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Abstract
In this paper we will prove a relationship for sums of powers of re-

cursive integer sequences. Also, we will give a possible path to discovery.
As corollaries of the main result we will derive relationships for familiar
integer sequences like the Fibonacci, Lucas, and Pell numbers. Last, we
will discuss some applications and point to further work.

1 Introduction
Let (Un)n=1 be a recursive integer sequence with initial values of

a = U1 = U2,

where a > 0, and, for n = 2, a general term of

Un−1 + p · Un = Un+1,

where p is a positive integer. Then we have the following result:

Proposition 1. Given (Un)n=1,

n∑
k=1

Um+1
k +

n−1∑
k=1

(Uk+2 − Uk+1)

k+1∑
l=1

Um
l = Un+1

n∑
k=1

Um
k ,

where n = 2 and m is a positive integer.

Let (Vn)n=1 also be a recursive integer sequence but with initial values of

b = V1 < V2 = c,

where b > 0, and, for n = 2, a general term of

Vn−1 + q · Vn = Vn+1,

where q is a positive integer. Then we have the analogous result:
∗This work is licensed under the CC BY 4.0, a Creative Commons Attribution License.
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Proposition 2. Given (Vn)n=1,

n∑
k=1

V m+1
k +

n∑
k=1

(Vk+1 − Vk)

k∑
l=1

V m
l = Vn+1

n∑
k=1

V m
k ,

where n = 1 and m is a positive integer.

We will prove these results rigorously. But, before we do that, we will give
a possible scenario for how someone might discover them.

2 Discovery
In order to illustrate how someone might discover such results, and to offer a
concrete case to be kept in mind for later material, we discuss an example from
the Fibonacci numbers.

Let (Fn)n=1 be the sequence of Fibonacci numbers with initial values of

1 = F1 = F2

and, for n = 2, a general term of

Fn−1 + Fn = Fn+1.

There is an argument from antiquity [4, section 2], using little more than a
simple diagram, which leads to the fundamental result of

1 + 2 + · · ·+ n =
n (n+ 1)

2
.

We modify it for our present purpose.
Let us start with

4∑
k=1

F 5
k = F 5

1 + F 5
2 + F 5

3 + F 5
4 = F1F

4
1 + F2F

4
2 + F3F

4
3 + F4F

4
4

= F 4
1 + F 4

2 + 2F 4
3 + 3F 4

4 .

We place it in a table as follows:

F 4
1 F 4

2 F 4
3 F 4

4

F 4
3 F 4

4

F 4
4

In order to fill in the table we write
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F 4
1 F 4

2

F 4
1 F 4

2 F 4
3

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

This sum is equal to

(2− 1)
(
F 4
1 + F 4

2

)
+ (3− 2)

(
F 4
1 + F 4

2 + F 4
3

)
+ (5− 3)

(
F 4
1 + F 4

2 + F 4
3 + F 4

4

)
= (F3 − F2)

(
F 4
1 + F 4

2

)
+ (F4 − F3)

(
F 4
1 + F 4

2 + F 4
3

)
+ (F5 − F4)

(
F 4
1 + F 4

2 + F 4
3 + F 4

4

)
,

which is
3∑

k=1

(Fk+2 − Fk+1)

k+1∑
l=1

F 4
l .

For the entire table

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

F 4
1 F 4

2 F 4
3 F 4

4

we write the sum in a different way:

5

4∑
k=1

F 4
k = F5

4∑
k=1

F 4
k .

Together we have

4∑
k=1

F 5
k +

3∑
k=1

(Fk+2 − Fk+1)

k+1∑
l=1

F 4
l = F5

4∑
k=1

F 4
k .

This suggests the general case will be

n∑
k=1

Fm+1
k +

n−1∑
k=1

(Fk+2 − Fk+1)

k+1∑
l=1

Fm
l = Fn+1

n∑
k=1

Fm
k , (1)

where n = 2 and m is a positive integer.

3 Main Result and Corollaries
Now we prove the main result of the paper. The reason for two cases is the
different initial values for the sequences. The proofs will make this apparent.
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Proof of Proposition 1
Proof. we proceed by mathematical induction. Again, the relationship we want
to establish is

n∑
k=1

Um+1
k +

n−1∑
k=1

(Uk+2 − Uk+1)

k+1∑
l=1

Um
l = Un+1

n∑
k=1

Um
k . (2)

For the base case of n = 2,

2∑
k=1

Um+1
k +

1∑
k=1

(Uk+2 − Uk+1)

k+1∑
l=1

Um
l = Um+1

1 + Um+1
2 + (U3 − U2) (U

m
1 + Um

2 )

= Um+1
1 + Um+1

2 + U3U
m
1 + U3U

m
2 − U2U

m
1 − Um+1

2

= U3 (U
m
1 + Um

2 ) + (U1 − U2)U
m
1 .

Since U1 = U2, this is equal to U2+1

∑2
k=1 U

m
k , as desired.

For the inductive step, assume that (2) is true for some n = 2. Then

n+1∑
k=1

Um+1
k +

n∑
k=1

(Uk+2 − Uk+1)

k+1∑
l=1

Um
l =

n∑
k=1

Um+1
k + Um+1

n+1

+

n−1∑
k=1

(Uk+2 − Uk+1)

k+1∑
l=1

Um
l + (Un+2 − Un+1)

n+1∑
l=1

Um
l

=

n∑
k=1

Um+1
k +

n−1∑
k=1

(Uk+2 − Uk+1)

k+1∑
l=1

Um
l

+Un+1U
m
n+1 + (Un+2 − Un+1)

n+1∑
l=1

Um
l

= Un+1

n∑
k=1

Um
k + Un+1U

m
n+1 + (Un+2 − Un+1)

n+1∑
l=1

Um
l

= Un+1

n+1∑
k=1

Um
k + (Un+2 − Un+1)

n+1∑
l=1

Um
l .

