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Abstract

In this paper we’ve described some mathematical connections that we’ve obtained between three-
dimensional gravity related to Chern-Simons gauge theory and p-adic Hartle-Hawking wave
function, Ramanujan’s modular functions and some equations describing the Riemann zeta-
function.

In the Chapter 1, we have described the very recent paper “Three-Dimensional Gravity
Reconsidered”, where Witten consider the problem of identifying the CFT’s that may be dual to
pure gravity in three dimensions with negative cosmological constant.

In the section 2 of Witten’s paper, “Gauge Theory And The Value Of ¢, the goal is to determine
what values of the cosmological constant, or equivalently of the central charge ¢ of the boundary
CFT, are suggested by the relation between three-dimensional gravity and Chern-Simons gauge
theory.

In this section, Witten says that the Hartle-Hawking wavefunction ¥ is computed by integrating
over three-manifolds W with a give boundary C.

The Hartle-Hawking wavefunction is a functional of metrics on C. For every metric & on C,
Witten define W(h) as the result of performing a path integral over three-manifolds W whose
boundary is C and whose metric g coincides with 4 on the boundary. Formally, one can try to
argue that (k) obeys the Wheeler-de Witt equation and thus is a vector in a Hilbert space H, of

solutions of this equations. Moreover, one can formally match the Wheeler-de Witt equations of
gravity with the conditions for a physical state in Chern-Simons gauge theory. Though many steps
in these arguments work nicely, one runs into trouble because a Riemann surface can be immersed,
rather than embedded, in a three-manifold, and hence it is possible for W to degenerate without C
degenerating. As a result, the Hartle-Hawking wavefunction does not obey the Wheeler-de Witt
equation and is not a vector in H.. In the case of negative cosmological constant, the boundary
CFT gives a sort of cure for the problem with the Hartle-Hawking wavefunction. Instead of thinking
of C as an ordinary boundary of W, Witten think of it as a conformal boundary at infinity. The

partition function ‘i’(h) of the boundary CFT is defined by performing the path integral over all
choices of W with C as conformal boundary. This is well-behaved, because, with C at conformal



infinity, it is definitely embedded rather than immersed. Moreover, li’(h) is a sort of limiting value

of the Hartle-Hawking wavefunction.

We have observed that, from this section, it is possible to obtain some interesting
mathematical connections with some equations concerning p-adic models in the Hartle-
Hawking proposal.

In the section 3 of Witten’s paper, “Partition Functions”, Witten will determine what he propose
to be the exact spectrum of physical states of three-dimensional gravity or supergravity with
negative cosmological constant, in a spacetime asymptotic at infinity to Anti de Sitter space.
Equivalently, Witten will determine the genus one partition function of the dual CFT.

Hence, further the possible connections with the Hartle-Hawking wave function, there are
various equations describing the partition functions, in this section, that, we have observed,
can be related to the Ramanujan’s modular functions and also some equations that can be
related with some equations describing the Riemann-zeta function.

In the section 1, we have described some parts of the three-dimensional pure quantum gravity and
relation to gauge theory, of the Witten’s paper above mentioned. In the section 2, we have
described some equations of the 2+1 dimensional gravity as an exactly soluble system. In the
section 3, we have described some equations concerning the three dimensional charged black string
solution. In the section 4, we have described some equations concerning a tachyon condensate
phase that replaces the spacelike singularity in certain cosmological and black hole spacetimes in
string theory.

In conclusion, in the section 5, we have described some possible mathematical connections between
p-adic Hartle-Hawking wave function and the arguments above mentioned.

1. Three-dimensional pure quantum gravity and relation to gauge theory. [1]

Three-dimensional pure quantum gravity, with the Einstein-Hilbert action

=1 d3x\/§(R+%j, (1.1)
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has been studied from many points of view. Classically, 2+1-dimensional pure gravity can be
expressed in terms of gauge theory. The spin connection & is an SO(2,1) gauge field (or an SO(3)
gauge field in the case of Euclidean signature). It can be combined with the “vierbein” e to make a
gauge field of the group SO(2,2) if the cosmological constant is negative. We simply combine @
and e toa 4x4 matrix A of one-forms:

Ao w ell (12)
l=ere 0 )

What is special in d =3 is that it is also possible to write the action in a gauge-invariant form.
Indeed the usual Einstein-Hilbert action (1.1) is equivalent to a Chern-Simons Lagrangian for the
gauge field A:

I:ijtr*(A/\dA+zA/\A/\Aj. (1.3)
dr 3



We remember that #7* denotes an invariant quadratic form on the Lie algebra of SO(2,2), defined

by tr'ab=tra*b, where tr is the trace in the four-dimensional representation and * is the Hodge
1

star, (*b), = 5 —&,,b".

It is very important that we note that one of the precursors of the AdS/CFT correspondence was the

discovery by Brown and Henneaux of an asymptotic Virasoro algebra in three-dimensional gravity.

They considered three-dimensional gravity with negative cosmological constant possibly coupled to

additional fields. The action is

jd x\/_(R+—+ J (1.4)
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where the ellipses reflect the contributions of other fields. Their main result is that the physical
Hilbert space obtained in quantizing this theory (is an asymptotically Anti de Sitter or AdS
spacetime) has an action of left- and right-moving Virasoro algebras with ¢, =c, =3//2G. In our
modern understanding, this is part of a much richer structure — the boundary conformal field theory.
Now we describe what values of the cosmological constant, or equivalently of the central charge ¢
of the boundary CFT, are suggested by the relation between three-dimensional gravity and Chern-
Simons gauge theory.

As long as the three-dimensional spacetime is oriented, three-dimensional gravity can be
generalized to include an additional interaction, the Chern-Simons functional of the spin connection
a:

A01=ij tr(a)/\da)-l-ga)/\a)/\a)j. (1.5)
4 W 3

Here we think of @ as an SO(2,1) gauge field (or an SO(3) gauge field in the case of Euclidean
signature). Also, fr is the trace in the three-dimensional representation of SO(2,1), and k' is
quantized for topological reasons. Equivalently, instead of @, we could use the SO(2,2) gauge field
A introduced in eq. (1.2), and add to the action a term of the form

AI:ij tr(AAdA+gAAAAAj, (1.6)
4 M 3

where now tr is the trace in the four-dimensional representation of SO(2,2). If one adds to w a
multiple of e, the Einstein action (1.1) transforms in a way that cancels the e-dependent part of
(1.6), reducing it to (1.5). The SO(2,2)—invariant form (1.6) is more useful. This way of writing the
Chern-Simons functional places it precisely in parallel with the Einstein-Hilbert action, which has
in (1.3) can similarly be expressed as a Chern-Simons interaction, defined with a different quadratic
form. We start with the fact that the group SO(2,2) is locally equivalent to SO(2,1)xSO(2.1).
Moreover, we will in performing the computation assume to start with that S 0(2,1)>< SO(2,1) is the
right global form of the gauge group.

Thus, by taking suitable linear combinations of @ and e, we will obtain a pair of SO(2,1) gauge
fields A, and A,. These have Chern-Simons interactions

Izﬂjzr(AL NdA, +2 A, A A, AALj—k—RJtr(AR NdA +2 A NA, /\ARj. (1.7)
4 3 4 3



Both k, and k, are integers for topological reasons, and this will lead to a quantization of the ratio

G/ /¢ that appears in the Einstein-Hilbert action, as well as the gravitational Chern-Simons coupling
(1.6).

Now we describing the quantization of the Chern-Simons coupling in gauge theory. The basic case
to consider is that the gauge group is U(1). The gauge field A is a connection on a complex line

bundle L over a three-manifold W, which for simplicity we will assume to have no boundary. The
Chern-Simons action is

k
I=EJWA/\dA (1.8)

with some coefficient k . If the line bundle L is trivial, then we can interpret A as a one-form, and
I is well-defined as a real-valued functional.

Now we pick a four-manifold M of boundary W and such that L extends over M . Such an M
always exists. Then we pick an extension of L and A over M , and replace the definition (1.8)
with

k
1, ZEJ.MF/\F, (1.9)

where F =dA is the curvature. Now there is no Dirac string singularity, and the definition of /,,
makes sense. But /,, does depend on M . To quantify the dependence on M , we consider two

different four-manifolds M and M' with boundary W and chosen extensions of L. We can build a
four-manifold X with no-boundary by gluing together M and M' along W, with opposite
orientation for M' so that they fit smoothly along their common boundary. Then we get

1, -1, =%IXF/\F. (1.10)

Now, on the closed four-manifold X , the quantity IX FAF /(27[)2 represents IX ¢ (L)2 and so is
an integer. In quantum mechanics, the action function / should be defined modulo 27 . Requiring
I1,, —1,, tobe an integer multiple of 27 , we learn that k& must be an integer.

Now let us move on to the case of gauge group SO(2,1). The group SO(2,1) is contractible onto its
maximal compact subgroup S0(2), which is isomorphic to U (1) So quantization of the Chern-
Simons coupling for an SO(2,1) gauge field and define the Chern-Simons coupling

Izij tr(A/\dA+gA/\A/\Aj, (1.11)
A7 v 3

where tr is the “trace” in the three-dimensional representation of SO(2,1). Then, in order for I to
be part of the action of a quantum theory, k¥ must be an integer.
We consider a U(1)xU (1) gauge theory with gauge fields A, B and a Chern-Simons action

Izk—Lj AAdA—k—RjBAdB. (1.12)
27 W 2w



To define I in the topologically non-trivial case, we pick a four-manifold M over which
everything extends and define

— kL kR
1, —JM(EFA A =R, /\FBJ, (1.13)

where F, and F, are the two curvatures. This is well-defined mod 27 if
— kL kR
L= (EFA AFy =y FBj (1.14)

is a multiple of 27 for any U(1)xU (1) gauge field over a closed four-manifold X .
We have understood the appropriate gauge theory normalizations for the Chern-Simons action

I=kI, +kgl, :j—LItr(AL /\dAL+§AL ANA, /\ALJ—j—RItr(AR A dA, +%AR A Ag /\ARJ (1.15)
T T

Now we want to express A, and A, which are gauge fields of SO(2,1)>< SO(2,1), in terms of

gravitational variables, and thereby determine the constraints on the gravitational couplings. We

have

k, +kg
2

I= (IL—IR)+(kL—kR)%. (1.16)

