have brought out an aspect of inconsistency with Taylor Series.

Case 2.Let us have another situation for our analysis. We write the Taylor series

h h? h3
flro+R) = f(xo) + 37 f' (ko) + =7 f" (x0) + 5f”'(xo) + - (9).

The increment h may be sufficiently large subject to the fact that the series has to converge.

2
W = F'(x0) + hf" (xg) + % £ (%) + - (10).
9 h
limp_,o % = f'(xo) (11)

limh_)th(xO + h) = f’(xO)

The limit f'(x,) is independent of h.This is an example of uniform convergence . We may analyze as
follows:

af(x) _9f(xo +h)
oh oh

is evaluated for different values of h: [af(x)]h , [af(x)]h [af(x)

on on Ip,” L an lp,

The limit f'(x,) is independent of x

Therefore we can interchange the derivative and the limit!?..



0. otk
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limhqo%[W] =0 (12)

) 9]
limy,_, 3h

af (xo + h)] _o
oh B

02f(xo +h)
dh? B

af (xo + h)] o
oh B

limh_,o 0

_ 9
llmh_,o ﬁ

li i 0f (xg +h)d(xe + h) _
M0 5p 9 + ) ok |

D [af(xo+h>] L
M0 5190k + 1) |~

. 9 [af(xo + h)] a0 +h)
=050 + ) | 9Cx, + h) -

dh
. 0 [0f(x)
llmhﬁoa x| = 0
wherex = x5+ h
We now have,
0%f (x)
lim,_o———=0(13
IMp0 axz ( )
0
0x2 N~ B
But x = x could be any arbitrary point.
By differentiating (10) we obtain the expected result
0%f (xo + h)
— = G4

which contradicts the earlier result given by (13)unless f''(x,) = 0

Direct Calculations



We write the Taylor series
h h? h3
flx+h)=f(x) +ﬁf’(x) +§f”(x) +§f”’(x) + -+ (15).
d h h? h3
af(x +h) = f'(x) +ﬂf”(x) +§f”’(x) +§f””(x) + ... (16).

0 h h? h3
— £r(x) " " "
—ahf(x+h)—f +—1!f (x)+—2!f (x)+—3!f () +--(17)

From (10) and (11) we have,

0 0
af(x+h) =ﬁf(x+h)(18)

Differentiating (10) with respect to x + h[holding x as constant]

—f(x+ h) = (x + h) (19)

G h)f

o] =[] e

af(y) = f( )|s a constant on (x, x + h). This notion may be considered to show that% is constant

everywhere.[we take (x,x + h),(x + h,x + 2h), (x + 2h, x + 3h) ....and consider the proof given over
and over again]

aa—xf(x) = const :aa—;f(x) =0

which we got earlier

Now [treating f as a function of x and h we may write
d d
df(x + h) = —f(x + h)dx + — f (x + h)dh (21)
dx dh
Again

df(x + h) = )f(x+h)d(x+h) (22)

0
d(x +
0 a

>df(x+h) = Gt )f(x+h)dx+ (x+h)f(x+h)dh (23)

From (21) and (22) we have,



(x+h)—%f(x+h)]dx+[Lf(xm)—;—hf(ﬂh) dh =0

9
[6(x+h)f FICEYD)

0 0 d
mf(x+h)=af(x+h)=ﬁf(x+h) (24)

af

. . . a?
—is a constant function thatis — =0
dx dx

We clearly see that the function

Further Considerations

We recall (9)

h h? h3
flxo +h) = f(xo) + Ff’(Xo) +§f”(x0) + gf”’(xo) +-...(9)
We differentiate the above with respectto x = xo + h'; h' < h

[M] = f"(x0) + h'f" (x) +£f”'(XO) + .= f'(xo + h') (25)
dh |, 2!

df(xo+h) _df(xo+h) dh  df(xo+h)
d(xo +h)  dh d(xo+h)  dh

df (o +h) _ df(xo +h)
d(xo +h)  dh

(26)

We obtain an indication of constancy of % from (26) and keeping in mind equation (18) we have

df (x + h)

0 0
af(x+h)=%f(x+h)= d(x+h)