Notice that
∑n+1

k=1 U
m
k =

∑n+1
l=1 Um

l . The same sum is expressed in two different
notations. Therefore

(Un+1 + Un+2 − Un+1)

n+1∑
k=1

Um
k = Un+2

n+1∑
k=1

Um
k .
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Proof of Proposition 2
Proof. we proceed by mathematical induction. The relationship we want to
establish is

n∑
k=1

V m+1
k +

n∑
k=1

(Vk+1 − Vk)

k∑
l=1

V m
l = Vn+1

n∑
k=1

V m
k .

The inductive step is analogous to the one just given. Therefore we justify only
the base case of n = 1:

1∑
k=1

V m+1
k +

1∑
k=1

(Vk+1 − Vk)

k∑
l=1

V m
l = V m+1

1 + (V2 − V1)V
m
1 .

Since V1 < V2, we have

V m+1
1 + V2V

m
1 − V m+1

1 = V2V
m
1 = V1+1

1∑
k=1

V m
k .

Corollaries
Now we state the main result in terms of more familiar integer sequences like the
Fibonacci, Lucas, and Pell numbers. ([1, 2] contain background information on
these sequences.) For the Fibonacci numbers this will establish the conjecture
of the previous section.

The Fibonacci numbers (Fn)n=1 have equal initial values. Therefore we
apply the first case of the main result. Since Fk+2 − Fk+1 = Fk, we get

Corollary 1. Given (Fn)n=1,

n∑
k=1

Fm+1
k +

n−1∑
k=1

Fk

k+1∑
l=1

Fm
l = Fn+1

n∑
k=1

Fm
k ,

where n = 2 and m is a positive integer.

The Lucas numbers (Ln)n=1 are defined identically as the Fibonacci num-
bers,

Ln−1 + Ln = Ln+1,

where n = 2, but with the different initial values of

L1 = 1 and L2 = 3.

Also, it is common to set L0 = 2. Since Lk+1 − Lk = Lk−1, the second case
tells us
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Corollary 2. Given (Ln)n=1,

n∑
k=1

Lm+1
k +

n∑
k=1

Lk−1

k∑
l=1

Lm
l = Ln+1

n∑
k=1

Lm
k ,

where n = 1 and m is a positive integer.

For the Pell numbers (Pn)n=1 we remind ourselves that

P1 = 1 and P2 = 2

and, for n = 2,
Pn−1 + 2Pn = Pn+1.

Also, we set P0 = 0. Since Pk+1 − Pk = Pk−1 + Pk, the second case tells us

Corollary 3. Given (Pn)n=1,

n∑
k=1

Pm+1
k +

n∑
k=1

(Pk−1 + Pk)

k∑
l=1

Pm
l = Pn+1

n∑
k=1

Pm
k ,

where n = 1 and m is a positive integer.

4 Applications and Further Work
Now we discuss some applications of our results and point to further work.

Subsequences
It is quite natural to apply these ideas to subsequences of recursive integer
sequences. For example, suppose we look at Fibonacci numbers of even and
odd indices, F2k and F2k−1. For even indices, F2(1) < F2(2) tells us

n∑
k=1

Fm+1
2k +

n∑
k=1

(F2k+2 − F2k)

k∑
l=1

Fm
2l = F2(n+1)

n∑
k=1

Fm
2k.

Since F2k+2 − F2k = F2k+1, we can write it also as

n∑
k=1

Fm+1
2k +

n∑
k=1

F2k+1

k∑
l=1

Fm
2l = F2(n+1)

n∑
k=1

Fm
2k. (3)

For odd indices, F2(1)−1 < F2(2)−1 tells us

n∑
k=1

Fm+1
2k−1 +

n∑
k=1

(
F2(k+1)−1 − F2k−1

) k∑
l=1

Fm
2l−1 = F2(n+1)−1

n∑
k=1

Fm
2k−1.
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Since F2k+1 − F2k−1 = F2k, we can write it also as

n∑
k=1

Fm+1
2k−1 +

n∑
k=1

F2k

k∑
l=1

Fm
2l−1 = F2(n+1)−1

n∑
k=1

Fm
2k−1. (4)

For the Lucas and Pell numbers and other recursive integer sequences we
can do the same thing.

Generating Sums of Powers
The title of the paper contains the word “generator.” Up until now we have not
said anything about that. It should go without saying that the positive integers,

1, 2, 3, 4, . . . ,

are the prototypical recursive integer sequence. The initial term is 1 and we
derive all subsequent terms by adding 1 to the preceding term. Looking at our
main result, we see the sequence is of the second type:

Corollary 4. Given Z,

n∑
k=1

km+1 +

n∑
k=1

k∑
l=1

lm = (n+ 1)

n∑
k=1

km, (5)

where n = 1 and m is a positive integer.

In [4] the author discovered and proved this relationship, and without any
consideration of a more general setting. (At a later time he learned al-Haytham
might have gotten there 1,000 years earlier ([3, A000537]).) His purpose was
the following. Suppose we start with

n∑
k=1

k = 1 + 2 + · · ·+ n =
n (n+ 1)

2
=

n2 + n

2
.

We can “feed” this result into (5) to “generate” an explicit expression for
∑n

k=1 k
2.

Then we can use the new result for
∑n

k=1 k
2 to generate an expression for the

next case of
∑n

k=1 k
3. We can do this for as many powers as we please.

It is tempting to try to derive sums using the more general expressions of
Propositions 1 and 2. Unfortunately, simplifying the intermediate sums would
require intricate relationships for (Un)n=1 and (Vn)n=1. Therefore we will leave
this matter for another time.
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