The term in (1.16) proportional to I, — I, will gave the Einstein-Hilbert action (1.1), while the term
proportional to (I L+l R)/2 is equivalent to the gravitational Chern-Simons coupling (1.6) with
coefficient k'=k, —k,. The spin connection @" = Zidxia)i"” is a one-form with values in

antisymmetric 3X3 matrices. The vierbein is conventionally a one-form valued in Lorentz vectors,
e’ :Zldx"ei" . The metric 1is expressed in terms of e in the usual way,

gijdxi ®dx’ = Zab n.,e' ®e", where 7= diag(—1,1,1) is the Lorentz metric; and the Riemannian
) 1 ) ) . ) .
volume form is d 3x\/_ =—£,.c" Ae’ Ae‘, where £,. 1s the antisymmetric tensor with, say,
6

£y, =1. It is convenient to introduce ‘e, =¢&,.e°, which is a one-form valued in antisymmetric
matrices, just like @w. We raise and lower local Lorentz indices with the Lorentz metric 77, so

58“””81,(,11 =-3d;, and ¢ 2—58“”” e,.. We can combine @ and ‘e and set A, =w-"e/l,

A, = w+’e/ (. We obtain

1
3’

L1 :—éjltr*e(daH DA ©)— J.tr(*e/\*e/\*e). (1.17)

. w1 )
In terms of the matrix-valued curvature two-form R* =(do+ @A w)" :EZU dx /\dijgb ,

where Rl.j.’b is the Riemann tensor, and the metric tensor g, this is equivalent to



IL—IR:éJ.d3x\/E(R+%J. (1.18)

Remembering the factor of (kL +kR)/ 2 in (1.16), we see that this agrees with the Einstein-Hilbert
action (1.1) precisely if

kL+kR:%. (1.19)

The central charge of the boundary conformal field theory was originally computed by Brown and
Henneaux for the case that the gravitational Chern-Simons coupling k'=k, —k, vanishes. In this

case, we set k =k, =k, =//16G . The formula for the central charge is ¢=3//2G, and this leads
to ¢ =24k . For the case k'=0, the boundary CFT is left-right symmetric, with ¢, =c,, so in fact
¢, =cg =24k . In general, the boundary CFT has left- and right-moving Virasoro algebras that can
be interpreted as boundary excitations associated with A, and A, respectively. Hence, we obtain

(c,.cq)=(24k, 24k,). (1.20)

Our discussion of the quantization of the gravitational Chern-Simons coupling (1.1)

A(,I:ij tr(a)/\da)+ga)/\a)/\a)j (1.21)
47 W 3

has been based entirely on gauge theory. Now, let @ a connection on an SO(2,1) or (in Euclidean
signature) SO(3) bundle over a three-manifold W . To define A,I more precisely, we pick an
oriented four-manifold M of boundary W with an extension of @ over W . Then we define

kl
1, —EJ.A;I‘F/\F . (1.22)

If M is replaced by some other four-manifold M', and X =M —M" is a four-manifold without
boundary obtained by gluing together M and M', then

kY
I, -1, =ijsz ~F =21 p(F), (123)

where pl(F ):(1/ 871'2)rrF A F is the first Pontryagin form. In general, JX pl(F ) can be any

integer, so the condition that the indeterminacy in [,, is an integer multiple of 27 means simply
that k' is an integer. Then, we can rewrite the eq. (1.23) as follow:

Ly =1y =f—7thrF/\F:2ﬂk’L(#jtrF/\F. (1.23b)

Now replace TW by TW @ £, where &£ is a trivial real line bundle. Then @ can be regarded as a
connection on TW @ £ in an obvious way, and 7TW @ £ extends over M as the tangent bundle of
M . With this choice, (1.22) becomes



kl
1, —E.LgrR/\R, (1.24)

where R is the curvature form of M , and (1.23) becomes
Iy 1, =27'[ p(R). (125)

The effects of this is that instead of the first Pontryagin number of a general bundle over X as in
(1.23), we have here the first Pontryagin number p, (TX ) of the tangent bundle of X . This number
is divisible by 3, because of the signature theorem, which says that for a four-manifold X,
)2 (TX )/3 is an integer, the signature of X . Hence, in the gravitational interpretation, the condition
on k' is

k'e %z. (1.26)

But the signature of a four-dimensional spin manifold is divisible by 16. So in this situation p, (Tx)
is a multiple of 48, and the result for k&' under these assumptions is

1
k'e—Z7Z. (1.27
48 (127)

In three-dimensional Chern-Simons gauge theory, one can fix a Riemann surface C and construct a
Hilbert space H_. of physical states obtained by quantizing the given theory on C. This Hilbert

space depends on the Chern-Simons couplings and we will call it HC(kL,kR ).
We may start by asking what we mean by the physical Hilbert space H_. obtained in quantum

gravity by quantizing on a closed manifold C . Quantization on, for example, an asymptotically flat
spacetime leads to a Hilbert space that can be interpreted in a relatively straightforward way, but the
physical meaning of a Hilbert space obtained by quantizing on a compact spatial manifold is not
clear. One line of thought is to consider the Hartle-Hawking wavefunction and claim that is a

vector in H_.

1.1 The Hartle-Hawking wave function.

According to the no boundary proposal, the quantum state of the universe is defined by path
integrals over Euclidean metrics g, on compact manifolds M . From this it follows that the

probability of finding a three-metric /; on a spacelike surface ¥ is given by a path integral over all
g, on M that agree with h; on X. If the spacetime is simply connected, the surface ¥ will
divide M into two parts, M, and M_. One can then factorise the probability of finding 7, into a

product of two wave functions, ¥, and ¥_. ¥, (¥_) is given by a path integral over all metrics
8, on the half-manifold M, (M _) which agree with h; on the boundary . In most situations ¥,

equals W_. We refer to ¥ as the wave function of the universe. Under inclusion of matter fields,
one arrives at the following prescription:

#li, 0] [l espl e, 0], (128
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where (h,-,— , <I>Z) are the 3-metric and matter fields on a spacelike boundary X and the path integral is
taken over all compact Euclidean four geometries g, that have ¥ as their only boundary and

matter field configurations @ that are regular on them; / (g ﬂv,cb) is their action. The gravitational
part of the action is given by

S ]

T IM d4xg”2(R—2A)—$ Ld3xh”2K, (1.29)

where R is the Ricci-scalar, A is the cosmological constant, and K is the trace of K, the second

fundamental form of the boundary ¥ in the metric g .

One is interested in two types of inflationary universes: one with a pair of black holes, and one
without. One then calculate the Euclidean actions I of the two types of saddle-point solutions.
Semiclassically, it follows from eq. (1.28) that the wave function is given by

¥ =exp(-1), (1.30)
neglecting a prefactor. One can thus assign a probability measure to each type of universe:
P=|®[ =exp(-21%), (1.31)

where the superscript “Re” denotes the real part.

Now we consider the Hartle-Hawking wavefunction and claim that it is a vector in H.. The
Hartle-Hawking wavefunction is a functional of metrics on C. For every metric &7 on C, we
define W(h) as the result of performing a path integral over three-manifolds W whose boundary is
C and whose metric g coincides with 4 on the boundary. Formally, one can try to argue that
¥(h) obeys the Wheeler—de Witt equation and thus is a vector in a Hilbert space H_ of solutions of

this equation. Moreover, one can formally match the Wheeler—de Witt equations of gravity with the
conditions for a physical state in Chern-Simons gauge theory. Though many steps in these
arguments work nicely, one runs into trouble because a Riemann surface can be immersed, rather
than embedded, in a three-manifold, and hence it is possible for W to degenerate without C
degenerating. As a result, the Hartle-Hawking wavefunction does not obey the Wheeler—de Witt
equation and is not a vector in H.. In the case of negative cosmological constant, the boundary

CFT gives a sort of cure for the problem with the Hartle-Hawking wavefunction. Instead of
thinking of C as an ordinary boundary of W, we think of it as a conformal boundary at infinity.

The partition function ‘i‘(h) of the boundary CFT is defined by performing the path integral over
all choices of W with C as conformal boundary. This is well-behaved, because, with C at
conformal infinity, it is definitely embedded rather than immersed. Moreover, li’(h) is a sort of
limiting value of the Hartle-Hawking wavefunction. Indeed, let ¢ be a positive function on C.
Then li’(h) is essentially the limiting value of ‘P(e%) as ¢ — . This suggests that we should be

able to think of ¥(h) as a vector in the Hilbert space H. associated with three-dimensional

gravity and a two-manifold C .
The phase space of SO(2,1)xSO(2,1) Chern-Simons theory on C is the space of

S0(2,1)>< SO(2,1) flat connections on C. The space of SO(2,1) flat connections on C has several
topological components. One of these components, the only one that can be simply interpreted in

8



terms of classical gravity with negative cosmological constant, is isomorphic to Teichmuller space
T. Thus, this component of the classical phase space M is a product of two copies of T,
parametrized by a pair of points 7, 7'€ T. One can quantize M naively by using the standard
holomorphic structure of T. If we do this, the wavefunction of a physical state is a “function” of
7 and 7' that is holomorphic in 7 and antiholomorphic in t'. (Antiholomorphy in one variable
reflects the relative minus sign in the Chern-Simons action (1.15); we assume that k, and k, are
positive).

A physical state wavefunction ¥(z,7") is a form of weights determined by k, and k,. So it takes
values in a Hilbert space H.(k,,k,) that depends on the Chern-Simons couplings. Such a

wavefunction ‘P(z‘,f ') is determined by its restriction to the diagonal subspace © =1'. Moreover,
if we want to make a relation to gravity, it is natural to require that ¥ should be invariant under the
diagonal action of the mapping class group on 7 and 7'; this condition is compatible with
restricting to 7=17".

Similarly, the partition function of a CFT on the Riemann surface C is a not necessarily
holomorphic “function” W(z,7). Being real analytic, ¥ can be analytically continued to a
function ¥(z,7) with 7' al least slightly away from 7 . It does not seem to be a standard fact that
Y analytically continues to a holomorphic function on TXT. However, this is true in genus 1,
since the partition function can be defined as T rq“_'z“, where we can take ¢ and ¢' to be
independent complex variables of modulus less than 1. It seems very plausible that the statement is
actually true for all values of the genus, since one can move on Teichmuller space by “cutting” on a
circle and inserting ¢™g 'l If so, the partition function of the CFT can always be interpreted as a
vector in the Chern-Simons Hilbert space HC(kL,kR). If we are given a theory of three-
dimensional gravity, possibly coupled to other fields, the partition function of the dual CFT is a
wavefunction ¥(t,7') which is a vector in H, (kL,kR).