Next we consider a truncated Taylor series which has been approximated with ‘n’ terms. Now we have
an equation and not an identity and there are discrete solutions for h. Since we have taken an
approximation to the Taylor series it is least likely the corresponding roots will cause a divergence of the
infinite series in the Taylor expansion. It would be better to take a truncation which is not an
approximation but the infinite Taylor series is convergent for it. These solutions for ‘h’ will not satisfy
the entire Taylor series with an infinite number of terms. Suppose one solution of ‘h’ from approximated
equation[equation with finite number of terms] satisfied the infinite Taylor series, we will have (9) as
well as a truncated (9)[approximated up to ‘n’ terms. The situation has been delineated below

We now cconsider the Maclaurin expansion for e*

S x x% x? x™
e’ = +E+§+§+"'+H+"‘..

xZ xZ n

ex=1+£+—+—+---+x—+6(x) (26)
1 21 2! n "



€,(x): Remainder after the nth term count starting from zero: n=0,1,2.......
€(x) =e*—1

Differentiating (26) with respect to ‘x’ for a fixed ‘n’'we obtain

dex—-1+-x-+x24—x2+- + " 4—dﬂix) 27
dx 1 21 2! (n—1)! dx (27)
X—-1+-x-+x24—x2+ + X 4—dﬂix) 28
S TR TR Y -1t ax @8

de, (x) n
=_(2
d?e* X +x2 +x2 ot x"2 N d%e, (x)
dx? 1! 2! 2! (n—1)! dx?

We consider a positive interval (x4, x,)and make n — oo.For such an interval

. xn
lim,,0o—=0

n!
d n
limy,_ e [eg_x(x) - En(x)] = liMyo e %
d
limy,_ e [ E;}Ex) - En(x)] =0

- d o
For sufficiently large ,n| E;Ex) — en(x)| can be made arbitrarily close to zero

For the concerned interval we have in the limit n tending to infinity [for the interval (x, x,)]the
following[rigorous]equation

deg (x)
dx

—€(x) =0(30.1)
Ine,(x) = x+C" (30.2)
If C'=0
€ (x) = ¥ (31.1)
IfC"# 0,C' =InC
€ (x) = Ce*(31.2)

Again



C=0=C =-x(32)

That means we used —oo as the constant of integration in equation (30.2).Suppose we take |C'| >
0; C' < 0sothatC isa very small fraction:

Ce*t < e,,(x) < Ce*2

But the point is that once we decide on the value of C[C cannot be minus infinityby itself if a value is
considered] we cannot vary it. Though €4, (x) will be very small we cannot take it arbitrarily close to zero

Next we consider a much larger the interval (x;, x,") which contains the interval (x;, x5); x," > x,[x,’
remaining finite. We have the same equation as given by (30.1) and the same solution €., (x) =
Ce*.This time we cannot change the value of the constant. If we changed it to Cy,,,then we have
untenable results li8ke €4, (x1) = Chewe™ andey, (x3) = Cpewe™2. But with the old constant €4, (x,") =
Ce*2' > 0 since xj » x;

It is not possible to cover the entire x axis or the semi x axis: (0, ©) by a single constant having a
numerical value.

The discrepancy we have found should not surprise us in view of the earlier discrepancies , for example
those notified through casel and case2.

Further Investigation

. x x* x? x™
e —1+ﬂ+5+5+---+5+en(x)
We define f(x,n) as follows:
3 x x* x? x™
f(x,n)—1+ﬂ+§+§+“'+m(33)
xn

f(x;n)—f(x,n—l):_

n!

We make r f(x,n) a smooth[obviously continuous) by interpolation with a suitable curve where n
isposotive everywhere .

of(x,n) df(x,n—1) x"Inx L, a1
on on T onl T %(E) (34)

—x"t—

of(x,n) df(x,n—1) _xMnx 1 [1 1
on on T onl n!

1
- 1] 35
n n—1+n—2+ (35)

In the above n! = n(n — 1) ....up to |n| terms. The equation considers right handed derivatives
exclusively.

For large ‘n’ the left side of (35) is zero: f(x,n) = f(x,n — 1) =~ e*



Therefore,

i x"Inx n1[1+ 1 N 1 N 1] _ 0
Mmoo |70, Yl T h—1" T n=2 B

That is to say that in the limit irrespective of the value of x---x very large or very small

Inx 1 [1 N 1 N 1 4 1]
nl alln Tn—-1" n-2
1 [1 + ! + + 1]
nx ~ — e
n n—1 n-2
We have a strange result
1 1 1

X = e[ﬁ+ﬁ+m+'"1l ; n:very large but constant in value (36)

NB: For testing ,in the above, we have taken a very large but fixed value of x so as to ensure that we
have an approximation with (35)..

