Riemann Hypothesis

Shekhar Suman

March 7, 2020

Subject Classification code- 11Mxx

Keywords- Riemann Zeta function; Riemann Xi function; Hadamard product; Critical strip; Critical line.

1 Abstract

The Riemann Zeta function is defined as the Analytic Continuation of the Dirichlet series

$$\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$$
, $Re(s) > 1$

The Riemann Zeta function is holomorphic in the complex plane except for a simple pole at s = 1

The non trivial zeroes (i.e those not at negative even integers) of the

 $Riemann\ Zeta\ function\ lie\ in\ the\ critical\ strip$

$$0 \le Re(s) \le 1$$

Riemann's Xi function is defined as[4, p.1],

$$\epsilon(s) \ = \ s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)/2$$

The zero of (s-1) cancels the pole of $\zeta(s)$, and the real zeroes of $s \zeta(s)$ are cancelled by the simple poles of $\Gamma(s/2)$ which never vanishes.

Thus, $\epsilon(s)$ is an entire function whose zeroes are the non trivial zeroes of $\zeta(s)(see[3, p.2])$ Further, $\epsilon(s)$ satisfies the functional equation $\epsilon(1-s) = \epsilon(s)$

2 Statement of the Riemann Hypothesis

The Riemann Hypothesis states that all the non trivial zeroes of the Riemann Zeta function lie on the critical line with real part equal to 1/2

3 Proof

The Riemann Xi function [1, p.47] is defined as

$$\epsilon(s) = \epsilon(0) \prod_{\rho} (1 - \frac{s}{\rho})$$
 ... (1)

where ρ ranges over all the roots ρ of $\epsilon(\rho) = 0$.

If we combine the factors

 $(1-\frac{s}{\rho})\ and\ (1-\frac{s}{1-\rho}),\ then\ \epsilon(s)\ is\ Absolutely\ convergent\ infinite\ product\ .$

Also,
$$\epsilon(0) = 1/2$$

 $From, \ [1, \ p.42, \ Section \ 2.5]$

$$\prod_{\rho} (1 - \frac{s}{\rho}) = \prod_{Im(\rho) > 0} (1 - \frac{s(1-s)}{\rho(1-\rho)}) = \prod_{Im(\rho) > 0} (1 - \frac{s}{\rho})(1 - \frac{s}{1-\rho}).$$
 ... (2)

Since from (1) $\epsilon(\rho) = 0$.

For, $0 < Re(\rho) < 1$, $|\epsilon(\bar{\rho})| = |\epsilon(\rho)|$. (Proof in Appendix)

$$\epsilon(\rho) = 0 \Rightarrow \mid \epsilon(\rho) \mid = 0$$

$$\Rightarrow \mid \epsilon(\bar{\rho}) \mid = 0.$$

$$\Rightarrow \epsilon(\bar{\rho}) = 0.$$

From(1),

$$\epsilon(s) = \epsilon(0) \prod_{\rho} (1 - \frac{s}{\rho})$$

Using (2) we have,

$$\epsilon(s) = \epsilon(0) \prod_{Im(\rho)>0} (1 - \frac{s}{\rho})(1 - \frac{s}{1-\rho}).$$

$$\epsilon(\bar{\rho}) = 0 \Rightarrow \epsilon(0) \prod_{Im(\rho)>0} (1 - \frac{\bar{\rho}}{\rho})(1 - \frac{\bar{\rho}}{1-\rho}) = 0.$$

 $Let, \rho = \sigma + it.$

$$\Rightarrow \bar{\rho} = \sigma - it.$$

$$\epsilon(0) \prod_{t>0} (1 - \frac{(\sigma - it)}{\sigma + it}) (1 - \frac{(\sigma - it)}{1 - \sigma - it}) = 0.$$

$$\Rightarrow \! \epsilon(0) \prod_{t>0} \tfrac{(\sigma+it-\sigma+it)(1-2\sigma-it+it)}{(\sigma+it)(1-\sigma-it)} \! = 0.$$

$$\Rightarrow \epsilon(0) \prod_{t>0} \frac{2it(1-2\sigma)}{(\sigma+it)(1-\sigma-it)} = 0.$$

Since $\epsilon(s)$ is a Convergent infinite product,

 $Thus\ it\ is\ convergent\ infinite\ product[see\ 2\ ,p.290].$

The value of a convergent infinite product is zero if and only if at least one of the factors is equal to zero [see 2, p.287].

$$\Rightarrow \frac{2it_0(1-2\sigma)}{(\sigma+it_0)(1-\sigma-it_0)} = 0, \text{ for some } t_0 > 0 \text{ (Since, } t > 0).$$

 $Since, t_0 > 0$

$$\Rightarrow 1 - 2\sigma = 0.$$

$$\Rightarrow \sigma = 1/2.$$

$$\Rightarrow Re(\rho) = 1/2.$$

This proves the Riemann Hypothesis.

4 Appendix

Claim:
$$\mid \epsilon(\bar{\rho}) \mid = \mid \epsilon(\rho) \mid, \ 0 < Re(\rho) < 1.$$

The Riemann's Xi function is defined in [1, p.16] as,

$$\epsilon(s) = 1/2 - s(1-s)/2 \int_1^\infty \psi(x) (x^{s/2} + x^{(1-s)/2}) dx/x, \ where, \psi(x) = \sum_{n=1}^\infty e^{-n^2\pi x}.$$

$$\mid \epsilon(\bar{\rho}) \mid = \mid 1/2 - \bar{\rho}(1-\bar{\rho})/2 \int_{1}^{\infty} \psi(x) (x^{\bar{\rho}/2} + x^{(1-\bar{\rho})/2}) dx/x \mid$$

$$= |\overline{(1/2 - \rho(1-\rho)/2 \int_1^\infty \psi(x) (x^{\rho/2} + x^{(1-\rho)/2}) dx/x)}| .$$

$$=\mid \overline{\epsilon(\rho)}\mid =\mid \epsilon(\rho)\mid.$$

5 References:-

- 1. H.M Edwards Riemann's Zeta function- Academic Press (1974).
- 2. Stanislaw Saks, Antoni Zygmund Analytic Functions, 2nd Edition Hardcover (1965) .
- 3. A Monotonicity of Riemann's Xi function and a reformulation of the Riemann Hypothesis, Periodica Mathematica Hungarica May 2010.
- 4. E. C. Titchmarsh, D. R. Heath-Brown The theory of the Riemann Zeta function [2nd ed] Clarendon Press; Oxford University Press (1986).
- 5. Kevin Broughan Equivalents of the Riemann Hypothesis : Arithmetic Equivalents Cambridge University Press (2017) .
- 6. Tom M. Apostol Introduction to Analytical Number Theory (1976).
- 7. 4. Lars Ahlfors Complex analysis [3 ed.] McGraw -Hill (1979).