From this point of view, it seems that we should not claim (see the following chapter 2) that
HC(kL,kR) is a space of physical states that are physically meaningful in pure three-
dimensional gravity. Thus, H_. (kL,k R) is in a sense a universal target for gravitational theories

(with arbitrary matter fields) of given central charges.

We have formulated this for a particular Riemann surface C, but in either the gravitational
theory or the dual CFT, C can vary and there is a nice behaviour when C degenerates. So it is
more natural to think of this as a structure that is defined for all Riemann surfaces.

Now, we consider a two-dimensional CFT with (0,1) supersymmetry, that is, with N =1
supersymmetry for right-movers and none for left-movers. Then left-movers have an ordinary
Virasoro symmetry and right-movers have an N =1 super-Virasoro symmetry. Such a theory can
be dual to a three-dimensional supergravity theory, which classically can be described by a Chern-

Simons gauge theory in which the gauge supergroup is SO(2,1)x OSp(1|2). We assume that the
gauge group is precisely SO(2,1)x OSp(1|2). The action is the obvious analogue of (1.15):

I=kI, +kpI, :ﬂjzr(AL NdA, +2 A, AA, /\ALJ—k—R'[str(AR NdA+2 A NA, /\ARJ. (1.32)
4 3 4 3
Here A, is an SO(2,1) gauge field, A, is an OSp(1|2) gauge field, and str is the supertrace in the

adjoint representation of 0Sp(l|2). A, is simply an S0(2,1) gauge field, so k, must be an integer.
As for A,, we can for topological purposes replace the supergroup OSp(1|2) by its bosonic



reduction SL(2,R), since the fermionic directions are infinitesimal and carry no topology. So, we

obtain the following result:

k eZ kReiZ. (1.33)

We have (c,,c;)=(24k,,24ky), since the Brown-Henneaux computation of the central charge

depends only on the bosonic part of the action. So ¢, must be a multiple of 24 and ¢, a multiple of
6.
Now, we want to define

IR:L SIF(ARAdAR+EARAARAARJ (1.34)
4w 3

in the presence of a Ramond world-line L on W. Let W' be a new three-manifold obtained by
taking a double cover of W branched over the line L. We let I, (W) be the action (1.34) and

I (W') be the corresponding action for the gauge field A, pulled back to W'. When pulled back to
W', the singularity of A, along the Ramond line disappears, so I, (W) is defined modulo 4-27 .
There is no better way to define I, (W) in the presence of a Ramond line than to say that
I, w)=1 R (W')/ 2.So0 I, (W) is defined modulo 2-27x . This means that k, should be a multiple of
1/2 , not 1/4. So in other words, if including Ramond lines is the right think to do, we get

k,eZ  kye %z, (1.35)

and hence ¢, and c, are multiples of 24 and 12, respectively.

A good reason to focus on the case that ¢, is a multiple of 12 is that there are interesting candidate
superconformal field theories (SCFT’s) in that case. In the supersymmetric case it is convenient to
express the Chern-Simons coupling k as k =k"/2, were we will focus on the case that k* is an
integer. In terms of k~, the central charge is ¢ =12k".

1.2 Partition Functions.

Witten in the paper “Three-Dimensional Gravity Reconsidered”, has determined what he proposed
to be the exact spectrum of physical states of three-dimensional gravity or supergravity with
negative cosmological constant, in a spacetime asymptotic at infinity to Anti de Sitter space.
Equivalently, he has determined the genus one partition function of the dual CFT.

In a conformal field theory with central charge c¢=24k, the ground state energy is

L, =-c/24=—k . The contribution of the ground state |Q> to the partition function Z(g)="Trg" is

therefore q'k. The Virasoro generators L,, n=>—1 annihilate |Q>, but by acting with L.,,L ,,...,

00

we can make new states of the general form I—L:2 L Q>, with energy —k + Zn ns, . If these are

the only states to consider, then the partition function would be

Zla) = T:—- (130

10



There must be additional states such that Z, (g) is completed to a modular-invariant function.

Additional states are expected, because the theory also has BTZ black holes. The classical BTZ
black hole is characterized by its mass M and angular momentum J . In terms of the Virasoro
generators,

M==(,+L,) J=(,-L,), (137

so L, =(eM+J)12, L, =(¢M —J)/2. The classical BTZ black hole obeys M/ 2|J
L,>0. The BTZ black hole is usually studied in the absence of the gravitational Chern-Simons

,or Ly,

coupling, that is for k, =k, =k .
Its entropy is S =7(£/2G)" (\/ME —J+ M+ ) With 7/G =16k as in (1.19), this is equivalent
to S =4k (\/L_0 + \/Z_O ) For the holomorphic sector, the entropy is therefore

S, =4mk,L,, (1.38)

and similarly for the antiholomorphic sector. The quantum states corresponding to black holes exist
only if L, >0, thatis L, >1. This means that the exact partition function Z (¢) should differ from

the function Z, (¢) in (1.36) by terms of order g :

oo

JRCHE
Z@)=q"[];—+0Ola). (1.39)

n=2

This result follows from the fact that the moduli space M, of Riemann surfaces of genus 1 is itself
a Riemann surface of genus 0, in fact parametrized by the j-function. If E, and E, are the usual

Eisenstein series of weights 4 and 6, then j=1728E; / (E J—E, ) Its expansion in powers of g is

jlg)=g™ +744 +1968844 + 214937604> + 8642999704 + 202458562564" +.... (1.40)
Actually, it is more convenient to use the function
J(q)=j(q)-744 =g +196884¢ +21493760¢> +..., (1.41)

which likewise parametrizes the moduli space.

The J -function has a pole at ¢ =0 and no other poles. The statement that J parametrizes the
moduli space means precisely that any modular-invariant function can be written as a function of
J . The partition function Z(g) has a pole at ¢ =0, that is at J =oo.

Hence, as the pole in Z(g) at ¢ =0 is of order k, Z must be a polynomial in J of degree k . Thus
k
Z(q)=2 11", (142)
r=0

with some coefficients f,. The terms in Z (¢) of order g™, n=0,...,k , coincide with the function
Z, (g). We get a function that we will call Z, (¢). k=1,2,3,.... This function is our candidate for the
generating function that counts the quantum states of three-dimensional gravity in a spacetime
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asymptotic to AdSs. For example, for k=1 we have simply Zl(q)zj (g), and the next few
examples are

Z,(q)=J(q)* —393767 = > +1+429875204 + 404919093964 +...
Zi(q)=J(q) ~5906517(q)-64481279 ="+ "' +1+ 25930967944 +12756091394048¢" + ..
Z, (

(q)=J(q)" —787535J(¢)" —8597555039. (¢)— 644481279 =
=g+ + ¢ +2+81026609428g +16046712924524522764° +... (1.43)

Frenkel, Lepowsky and Meurman constructed an extremal CFT with k =1, that is, a holomorphic
CFT with ¢ =24 and partition function J(g)= Z, (¢). (the FLM construction)

The main point of the FLM construction was that their theory has as a group of symmetries the
Fischer-Griess monster group M , the largest of the sporadic finite groups.

The FLM interpretation is that 196884 is the number of operator of dimension 2 in their theory. One
of these operators is the stress tensor, while the other 196883 are primary fields transforming in the
smallest non-trivial representation of M . In Witten’s interpretation, the 196883 primaries are
operators that create black holes. It is illuminating to compare the number 196883 to the
Bekenstein-Hawking formula. An exact quantum degeneracy of 196883 corresponds to an entropy

of In196883=12.19. By contrast, the Bekenstein-Hawking entropy at k=1 and L,=1 is

47 =12.57 . We should not expect perfect agreement, because the Bekenstein-Hawking formula is
derived in a semiclassical approximation which is valid for large & .
Agreement improves rapidly if one increases k . For example, at k =4, and again taking L, =1, the

exact quantum degeneracy of primary states is 81026609426, according to eq. (1.43). This
corresponds to an entropy In81026609426 = 25.12, compared to the Bekenstein-Hawking entropy
87 =25.13.

With regard the numbers 12,19 and 25,12 F. Di Noto has obtained the following numerical results.
Considering 12,19 =12 + 0,19 and 25,12 = 25 + 0,12 we obtain with some mean:

12+19=31, 12+25=37, 31+37)/2=68/2=34
12+12=24, 19+25=44, 24+44)/2=68/2=34

(12+12+19+25)/4=68/4=17=34/2.

Furthermore:

2=z, 122", 19z¢7, 25= (c41 +c*/2. (Here ¢ represent the Legendre’s number,
c=1,08366)

Now, we take the mean of the exponents 31, 31, 37 and 41, hence:
(B1+31+37+41)/4=140/4=35=34 +1.
Furthermore, we take the following mean, subtracting one unit at the four values:

(B30+30+36+40)/4=136/4=34; and 34+3 =31 and 37 (prime numbers), that are the sum of
12 + 19 and 12 + 25 and the exponents of 12=¢’' and 19=¢"".
While, 41 of ¢*' is equal to 25+ 19 -3 =44 — 3, with 44=445=(34+55)/2, that is the mean of

the two Fibonacci’s numbers 34 and 5S.
With regard the ratio between the three number 12, 19 and 25, he has:

12



19/12=1,58=1,618=d =c®; 12/19=0,631=0,618=¢; 25/12=2,08=c";
12/25=0,48 with ¢/0,48=1,28=¢>=1,27....

Thus, he obtain the exponents of c¢, i.e., 3, 6 and 9 related in the ratio between the three numbers.
Thence, these numbers can be explained in the following way:

12=2x6=9+3; 19=3x6+1=9+6+3+1; 25=3x9-2=(6x9)/2-2=3+6+6+9+1.
With regard the natural prime numbers, he has

12 =11+ 1 =13 - 1; Fibonacci’s coefficient 2, because 6x2+1=11 and 13;
19 = 6x3+1; Fibonacci’s coefficient 3;
25=23 +2=6%x4 - 1+2, coefficient4=2+2=3 + 1.