Next we move on to the following case.

We expand f(x)about three distinct points x;,x, and x3 with the same increment h assuming
convergence for all three cases

h h? h3

[l +R) = fO) + 3 f ) + 5 £ Ge) + 57 7/ Gc) + -+ (38.1)
h h? h3

fO+ 1) = f0r) +5f G2 + 57 /() + 57 £ () + .. (38.2)

h h? h3
flrs+ 1) = flxs) + 3 Ox) + 57 7 () + 577 (g) + -+ (38.3).

The increment ‘h’ in the above three equations may be azrbitrary to the extent it does not upset
convergence.

Adding the last three equations we have

fOg+h)+ f(xy+h)+ f(x, + h)
= fle) + fO2) + fx3) + % [f G + fOc2) + fx3)] + Z—T [f Cen) + f(2) + f(x3)]
+ Z—T [f CGer) + £ (x2) + f(x3)] ... (38)

Let x satisfy the following equation

fx) = flx) + f(xz) + f(x3) (39)
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Equation (38) does not involve ‘h’

h h? h3
S f+h)+f+h)+f(x,+h) = f(x) +ﬂf’(x) +§f”(x) +§f”’(x) +

fl +h)+ f(xy +h) + f(x, + h) = f(x + h)(40)

But h could be arbitrary. In fact we may very it continuously over a small interval without upsetting
convergence. On top of that there are many functions for which the corresponding Taylor expansion is
convergent for any arbitrary increment for example Sin x, Cos x, exp(x)

For the same x4, X5, X3 and corresponding x as given by (39) we do have an infinite number of
equations of the type (40) for the various ‘h’ that comply with the convergence issue. . But (40) does
not represent an identity. We do have a situation of a gross violation.

Sin(x,) + Sin(x,) + Sin(xz) = Sin(x) (41)
By our choice the absolute value of the left side of the above should be less than or equal to unity

Then do we have the following for an arbitrary ‘h’, [arbitrary to the extent the absolute value of the left
side of the following should be less than or equal to unity]?

Sin(xy + h) + Sin(x, + h) + Sin(x; + h) = Sin(x + h)(42)

Any arbitrary value of ‘h’ has to satisfy (42) subject to the convergence issue and that the absolute
value of the left side[of (42) ] should be less than or equal to unity.

The Convergence Condition:
If we consider the Taylor expansion of Sin(x + h) for

the1 h? F+2 (x)
t. (M+2)(m+1) f(x)

(43)

We apply D’Alembert Test considering the absolute value of each term in the expansion. If this series
converges then the original series also converges.

1

f(n+2) (x) _ 0
e m+2)(n+ 1)

frx)

tnsal _ | f@Dx)  h? ~
il @) m+ D@+ D]
<1

h?| lim

lim,_, s

The modified series consisting of positive terms converges. Hence the Taylor expansion also converges
f(n+1)(x)
fr(x)

for any arbitrary ‘h’[considering finite for all n and n+1:choosing x in that way and this can be
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achieved for the sin function]. Those terms for which f™(x) = 0 simply drop out of the series. We may
apply D’Alembert ratio test to the remaining terms.

1/n

We may alternatively think of Cauchy condition: if lim,,_,,u, ' <1, then the series converges.

Against the Taylor series we form a series comprising the absolute values of the corresponding terms of
the Taylor series.

MW

|f(n)( )l
o M\ x|
llmn_woW =0> llmn_,oo 7 =0= llmn_,oo —(n!)l/n =0

n
Ia;l = 0 implies that for every preassigned € > 0, no matter how small, we have N > 0

such that for n > N we have, i <e=> o l,)ll/n

Indeed lim,

<el/m=¢
n
For any arbitrary €’ > 0 no matter how small we can arrange for an € = €'t/™ 5o that % <e>

||
(n))1/n

<el/m=¢

. VT n n _
If |[£ ™ ()| is bounded for all 'n’, llmnﬁm% lIf™@|=0= (nl!;l/n lFf™ | =

. 1/n
im0ty ™ uy Y™ =0
Relevant Demonstrations

We may also consider the following

h h? h3 h™
f(xo +h) = f(x0) +if’(x0) + Zf”(xo) +§f”’(xo) + "'Ef(n)(xo + h6) (44)

Wewritex =xyp+h=>h=x—xg

3 n—1
£ = £ + 2522 x0) + S ) 4 ET ) 4 EZZ 0oy
+ (xnﬂf(n) (xo +60(n,x)(x — x0)) (45)
3 n—1
£ = Fe + 2522 x0) + S ) 4 ETI ) 4 EZI 0oy
+(x %o)" ™ (x 0)+¥f(n+1)(x + 6(n, x)(x—xo)) (46)

(n+ 1!