11, 13, 19 and 23 are the natural prime numbers very near to 12, 19 and 25, while 2 and 3 are
Fibonacci’s numbers related to the exponents of ¢ 3, 6 and 9, above mentioned, with

3=3; 6=2x3=3+3; 9=2+3+(2+2) =3x3.
Furthermore, always with Fibonacci, he has:
12=13-1; 19=21-2; 25=21+4 =34 -9, with 13 and 21 Fibonacci’s numbers.

In conclusion, an “interlacing” of natural prime numbers, Fibonacci’s numbers, specially the
number 34, tenth number of the series and that can be connected to the 10 dimensions of the
superstring and with one dimension associated at one Fibonacci’s number, and powers of
¢ =1,08366 with possible involving of ¢ and &, look to connect the Witten’s numbers 12, 19 and
25.

Now we consider the analog for supergravity. We can explicitly describe a function K that
parametrizes # /I, and has a pole only at the NS cusp. This can be done in several ways. One

formula is
2
k(@)= 2" oy ag)
A(27)A(7/2)
24 24, . .. .
where A= an:l (1— q") is the discriminant, a modular form of weight 24. In (1.44), we have

subtracted the constant 24 so that the expansion of K (z) in powers of ¢"> has no constant term:

K(7)=g "> +2764"> +2048¢ +11202¢*> + 491524° +1840244°* + 6144004 +
+1881471¢7% +5373952¢* +14478180¢°% +.... (1.45)

This is analogous to the definition of the J -function without a constant term. Another formula for
K is

oo q—l/Z (Izl (1+ q,171/2)24 " f[(l _ qn1/2)24j n 20486]ﬁ (1 n C]” )24 . (1.46)

2 n=1 n=1 n=1
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The product formula in (1.44), since it converges for all |q| <1, shows that K is non-singular as a

function on # . As for the behaviour at the cusps, either formula shows that K has a simple pole at
the NS cusp, that is, it behaves for g — 0 as ¢™"/>. K is regular at the Ramond cusp; in fact

K(z=1)=-24. (1.47)

Ale)’
A(27)A(7/2)
that function has a pole at the NS cusp, so it must have a zero somewhere. Its representation as a
convergent infinite product shows that it is nonzero for 0 <|q| <1, so the zero is at the Ramond

This statement is equivalent to the statement that K +24 = vanishes at 7 =1. Indeed,

cusp. Now let us consider the Neveu-Schwarz partition function F of a holomorphic SCFT. Any
I', -invariant function F' on 7 can be written as a function of K.

The function F arising in a holomorphic SCFT is actually polynomial in K. Indeed, since the
definition of F as Trq™ is convergent for 0 < |q| <1, F isregular as a function on # .

So the only pole of F is at the Neveu-Schwarz cusp, that is at K =< . Consequently, in any
holomorphic SCFT, the Neveu-Schwarz partition function F is a polynomial in K . The degree of

this polynomial is precisely k", since F = q’k*/ * for ¢ —0.So

F =§f,K” . (1.48)

Thus, F depends on k" +1 coefficients. Either statement would mean that up to terms of order

g"*, F would coincide with the naive function

(k)= qk”zﬁqu—nin (1.49)

n=2 -
that counts superconformal descendants of the identity. For each positive integer k*, there is a

uniquely determined function F,. that is a polynomial in K and coincides with F (k*) up to order

g"*. This is a natural analog of the partition function Z, that we defined for an extremal CFT

without supersymmetry. The number of Ramond primaries of L, =0 in a theory with Neveu-

Schwarz partition function F . is, i, = (- l)k* F. (1). Let us call this number B,. and this is uniquely

determined for each k*. A practical way to determine it, using (1.47), is to write

B =1 F.(1)= (—nk*if,K(l)’ _CF S o). (150)

r=

The first ten values of f,. are given in the following Table:
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B,

24
24
95

1
143
1
262
-213
453
-261

OO 0NN W=

[u—

Witten has interpreted the numbers in this table as quantum corrections. For example, at k" =9,
where [ takes the relatively large value 453, the multiplicity of the lowest mass classically allowed

black hole, namely L, =1/2 in the NS sector, turns out to be 135149371 if the partition function F,
can be trusted.
With regard these numbers, F. Di Noto, has obtained the constant number 48, hence a multiple of

the number 24 that are the physical vibrations of a bosonic string. Indeed, we have:
24 +24 =48 =48x1=24x2,
95+ 1 =96 =48x2=24x4,
143+ 1 =144 =48x3 =24x6,
262 -213=49 =48+1 =24x2+1,
453 —261 =192 =48x4 =24x8.
With regard the connections with the Fibonacci’s numbers and the natural prime numbers, he has

obtained:

Witten’s numbers ~ Natural prime numbers near Coefficient f Fibonacci’s numbers

a(n) 6f*1
24 23=6x4-1 4 4=143=2+2
95 97 =6x16+1 16 16 = 13+3 = 3+5+8
1 1=6x0+1=1 0
143 139 =6x23+1 23 23 =21+2 =2+8+13
262 262 =6x44-1 44 44 = 34+8+2 = 2+8+13+21
213 211=6x35+1 35 35 = 34+1 = 1+13+21
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453 449 =6x75-1 75 75 = 24+5+13+55

-261 263=6x44-1 44 44 = 344842 = 2+8+13+21

Now we need to understand what are the Neveu-Schwarz and Ramond vertex operators. A Ramond
vertex operator O has a square root singularity in the presence of the supercurrent W :

W(x)o(x')zL (1.51)

(x _ x,)n—l/Z

for some integer n and some operators O'. With W understood as a spin operator with respect to
the original fermions A, those fermions have precisely this property. So they are Ramond fields.
This enables us to analyze all of the states in the original NSy sector. The operators in the NS sector
that have no branch cut with W are those that are products of an even number of A’s and their
derivatives. The partition function that counts the corresponding states is

-1/2

q (f[(n q”“z)“+ﬁ(1—q"“2)24j. (1.52)

2 n=1 n=1

We recognize this as part of the formula (1.46) for the function K. In the Ry sector, of the 4096
ground states, half have one chirality or fermion number and half have the other. So for each L,

eigenvalue in the Ry sector, precisely half the states contribute to the NS sector and half to the R
sector. The contribution of Ry states to the NS sector is therefore

20a8g] [1+4")* . (153)

n=1

Adding up (1.52) and (1.53), we see that the total partition function F; of the NS sector in this
model is precisely what we have called K :

oo

F=K= g " (H(H gV +f[(1— q”“z)“j + 2048qf[ (L+q"f". (1.54)
n=l

2 n=1 n=1

We can similarly compute the Ramond partition function H, of this model. The contribution of the

NSy sector is obtained from (1.52) by changing a sign so as to project onto states of odd fermion
number, rather than even fermion number. And the contribution of the Ry sector is the same as
(1.53). So

=1/2 oo

H =4 . {H (L+q2F - ﬁ(l - q"_l/2)24j + 2048qﬁ (1+q" ) =
n=l1

n=l1 n=l1

=24+ 40964 +98304¢> +12288004° +107479044" +.... (1.55)
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Except for states of L, =0, the global supercharge G, of the Ramond sector exchanges the part of

the Ramond sector coming from NS, with the part coming from R,. This implies that we can
alternatively write

H, =24+ 4096qf[ (1+q" V", (1.56)

n=1

where we have removed the NS, contribution except for the ground states, and doubled the Ry
contribution.

A hyperelliptic Riemann surface C is a double cover of the complex plane, for example a
double cover of the complex x -plane, which we will call C,, described by an equation

2g+2

y=][&-e). 157

i=1

The 2 : 1 cover C — C, is branched at the points e,,...,e, ,,. C is smooth if the e, are distinct, and

has genus g if the number of branch points is precisely 2g +2.

The partition function of a conformal field theory 7/ on the hyperelliptic Riemann surface C
can be determined by computing, in a doubled theory, the correlation function of 2g+2

copies of a “twist field” &, inserted at the points e¢,,....e,, , in C;. Consider any CFT W of
central charge ¢. Away from branch points, the theory %/ on the double cover C looks locally like
the theory WX on C,. Here we have one copy of W for each of the two branches of C — C,,.

Now, we will calculate the details of the ¢£-& operator product. For this, we start with a double
cover C of the x -plane branched at e and e'=—e, and so described by an equation y* = x> —¢*. If
u=x+y, v=x—y, then the equation is uv=e’. The two branches C, and C_ correspond

respectively to u oo, v—0 and u — 0, v —>oo. The path integral over C gives a quantum
state ¥ in the theory 7/x W/, that is, one copy of 7/ for each branch. This state is invariant
under exchange of the two branches by the symmetry y — —y, so it is really a state in the

symmetric product theory Symz’lfU. We are really only interested in the part of W proportional to
the vacuum state and its descendants. This part suffices to describe the desired chiral algebra if
k <2. We will determine ¥ by using the fact that certain elements in the product VxV of
two Virasoro algebras annihilate ¥ . This is so because there are globally-defined holomorphic
vector fields on C, of the form

V. =2"ud du==2"(1v) vd I dv.

Let S be a contour on the surface C that wraps once around the ‘“hole”. If T is the stress
tensor, the contour integral J.SVHT can be regarded, for any n, as an operator acting on the

state V. This operator is invariant under deformation of the contour. It can be deformed to a
contour S, in the upper branch C, or a contour S_ in the lower branch C_. So we have for

all n

U& vr-[ VnT)‘P =0. (1.58)

17



We want to express the two contour integrals that appear here in terms of Virasoro generators on
the two branches. To do this, we simply express V, as a vector field on the branch C, or C_, either

n

of which we identify with the x-plane. On the branch C, , we write explicitly

/ 82 82 €4
y= 1—7 :1—§—g+0(€6).

We have carried the expansion far enough to determine (for k < 2) all singular terms in the product
gle)-e(-e). So

2

4 2 _
v, :x”“[l—(n+2) - +e—4(” tn 4}0(&)}5. (1.59)

X~ X 32 x

This means, if we ignore the conformal anomaly for the moment, that L V. T corresponds, on the

branch C,, to the operator

2 —_—
o = - 2pp [ ERTE L L 0ef). (1.60)
4 32
Similarly, J.S V.T corresponds on the branch C_, to the operator

) 2\ —n+2) .. Pn—4), _
Qn :[%j |:L—n_€2( n4+ )L—H—Z+e4{%jl’—n—4+o(€6):|' (161)

The state ¥ is determined for each value of ¢ by the condition that Qn‘P=0, where

0, =0’ — 0O . Hence, we have:

2 p—
L - n+2 L+ ntn-4 e'Ll , + O(eé)—
4 32

2 n _ 2_ _
-1 & L:n—ez( ”+2JL:,,_2+e4 nonzA e Lolf)|w=0. (1.61b)
4 4 32

However, because of the Virasoro anomaly some c¢-number terms must be added to the above

formulas, reflecting the conformal anomaly in the mapping from « to x. The c¢-numbers in Qn for

other n can be conveniently determined by requiring that IQAH , Q,nl= (n-m)Q

n+m

. For our purposes,
the only formulas we need are

N 4 ez . 64 _ + 62 - 64 -
QOZ(L0_7L—2_§L—4 - L0—7L_2—§L_4 +...
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A L3 et (. e
Ql:{Ll —TL_I—RL_3J—T{L_I—?L_3 +...

4
e

4
0, =L, - ’L; -3k +1e—6Lt2 gLt (L62)

The constant in Q2 was obtained from lQO,QZJ:—2Q2. By requiring that QAm‘P:0 for

m=0,1,2, and that ¥ converges to the Fock vacuum |§2> for ¢ — 0, we now find ¥ to be

2 4 4 4
Pe)= 1+%(Lﬁ2 +L:2)+%(Lﬁ4 + L:4)+§—2(Lt2 +L,) +1;7L’:2L:2 +..}|Q>. (1.63)

2. 2+1 Dimensional Gravity as an exactly soluble system. [2]

Let X be 2+1 dimensional Minkowski space, with coordinates #,x and y and metric
(ds)2 = —(dt)2 + (dx)2 + (dy)z. Let X" be the interior of the future light cone, that is, the points of
t>0 and t*—x*—y”>>0. Let X~ be the interior of the past light cone, consisting of points of
1<0 and > —x*—y*>0. The 2+1 dimensional Lorentz group is SO(2,1); the 2+1 dimensional

Poincaré group is ISO(2,1) (the “I ” means that we are including the translations).
For a space-time manifold M of dimension three, the Einstein-Hilbert action would be

1 :%If?”"%c(ef(ajw}j“ ~0,0 +|o, 0 ). @)
M

If we interpret the e's and @'s as gauge fields, this is of the general form AdA+ A’, and might
conceivably be interpreted as a Chern-Simons three form.

Witten has described that three dimensional general relativity, without a cosmological constant, is
equivalent to a gauge theory with gauge group ISO(2,1) and a pure Chern-Simons action.

For a compact gauge group G, the Chern-Simons interaction may be written
1 2
Ies == [Tr| AndA+ZANARA] (22)
2 3

Here we are regarding the gauge field A as a Lie algebra valued one form, and “Tr” really
represents a non-degenerate invariant bilinear form on the Lie algebra.

Thus, if we choose a basis of the Lie algebra, and write A= A“T , then the quadratic part of (2.2)
becomes
Tr(1,1,)- (A nda®). @23)

M

Here d,, = Tr(TaTb) plays the role of a metric on the Lie algebra, and this should be non-degenerate
so that (2.2) or (2.3) contains a kinetic energy for all components of the gauge field.
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Now we consider the general case of ISO(d —1,1). The Lorentz generators are J*, and the

translations are P“, with a,b=1...d . A Lorentz invariant bilinear expression in the generators
would have to be of the general form
W=xJ,J"+yPP",

with some constants x and y. However, in requiring that W should commute with the P”, we
learn that we must set x=0. For d =3 we can set W =g, P*J". This is easily seen to be

ISO(2,1) invariant as well as non-degenerate. For d =3 it is convenient to replace J* with

1 L . . .
J¢ = 5 £™J,, . The invariant quadratic form of interest is then

<J,,B>=0,<J,J,><P,P,>=0. (24)
The commutation relations of ISO(2,1) then take the form

V. 2)=e,0°  [V.Bl=e,P° [P.B]=0. 25

abc

Let use these formulas and construct gauge theory for the group ISO(2,1). The gauge field is a Lie
algebra valued one form,
A=e'P+w'J,. (2.6)

An infinitesimal gauge parameter would be u = p“P, +7°J,, with p* and 7“ being infinitesimal

parameters. The variation of A, under a gauge transformation should be

S =—Du, (2.7)

where by definition
Du=0u+[A,u]. (2.8)

Upon evaluating (2.6), we arrive at the transformation laws

df =—0,p" —e%e,r. —e"w,p., W' =—07'-"w,r. . (29)

i i ib"c

Now we calculate the curvature tensor,
a a abe ] ] abc
Fij :[Di’Dj]:Pa[aiej _ajei +& (a)ibejc_eiba)jc)]+‘la(aiwj _aja)i +& wibch)' (2.10)

If now we were studying 7SO(2,1) gauge theory on a manifold without boundary of dimension four,
we would form a topological invariant of the form I F*AF"d, where d, is an invariant

quadratic form on the Lie algebra. Using the quadratic form (2.4), we get for a four manifold Y the
invariant

o). (2.11)

ade

%J.giﬂd [aie? _ajeia + 8abc(a)ihejc — €, )] (aka)la -9,0,, +¢&
Y
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Denoting the integrand in (2.11) as U, a straightforward computation shows that U is a total
derivative, U =dV . Therefore, if the four manifold Y has for its boundary a three manifold M ,
(2.11) reduces to an integral on M . This integral is by definition the Chern-Simons action, and one
easily finds it to be

Ies = Jgijk[eia(ajw/f 0,0} +¢€ a)”(o]f)] (2.12)

abc™j
M

By this construction, (2.12) is automatically invariant under the gauge transformations (2.9).
Now we include a cosmological constant in three dimensional gravity. We note, from (2.12), that
the generalized Lagrangian is

abc™i

1= 'fe"j"[eia(ajw;’ —ak(oj’)+ £, .0/ 0 +§8 ‘e.”efe,f] (2.13)
M

The equations of motion now say that spacetime is locally homogeneous, with curvature
proportional to A. The simply connected covering space of such a spacetime is a portion of de
Sitter or anti de Sitter space, depending on the sign of 4.

We generalize (2.5) to

[‘]a"]b]:e‘ahc‘lc [‘]a’Pb]:g PC [Pa’fz]:ﬂ’gahc‘lc‘ (214)

abc

Introducing the gauge field and covariant derivatives as in (2.6), (2.8), we find that the
transformation laws (2.9) generalize to

a abc

be be
G/ =—0,p" —€"e, . —€ W, p, o0 =—07" —€

1

T, —Aee,p.. (2.15)
And formula (2.10) for the curvature is replaced by
E’j = Pa laie,a' - ajeia T Eoe (a)ibe; - e;’(l); )J+ ‘]a [aija - aja)ia +e™ (a)ihch + ﬂeihejc )J (2.16)

The formula (2.4) gives an invariant quadratic form on the generalized Lie algebra (2.14). Using it,
we find that the Chern-Simons three form comes out to be precisely the Einstein Lagrangian (2.13)
with cosmological constant included. The equations of motion derived from this Lagrangian are
precisely the vanishing of the field strength (2.16). Vanishing of the coefficient of P, in (2.16) is
the assertion that @ is the Levi-Civita connection; and vanishing of the coefficient of J, is then the

Einstein equation with a cosmological constant.
Now, with regard the three dimensional gravity, in addition to the invariant quadratic form (2.4),
there is a second invariant quadratic form on the Lie algebra (2.14), namely

<J,J,>=0, <J,P,>=0 <P,P,>=A0,. (2.17)

From the quadratic form (2.17), one arrives at the new fundamental Chern-Simons Lagrangian

abc™j

I :jd3x8j”{wj(akwf -0,0) +§8abca),fa),"j+/iej(ake,“ —d,e)+24e ‘a)‘?e,’je,‘}. (2.18)
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Therefore, (2.18) is invariant under (2.15) and it makes sense to add it, with an arbitrary coefficient,
to the original Einstein Lagrangian (2.13). For generic values of this coefficient, the classical
equations are unchanged, i.e., they still assert the vanishing of the field strength (2.16).

The bulk of this chapter is devoted to a systematic field theoretic analysis of quantum gravity on

M =XxR', with M be a flat space-time, the key insight being that the constraints of the canonical
formalism can be neatly untangled by making an equivalence of 2+1 dimensional gravity with a
suitable gauge theory. (For the foundations of the canonical formalism of general relativity, see also
the Hartle-Hawking’s paper “The wave Function of The Universe” — Physical Review D28 (1983)
2960).

We now turn to construct a canonical formalism, with a view toward quantization. Thus, we

consider the Lagrangian (2.13) on a three manifold M =X xR', with ¥ being a Riemann surface
that plays the role of an initial value surface. The first step in constructing a canonical formalism is
to introduce new variables, if necessary, to get a Lagrangian that is linear in time derivatives.

The variables whose time derivatives appear in (2.13) are the “spatial” components of the vierbein

and connection, namely e and @', for i =1,2. The variables whose time derivatives are absent in
(2.13) are the “time” components e, and @ . This convenient, global separation between variables

whose time derivatives appear in the Lagrangian and variables whose time derivatives do not
appear, and the fact that the Lagrangian is linear in the latter, make the construction of a canonical
formalism relatively straightforward.
Then, the eq. (2.13) may be rewritten

I ——ZJ dtjg”e — o + j dtj e £7(3, @ =0 .0 +8“”Ca)iba)jc+28”””eibeﬁ.)
+af .g’f(a,.ej ~9,¢ +e“”‘(a)ibejc— e, ). .19

The Poisson brackets can be read off from the terms in (2.19) that contain time derivatives. They
are

{o (x), }—— "8 (x—y), {e.)e,(V}=1w,x).o,()}=0. 220

In addition, we must impose the constraint equations. They are simply the equations

ol e =0l / daw; =0, or
0,60 -0 et + e (e, —e,0,)|=0, 0.0 -3,0" + (w0, + Aeye, )|=0. 2.21)

Let G be the group ISO(2,1) if 1=0, and its generalization SO(3,1) or SO(2,2) if A is not zero. It
is natural to regard e;' and @, for i =1,2, as a gauge field on the Riemann surface X . The space of
all such gauge fields is a phase space on which we have defined Poisson brackets (2.20).