Subtracting (45) from (46) we have,
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— n _ n+1
(x nTO) f(n) (xO) + %f(n+1) (xO +6(n, x)(x _ xo))
(x — xo)

= (0 + 60, x) (x = x0)) (47)

(x —x)™

n!

(x _ xo)n+1

[f(n)(xo +0(n,x)(x — xo)) — f(n) (XO)] = (n+ 1)!

f(n+1) (xo +0(n,x)(x — xo))

f™(xo + 0 )(x = x0)) = f™M(xe) 1
X — Xo T n+1

FOD (g + 0(n, x) (x — x0)) (48)

£ (x0 + 0(n, x)(x — %)) — £ ™ (x0)
O (n,x)(x —xg)

limy_,x,

o(n,x) = limx_,xof("“)(xo +0(n,x)(x — x0))

n+1

£ (xo + 0(n, ) (x — x0)) — £ ™ (xo)
O (n,x)(x — xg)

1
= limx_%f(”“) (xo + 6 (n,x)(x — x0))

limy_x, X limy_,5,0(n, x)

n+1
Now
limy_, 0(n,x) =1 (49)
Let
X0+ 0, x)(x —xp) =x"=2x" —x=0(n,x)(x — x)
M () = FOI(y 1
limyy g, O TS Ly
x'—x= n+1
Therefore

1
f(n+1)(x0) — — 1]c(n+1) (x0) (50)

The above relation is not possible for f™+D(x,) # 0
Now we go in for the next demonstration

We consider the equations:

i _ X X
Smx—x—§+§—ﬁ—a+---...(51)
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Solutions to

Sinx =0 (53)

and

Cosx=1=1-Cosx =0 (54)

aregivenby x = 2nm;k €]

Type equation here.By way of approximation we truncate (51) and (52) after a very large number of
terms so that the following two equations hold on some interval.

Sinx~x—x—3+x—5—x—7—£+--- (—1)”+1i(55)
T7 315 71 9l (2n —1)!
2 x4 x6 x8 2n
~]——4———+ — (=1 n+1 .
Cos x T + TS + 3l + (=1 2n)! (56)
1—Cosx x x3 N x> x7  x° N (i x2n-1 c6
x 2! 46 8 10! (2n1)! (569

Approximate solutions for (2) and (3) are given by
x ~ 2km;k €1
We rewrite (55) and (56) as
Sinx ~ Ax(x — a;)(x — az)(x — az) .....(x — ay,) (57)

1—-Cosx

~ Bx(x — B1)(x — B2)(x — B3) we.. (x — Br) (58)

But{a;;i =12..n} ={B;;i=12..n};a, =B, = 2nn
(x—a)(x—az)(x —az) .. (x —an) = x(x = B)(x — f2) (x — f3) o.. (x — Br)

15, 11— Cosx
=— e T
y inx B o

. Al—Cosx
Sinx 8 ——
B X

1—Cosx
Sinx = KT (59)
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We do not have a valid expression with (9)

Aswe increase the number of terms [included] in the truncation we have

) 1—Cosx
Sinx = K’T (60)

Equation (10) is not a valid one.

Point to Observe

1—Cosx 2Sin®x Sin’x

Limy g ———— = Limy g ———— = 2Limy g —5— X x =2 X 1> X0 =0

Right side of (6) tends to zero with x tending to zero. Therefore (6’) is satisfied for x — Oasides f§; =
2km

2. Instead of (59) we may consider

1—Cos x
Sinx = K,(x) ———

The roots for the two approximations will not be integers.The correspOonding roots may not b e
exactly equal Nevertheless the above equation will hold with . K,, (x) asa slowly vrying constant

With n tending to infinity [as we take more and more terms into consideration] we have K, (x)
tending to a constant K’ that is lim,_, K, (x) = K'[ K’ being a constant]

Differences between the two sets of roots,{a;} and {B)},get flushed out as n tends to infinity.