The canonical variables ¢ and @) fit together into a G gauge field on X . The constraint equations

(2.21) assert that this gauge field is a “flat connection”, that is, the field strength vanishes. As for
the group of transformations generated by the constraints, these are just gauge transformations. One
may easily check, using the Poisson brackets (2.20), that the constraint operators that appear on the
left of (2.21) are the generators of the very gauge transformations that we have discussed in (2.15):

a __ a abc abc a a abc abe
&i __aip —E€ el —E Wy, 5@ __aiT —€ wich_ﬂ“g P, (2.22)
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In gauge theories, JL/ &4, is always the generator of gauge transformations. Thus, to construct the

classical phase space which should be quantized, one simply takes the space of solutions of the
constraints (the space of flat connections) and divides by the group generated by the constraints (the
group of gauge transformations). Consequently, the phase space M of 2+1 dimensional gravity is
the same as the moduli space of flat G connections modulo gauge transformations.

Now, we consider the geometrical applications of quantum gravity to the 2+1 dimensional gravity.
The most important case for geometrical applications, is likely to be the case of Euclidean signature
with negative cosmological constant — the relevant gauge group is then SO(3,1). In this case, the
Lagrangian is

f:11+i1' (2.23)
h 87

where [ is the standard Einstein action (2.13) with cosmological constant, and [' is the exotic
action (2.18). Hence, we have the following interesting equation:

ljs”{ 0,0 -9, )+8

abc i

/1
‘@ @+ 3 e“ebe; +

ahc i

Sf'

abc™j

+g_|'d3xef’{a);’(aka)f—a,a),f+§ea,,ca),’ja)fj+ﬂej(ake, —9,e" )+ 2e “e,’jef] (2.23b)

The standard action I appears with a real coefficient, which we have written as 1/7%; here 7 is
Planck’s constant. But /' has a quantized coefficient, with k£ an integer. Once 7 is explicitly
introduced in this way, one may as well set A =1 in (2.13). Now one wishes to study the Feynman
integral over all choices of field variables on an arbitrary three manifold M , to get the partition
function defined by

= j DeDae™" . (2.24)

Understanding quantum gravity on a general three manifold would mean understanding how to
compute Z(M ) as a function of the variables 7 and k that appear in the Lagrangian.

The connection with classical geometry should be particularly striking in the limit of small 7.
According to the standard conjectures about three manifolds, almost all interesting (irreducible)
three manifolds are “hyperbolic”, and the action (2.23b) would have a unique non-trivial critical
point up to gauge transformation. The action for this critical point is —(V /% +27ikC), where V
and C are known as the volume and Chern-Simons invariant of the hyperbolic three manifold. The
small 7 limit of the partition function would be Z =exp(V /% +27ikC) (up to a power of i), so

that the classical invariants V and C could be extracted from the asymptotic behaviour of Z, if
indeed it is possible to define the partition function Z as an invariant of three manifolds.

3. On the three dimensional charged black string solution. [3]

We take the following form of anti-de Sitter space:

A2
dsz—[l—l—zjd +U—2—1j di* +7%d@>. (3.1)
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Since  and @ are both parameters along a boost, they can take any real value. If we identify
@=@+2x, (3.1) describes a black hole.

-,r_ and introduce new coordinates f=(rt/l)-r¢,
o= (r+(0/l)—(r_t/lz), 7= lz(r2 - r_z)/(n2 - r_z). Then the metric (3.1) becomes

Now, we choose two constants r,

2 2

2 -1
ds® = [M - %Jdtz — Jdtdg+r’dg* + [;—2 M+ %J dr’ (3.2)
r
where the constants M and J are related to r, by

2 2
:% 7= (33

M

Identifying ¢ with @+ 27, yields a two parameter family of black holes.

We now turn to string theory. We consider the black holes in the context of the low energy
approximation, and then consider the exact conformal field theory. In three dimensions, the low
energy string action is

S = jd3x,/— gez“’[% +R+4(Vo) —éHﬂva‘“’p} . (34)

We note that it is possible to obtain the following mathematical connection with eq. (1.18).
Indeed, we have:

1 3 2 _ 3 —2¢ 4 2 1 v
%Id x\/g(mg—zj_jd xJ-ge [;+R+4(V¢) —EHWPH”"] (3.4b)

The equations of motion which follows from this action are

1 - -
Ry +2V, 9, 9= H i Hi7 =0, (3.52) vé(e>H,,)=0, (3.5b)
4V3p—4(V o) Air-Luroo (3.5¢)
k 12
If we assume ¢ =0, then (3.5b) yields H, , = (271 )€Wp where [ is a constant with dimensions of

length. Substituting this form of H into (3.5a) yields

2
R, = _l_zgﬂv , (3.6)
which is exactly Finstein’s equation with a negative cosmological constant. The dilaton equation
(3.5¢) will also be satisfied provided k =1>. Thus every solution to three dimensional general
relativity with negative cosmological constant, is a solution to low energy string theory with ¢ =0,

H,,=2/l)e

wp and  k =/1. In particular, the two parameter family of black holes (3.2) is a

solution with
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B,=—, ¢=0 (3.7)

where H =dB.
We now consider the dual of this solution. Given a solution (g s ﬂv,¢)) that is independent of one

coordinate, say x, then (§ s Eﬂv,ﬁ ) 1s also a solution where

§XX=1/gXX’ gxa:Bxa//gxx’ gaﬂ:gaﬁ’_(gxagxﬂ_Bxanﬁ)/gxx’

~

- - |
Bxa:gxa/gxx’ BaﬁzBaﬁ_zgx[aBﬁ]x/gxx’ ¢:¢_Elngm’ (38)

and @, run over all directions except x. Applying this transformation to the ¢ translational
symmetry of the black hole solution (3.2) (3.7) yields

2 2 \™!
ds’ M—J— dt’ +2dtdgo+ ~do® + —2—M+J— dr?,
4r* l l 4r?
~ J

By=—>5, ¢=-Inr. 39)

To better understand this solution, we diagonalize the metric. Let

t:_é&;%n PR R S I ER T
(r+—r_) (r+_r—)l

Then the solution becomes

where M=r?/l and Q=J/2. This is precisely the three dimensional charged black string
solution.

4. On a tachyon condensate phase that replaces the spacelike singularity
in certain cosmological and black hole spacetimes in string theory. [4]

We consider a general relativistic solution approaching a curvature singularity in the past or future.
The metric is of the form

ds® = G, dx"dx" = —(dx0)2 +R, (xo)deiz +ds; (4.1)
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with R, (xo)—> 0 for some i at some finite time. Here €, describe spatial coordinates whose scale

factor is varying in time and ds; describes some transverse directions not directly participating in

the time dependent physics. In the large radius regime where general relativity applies, the
background (4.1) is described by a worldsheet sigma model with action in conformal gauge

S, = %J.dzo'GW(X )BEX”B‘JX" + fermions + ghosts. (4.2)
/104

Here we are considering a type II or heterotic string with worldsheet supersymmetry in order to
avoid bulk tachyons.
Consider the Milne spacetime described by the metric

ds’ =—(@x") +v’(x*fdQ> +d¥>. (4.3)

For x” >0, this solution describes a growing S' along the Q direction. At x°=0 there is a
spacelike big bang singularity, and general relativity breaks down. The evolution from x” =—co to

x” =0 similarly describes an evolution toward a big crunch singularity. This geometry appears
inside 2+1 dimensional black holes, BTZ black holes in AdSs.
In the heterotic theory we have target space coordinates given by (0,1) scalar supefields

1Y =X"+6"yw" and left moving fermion superfields ¥ =y“ + 0" F“ containing auxiliary fields

F“. In terms of these fields we have a Lorentzian signature path integral
(v, )= [ldzlaw Ja(g)la(mle* [T [ dotev,[z]) 4.4
where (g) and (m) are ghosts and moduli and where the semiclassical action is
iS =i[ dodl6’ (D, 702G, (1)~ 1® ™ cos(@d): +9°D W + (d))+iS, . (4.5)

where (d) is the dilaton, g of S, is the ghost and V, [;(] are vertex operator insertions.

Here Q is the T-dual of the coordinate Q on the smallest circle in the space; cosaX) is the
winding operator for strings wrapped around the Q direction. The fluctuations of the worldsheet
fields in (4.4) generates corrections to the action (4.5). Because the bulk region of the geometry

(4.3) is approximately flat space, we may identify the V, with operators of the form

V. — e"’z"?e"“’(i"')”“vn as X’ 5o, (4.6)

where we have pulled out the oscillator and ghost contributions into V . At the semiclassical level
the dilaton is also known: it goes to a constant

DD, as X' >+, (4.7)

In particular, the tachyon vertex operator in (4.5) is semiclassically marginal without an additional
dilaton contribution and the metric terms solve Einstein’s equations. The path integral over
fluctuations of the fields will generate corrections to these semiclassical statements (4.5) (4.6) (4.7).
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Let us Wick rotate the worldsheet time coordinate 7, the spatial target space coordinates 7(o,7)

(including ), and the parameters x and k by
t=e’t, y=e'y, pu=eu, k=ek, (4.8)

where ¥ is a phase which we will rotate from O to 7 /2. This produces a Euclidean path integral
for the worldsheet theory (where we label the quantities rotated to ¥ =7 /2 by a subscript E)

6, )= [laz:lax Jaw Tallmle * T] [ (-aauiz,y, , [2"iz. ). 49)
(where g and m are the ghosts and the moduli) with Euclidean action

S, = dcrdedF(Dy 29 2" +v*(x°) D, 8,0 8, +G,D, 1,0 1!,

i et

—ige™? cosh(add, )+ ®eD, W +(d))+5,(g). (4.10)

where (d) is the dilaton and (g) is the ghost.

Here 7, = (o) X LE) refers to the worldsheet superfields corresponding to the spatial target space
coordinates, and we have plugged in the spacetime metric (4.3).