3. If A+iBis a complex root for (51) then Sin(A+iB)=0 implies Cos (A+iB)=1. These relationswill hold
approximately for the approximate equations thus confirming {a;} = {B)}

Examples for Numerical Testing

x3 x> x7

Sinx=x—§+§—ﬁ+---....

(2mny)3 N (2mn,)® _ (2mn,)’ o,

Sin 2nn, = 2nnq — 3 = T

(2mn,)3 N (2mny)® _ (2mny)’ o,

Sin 2nn, = 2nny — 3 = 7

If n, and n, are integers



(Znn1)3 . (27Tn1)5 B (znn1)7 e

(2nny)®  (2mng)®  (2mn,)’
2y — gt Ty =0
By subtraction we obtain
2m)3 2m)> 2m)’
27'[(77.1 - nz) - %(7’743 - n23) + ( 5') (n15 —nzs) - ( 7') (n17 —n27) +e..=0 (61)
Sin2n(ny —ny,) =0
Therefore
Sin2n(n; —n,)
2m)3 2m)> 2m)’
=2n(n; —ny) — ( 3') (ny® —ny%) + ( 5') (ny® —ny°) — ( 7|) (ny” —ny7)
+ .. ==0(62)
Now n; and n, being integers their difference n; — n, is also an integer. Therefore
Sin2n(n; —ny,) =0
2m)3(ny —ny)®  (2m)°(ny —ny)®  (2m)7
SinZn(nl—n2)=2n(nl—n2)—( ) (1 — o) +( )"(u —nz) —( ) w.=0 (63)

3! 5! 7!
One may think of testing (53) numerically.
We should not expect
n* —nyK = (ny —ny)"
or
n K —nk = (ng —nx)* +2mp;p €1

n® —n,* — (ny — ny)* = 2mp; p const

foralln,,n, €1

Precisely e consider m integers a,, a,, as......ay,

(2m)3a;? N (2n)°a;®  (2m)7a’
3! 51 7!

0 = Sin2ra; = 2ma; —



Summing on i we have

2m Z (2”)3 Z a;3 + (2;?52 a;® — (2;)72 a;” .....=0(64)

l L

But }}; a; is an integer

Therefore

SinZEZIai =0
an a; — (23L'P <Z ai>2 + (2:!)5 (Z al-)g - (2:!)7 (z ai>7 .= 0(65)

l l l L

ZEZ a; — (2;)3 z a3+ (2;)5 z a;® — (27L')72 a;” ...

l L

- z (2n)3 (z ai>2 N (2;)5 (z ai>3 B (2;1!)7 (2 ai>7 0w

4

Equation (66) may be put to test on the computer.

Now,

Sin— = Sin (E +6m) = L en
4 4 V2

Sin0.7855 = Sin19.6375

() @ 6

(% +6n) (%+67r)3 (%+67r)5

Sln(4+6n) e e = . (69)
i3 m\3 (m\° i1 3 5
- - — —+6n + 6n + 6n
%_%J’%J’””:(L} 1! )_(4 3! ) +(4 5! ) = (70)

Equation (66) may be put to test on the computer, considering a large number of terms.

On the Convergence of the Exponential Series
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Assume that the formula for Sin(x) holds simultaneously over the entire real axis x € (—o0, ). We4
partition he real axis into accountably infinite number of closed intervals indexed by the natural

n
numbers. The remainder term[Cauchy form],R,, = ’;—,Sin(x + 6h) should tend to zero for all intervals

we have in the partition. For any preassigned € > 0 no matter how small we have for
Interval 1: N; > 0 such that for alln > N; we have |R,| < €
Interval 2: N, > 0 such thatforalln > N, we have |R,| < €
Interval 3: N3 > 0 such thatforalln > N; we have |[R,| < €

Interval k: N,, > 0 such that for all n > N;, we have |R,| < €

Fort the largest Ny, |R,,| < € for all intervals. There is no such largest N; [we cannot denote it
numerically]

Therefore our usual formula for e* will not hold for the entire real axis at one stroke..

Considering any finite interval on the x axis or a finite union of finite intervals the exponential series is
uniformly convergent. But it is not uniformly convergent when the entire x axis is taken into
consideration.

Analogous conclusions may follow from all non terminating instances of the Taylor series.
Conclusions
As claimed we have arrived at some inconsistent aspects of the Taylor expansion
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