In the type II theory, we have (1,1) scalar superfields y* = X* + 6"y + 0 w* + 676" F”. In terms
of these, we have a Lorentzian signature path integral

G({v, )= [ldzNd(ghostsla(moduti)e® ( [daaw,[7]). @)

where the semiclassical action is

iS =i[ dodwl6do™ (DM"D,;:“GW ()-p:e™" cos(afd): +(d))+ iS,, (4.12)
where (d) is the dilaton and g of § . 1s the ghost and V, [Z] are vertex operator insertions. As in
the heterotic case, the form of the vertex operators is known in the flat space region to be of the
form (4.6). The dilaton is (4.7). Let us Wick rotate the worldsheet time coordinate 7, the spatial
target space coordinates X (o,7) (including Q), and the parameters 4 and k by

T= ei72'7 7= e”f{y u= e‘i7/17 k = e‘”lgy, (4.13)

where ¥ is a phase which we will rotate from O to z/2. This produces a Euclidean path integral
for the worldsheet theory (where we label the quantities rotated to ¥ =7 /2 by a subscript E)

(v, )= [[47, lax*Ja(ghosts)kd (moduli)e” st [Qacirv, iz @14

with Euclidean action
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S, =[dodz,do de (b, 2'D, 2 +v*( V', 8D, &+G,D, 7.,D, 1,
~ite ™ coshlad, )+ (d))+S,(g), 4.15)

where (d) is the dilaton and (g) is the ghost.
Now we compute the quantity dZ, /du and perform the path integral by doing the integral over the

X° zero modes first. That is, decompose
X'=x2+X0.7,), (4.16)

where X° contains the nonzero mode dependence on the worldsheet coordinates o,7, . The path

integral measure then decomposes as [dX 0 ]:dXé’ ld)? OJ. We obtain for heterotic and type II

respectively
aZ(Her) . . N e - )
a;lz = [[az, Jaw Ja(gh)ld(mo)laz’ laxe(- [dodz,ae"w e cosh(wd, e, (4.17)
E
(1) . -
a(_ii = [laz, a(gn)ld(mo)laz” laxe(- [dodz,a6 a6 e icosh(wl, 5. (4.18)
E
Decomposing e =™ we can change variables in the zero mode integral to y = ¢ and

integrate from y=0 to y=co as X, ranges from o to —oo. For each point in worldsheet field
space, the zero mode integral is of the form

00 oy 1
jo dye " =, (419)

where the coefficient C is the nonzeromode part of the tachyon vertex operator in S, , integrated
over worldsheet superspace.

The analytic continuation (4.13) included a rotation g =e """

M, . This means that as a function of
our original parameter /£, we have an imaginary part in the partition function:

Zz(—lln£+i£j2. (4.20)
K U, 2K

A thermal system is described in a real-time formalism by shifting time by i times half the inverse
temperature: ¢ —t+if, /2. The result (4.20) arises from the bulk vacuum result via such a shift,

with S, =7z /k corresponding to a temperature 7 =k /7.

Now, we analyze the derivative of the correlation function (4.14) with respect to g, by doing the
integral over X°’s mode X first. From that we can determine its dependence on g, , and finally
use (4.13) to determine its dependence on . This is similar to the computation of the partition

function, except now the integral over y:e""xg (which gave (4.19) in the case of the partition
function) is of the form
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oG - ) A
%‘/%”‘E}L | [dﬂ?Oldﬂ?][d(g)]jdyyz" © e O (421)

E

This yields a result for G({V i }) proportional to ,LtE_iZn“”’/K 4.22)

.
times a complicated path integral over nonzero modes, which would be difficult to evaluate directly.
In the case of the 2-point function, we can use a simple aspect of the analytic continuation we used
to define the path integral to determine the magnitude of the result. The two-point function of two
negative frequency modes in the bulk is

5(12—12')5 En(4.23)

k.n

G(E,n;l?,n')zé‘

nn'

where @, and [ are the Bogoliubov coefficients describing the mixing of positive and negative

frequency modes. This is the timelike Liouville analogue of the reflection coefficients describing
the mixing of positive and negative momentum for modes bouncing off a spacelike Liouville wall.

After performing the Euclidean path integral defined via the rotations (4.13), we must continue back
to 4 =—iu, in order to obtain the amplitude. The regions where the worldsheet potential is positive

translate in the Euclidean path integral to a positive Liouville wall. For these regions, the Euclidean
2-point function is a reflection coefficient of magnitude 1. The physical two point function is given
by continuing back in g to the physical value. The continuation above (4.8) (4.13) in #,

U—se Py (4.24)

therefore yields a 2-point function of magnitude

B,

%,

:efa)(lz,n)ﬂ'/l(. (425)

Using the relations |0{w|2 + | ﬂw|2 =1 for bosonic and fermionic spacetime fields, and the fact that the

2
, this result translates into a distribution of

number of particles produced N, is given by ‘,B]zyn

pairs of particles of a thermal form
1
NE.n = eZ;m)‘/E,n ) x F1 : (426)

This corresponds to a Boltzmann suppression of the distribution of pairs of particles by a
temperature 7 = x /. This temperature is the same as that deduced from the imaginary part of the
1-loop partition function (4.20).

The state in the bulk X° — o region has a thermal distribution of pairs of particles (4.26), with
temperature x/7z . These pairs are created during the phase where the tachyon condensate is order
one, and hence the calculation is self-consistent if we tune the bare dilaton to weak coupling.

This choice of state is analogous to the Hartle-Hawking, or Euclidean, State in the theory of
quantum fields on curved space, but it arises here in a perturbative string system via crucially
stringy effects. In quantum field theory on curved space, the Euclidean vacuum is obtained by
calculating Greens functions in the Euclidean continuation of the spacetime background
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(when it exists) and continuing them back to Lorentzian signature. In our case, a similar
continuation has been made, but here the Euclidean system is a spacelike Liouville field
theory.

Now, we generalize our techniques to strings in geometries of the form (4.1) where the Q are
coordinates on higher dimensional spheres. The worldsheet theory will be described by an O(N)

model at an energy scale related to X°.
Hence, we compute the mass gap of the O(N) model. Consider N two-dimensional scalar fields

arranged into an O(N) vector 7 . The partition function of the O(N) model is

z=| [anke 1O T 602 (2)-1). @27)

A way to see the mass term appear is to use a Lagrange multiplier to enforce the delta function
localizing the path integral onto a sphere, and large N to simplify the resulting dynamics:

7= J-[dn]J- [dl]e—jdzz[Rzﬁ(—a%iﬂ)aarm] . 4.28)

where A is the Lagrange multiplier field introduced to represent the delta function. Now integrate
out n:
—N/2trln(—32+l)+R2J.dzzl

z=[[dake (4.29)

Atlarge N, the A integral has a well-peaked saddle at
Ax)=—im*, (4.30)
where the mass m satisfies

A dk 1 N A
R=n[2E L _Nph o gan
I(271')2 kK*+m> 2 m 43

Renormalize by defining the running coupling at the scale M by

RZ(M)=R3+2l1nA/M. (4.32)
T

Plugging back into the action for n, we have a mass for the n -field which runs like

27R*

m=Me VN . (4.33)

S. Mathematical connections
A. Mathematical connections with Ramanujan’s modular equations. [5]

Now we consider the following Ramanujan’s tau-function
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> tln)g" =qlq:q) . 5.1

With regard the modulus 2 of 7(n), it is easy to see that the coefficients of ¢" in the expansion of

q(g:q)>} and q(q8 :q° )i are both odd or both even, where here and in the sequel

oo

(a:q). =[Jl-aq"). 5.2

n=0

where |q| <1.But

oo

alg*sq* ). = (1) @n+1)g> .

n=0

It follows that 7(n) is odd or even according as n is an odd square or not. Thus we see that the
number of values of n not exceeding n for which 7(n) is odd is only

&5

2

Recall that the Ramanujan function 7(n) is defined by the Fourier expansion of A(z), the unique
normalized cusp form of weight 12 on SL, (Z). In particular, we have

oo

A)=a] T0-a")" :27(”)4" . (5.3)

Furthermore, Ramanujan have shown that the definite integral

> COSTUX  _p2
_ e WX dx,

9,(t)

0 coshx

can be evaluated in finite terms if w is any rational multiple of i. Furthermore, this integral can be
evaluated not only for these values but also for many other values of ¢ and w. Now we have

mw'
oo poo COS 27TX. ox e * pecoshmxw' _.2.
é,(t)= 2] 'f £ cosmxe ™ dxdz = J e ™"dx, (5.4a)
0% coshmz Jw 0 coshax

here w' stands for 1/w . It follows that

2
1 T

%(t)zﬁe @, (iw"). (5.4b)

Now, it is possible to obtain the 7z value utilizing the following expression
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2 0
IZZW
2

COSTXW _2, 1 "

—w - 4 W TR
\/_ L o e ™" dx \/;e é,.(iw'), (5.5)

cosm‘xw i
[ =, (),
\/_ 0 coshﬂ:x
1
——e * ¢, (i)
mw w
e_ 4 — ¢w¥(t) — \/;
1 p~cosmxw' _,2, cosm‘xw _
7‘[ 7€ dex J. TX™wW dx
\/; 0 coshmx \/_ 0 coshﬂ:x
L COSTUXW' 2
mw' e .y 2 J. —_—e dx
e 4 =_°¢ fog i) logmwz 0 coshmx )
o COSTIXW' 2,0, _a ’
J‘ e 7DCZW dx 4 e 4 w ¢ (ilwv)
0 coshmx w!
wcosﬂtxw‘ _nlw
o " dx 1
7 =4| antilog COSM’C ——. (5.6)
LA rw'
e * ¢, (iw)

With regard the number 24, from the following Ramanujan’s modular equation

o N(mﬂlﬁj \/(10+7\/5ﬂ
= log| || ———— |+ || ———— ||,
142 1 4

for the eq. (5.6), we have that

7 7 J-w cos 7xw' o gy
24 log 10+11v2 N 10+ 72 — 4| antilog o Coszhﬂx ' 21 :
V142 4 4 L

LI rw
e 4 ¢w'(ilw')
 COS TXW' o dx
4| antilog ~coshmx : 1142
A w'
e ¢ ¢W-(ifW')

ElESIE

With regard the number 12, from the following Ramanujan’s modular equation
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= 12 log (2+\/§X3+\/E) , hence 12= V130 , from the eq. (5.6), we have
J130 2 log (2++5)3+13)
2
that
:cos fxw o g =
4| antilog = COSNAX =
—m—w' t \’Vv
12= ¢ * olim) (5.8)
bg(2+J§k+wﬁ§) o
V2
For the number 8, from the eq. (5.7), we obtain
: cos 7}zltxw o —
4| antilog —COSNAX g
LA w'
e ¢ ¢w' (llW')

- (5.9
3 [\/{10“1\/5} \/(10+7\/§ﬂ
ogl | |l 4

But, with regard the number 8, we have that, from the following Ramanujan’s modular equation:

= \/;Elog (Si/\éEJ (5@+11J€)x{\/(9+j\/€}+\/(Si?;\/gJ} )

we obtain:

TN 522

g§=2- :

A pa )

hence, for the eq. (5.6), we have that:

o COS TXW' o gy
0 coshmx V522
)

2
LA t'w'

e g liw) |
log (H\é@j(sx/ﬁﬂh/g)x{\/(%j‘/g +\/(5+3‘/6J}

4 antilog

. (5.10)

75

N
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When a string moves in space-time by splitting and recombining, a large number of mathematical
identities must be satisfied. These are the identities of Ramanujan’s modular function (Ramanujan’
modular equations).

The Ramanujan function, has 24 “modes” that correspond to the physical vibrations of a bosonic
string. When the Ramanujan function is generalized, 24 is replaced by 8 (8 + 2 = 10), hence, has 8
“modes” that correspond to the physical vibrations of a superstring.

Now, we consider various equations and describe the possible mathematical connections with the
Ramanujan’s modular equations.

We take the eq. (1.20). It is possible the following connection with the eq. (5.7):

e COS /TXW'

EREI ey | =
4| antilog ’ coszhﬂ:x . ;42
Lw' W'

€ 4 ¢w'(ilwv)

(c,,c,)=(24k, 24k )= 24 = (5.11)
L R L R

()]

For the eq. (1.44), we have the following interesting connections with the eqgs. (5.7) and (5.3):

~ COS /TXW' o gy
4| antilog v coshamx a2
—m—zw' tZW'
2 e * @ litw
- o @, (itw')

~A(27)A(z72)

. (5.12)
10+1142 10+7+2
o ()7

A=q[T" 1-¢") = alr)= qf[ (1-¢")" = if(n)q" . (5.13)

n=1

and

Also the egs. (1.55) and (1.56) can be related with the egs. (5.7) and (5.3). For the eq. (1.55), we
have that:

oo

H, = q-2“2 (H (42 )* —ﬁ(l—q”_1/2)24j+ 2048qf[ (1+4")' =

n=1 n=1 n=1

=24+ 40964 +98304¢> +12288004° +10747904¢" +...=

~ COS TXW' o gy
4| antilog ’ coszhﬂzx . 142
LA r'w'
e ¢ ¢W-(ifW')

= +4096g +98304¢° +12288004° +107479044" +...=

[




Furthermore, we have that 2048 =8"-2; 4096=8"-2’ and 98304 = 4096-24 . We note that 2 and
8 are Fibonacci’s number and that 8 and 24 are the “modes” corresponding to the physical
vibrations of strings.

For the eq. (1.56), we have that:

v COS XN o gy
. V142
4| antilog ’ Coizhﬂx )
——w' t W'
e N ¢w'(ilw')

24=H,-4096g] [(1+4" ) =
n=1

A

= A@)=q[Jl-¢"} =Y eln)g" . (5.15)

With regard the eq. (1.63):

2 4 4 4
P(e)= {1 + % (L, +1,)+ %(L; +I,)+ % (L, +L,f + 1;7Li2L22 + ..1|Q> :

we note that the number 32 =4-8 =27, while the number 192 =24x8 =2°-3, and that the numbers
8 and 24 are the “modes” corresponding to the physical vibrations of strings. Hence, we can write
the following connections with the eqgs. (5.7) and (5.10):

2 4 4

4
¥(e)= {1+%(Lﬁ2 + sz)+§—2(Lt4 + Lj4)+§—2(Lﬁ2 +I,f +1§7Lﬁ2£2 + }|§2> =

> COS /TXW'

EREIW e x| ==
4| antilog ’ coszhﬂ:x ;22
LA w'

e 4 ¢w'(ilwv)

=2

=

log (St/%EJ(S\/EHh/E)x{\/(%j/E +\/(5+i*/gj}
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o COS JTXW'

—mzw'dx
4| antilog 0 COShﬂx : 142

g, (i)

. (5.16)
10+1142 10+7+2
o H[ 2)

In conclusion, with regard the expression In196883=12.19, we have the connection with eq. (5.8):

2w

o COS 7AXW'

e I T
4\ antilog k coszhﬂzx . 230
lw' t 1’\/'v
In196883=12.19 ¢ ' plim) 5.1
n =12.19= , (5.17)
(2+\/§X3+\/E)
log A
furthermore, for the following Ramanujan identity
)" ~{=—<| rigy+ ¥5 =12,
2X5 3+J_ 1 f (—1) dr
1+ 2 T 1/5 4/5

we have also the following connection:

In196883=12.19= ()’ - b R(q)+ V5

. (5.18
2%5 13+f ( Ifs(—t) dtJ 19

fy i

With regard the p-adic Hartle-Hawking wave function concerning the de Sitter
minisuperspace model in D = 4 space-time dimensions, we have the following equations:

A,(-8T) AT T q¢°
¥ (g)=| dr - -2)=—+21-1|, (5.18
ON oA a2 ] s

_ AT’ (A 1,
- Jdex,{p(qx)J DT;(I,[— i +(T—E—2x jT} (5.18b)

Hence, the following connections with the equation (5.7):

A,(=8T) 273 T q¢°
AT 22—y | - +(Ag-2)—+L
‘[T\I,SI |4T|U2 Z”( 24 (3g-2); 4 8T =
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= IQh dxg,(¢x) I DTy, [— AT + (ﬂ . 2x2jT} =

24 4 2
\/(10“1\/5} \/(10+7\/5J
In +
:>j dxy (qx)jDT;; —PT° : : 2 1 50l (5180
o, 7 r wcosﬂtxw'e_mzw I 4 2 T
4| antilog ’ coszhﬂx . 142
—m—w' t W'
e 4 ¢w'(ilwv)

B. Mathematical connections with Lemma 3 of Goldston-Montgomery Theorem and some
equations of the Riemann zeta function. [6] [7]

Now we describe the possible mathematical connections with some equations concerning the
Goldston-Montgomery theorem and the Riemann zeta function.
With regard the Goldston-Montgomery theorem, we take the equations concerning the Lemma 3.

Let £(r)>0 a continuous function defined on [0,+oo) such that f(r)<< logz(t +2).If

I(k)zﬂSirl kujzf(u)du - (%hs"(k)jklog%, (5.19)

u

then

J()=] F)=(1+ & 10g T, (5:20)

with || small if (k) < & uniformly for

Sksllong.
T log T

With regard the Riemann zeta function, we take some equations concerning the study of the
behaviour of the argument of the Riemann function ¢ (s) with the condition that s lies on the

.. . 1 . )
critical line s = E+ it , where ¢ is real.

We have:
1 . ( 1 )2k 4
T+H sinl(z log p
S)+—>Y>—~= gr=0 Y K. |, (521
where
. _ 2k . s 2k
Kl :J'T f M[’_” df, K2 ='[T g A’C(p )p—i2f dt,
T |5 Jplogp T |55 plogp
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ok (T+H 1 *
K, =(logT) L o,,——| dt,

2
1
L Rt

Applying Cauchy’s inequality to K, , we obtain

| 12
K<< {J.TT - (O-x,t - %)M x4k[ak"_2]dt} >< { JTT”' ( JO °; X%‘“

The second integral in (5.23) is estimated by

3 A, (p)log(xp)

u+it

2%
du} dt. (5.22)

p<x3

3 Au(ploglp)

u+it

p<x3

m 1/2
du] dt} . (5.23)
4k

l—u
1, << (log x)™*! IT+H J.; x? ZM drdu =

T

s Lo oren A log(x 4k
= (log x)*"! J‘O‘sz [ jT ZL‘%SP) dt |du << H(logx)** . (5.24)
We take the eqgs. (3.4) and (3.11), we obtain the following connections:

S = j d’xyf- ge_w[% +R+4(Vo) —éHﬂva’“’p} =

1/2

4k
ZAX(pno_g(xp)duj d,} 3

p<x

L v o e P
¢_51nr1:>(1+8)T10gTJ:)f(f)dfj{]; (J.o‘sxz

4k

dtdu =

5y A, (p)log(xp)

u+it

1
—4ferl (THH peo —-u
<< (logx) +I Iosxz

T

(g ' [ [

From eq. (4.20), we have that:

p<x’

4k

3 A, (p)log(xp)

u+it 2
p< P log X

dt}iu << H(logx)" . (5.25)

hence, the following connections:

zoiZ o L (1+€')TlogT=J.Tf(l)d’3
2K KU ’
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4k
duj dt <<

3 A, (p)log(xp)

T+H 00 %—u
= J.T J.045x uit

p<x’

4k

a e = o5 AL (p)log(xp)
<< (logx) ™" ————= dtdu=
oL
— (1 )4k+1 w %—u T+H Ax(p)log(xp) 4kd d H(l )4k 5 26
=\logx J.O‘Sx J.T IEW t |du << og x . (5.26)

Furthermore, we take the eq. (4.31) and we obtain the following connections:

Ak 1 N A rerioer =[ ()=
271') k™+m 2% m 0

o =
(|5
(logx 4k+l J'T+H J'°° “"

~(log )" { [

R2 _ IA (de 1 N A

1/2

4k
du} dt <<

4k

dtdu =

3 A, (p)log(xp)

u+it

p<x’

3 A, (p)log(xp)

u+it

p<x3

3 A, (p)log(xp)

pu+it 10g2 x

4k
dt}du <<H(logx)" . (5.27)

I’)<)C3

C. Mathematical connections between p-adic Hartle-Hawking wave function, three-
dimensional gravity and Euclidean State in the theory of quantum fields on curved space

arising in a perturbative string system where the Euclidean system is a spacelike Liouville
field theory. 8]

In the de Sitter minisuperspace model in D = 3 dimensions, the p-adic Hartle-Hawking wave

function is:
‘PP(G)ZJ. 4 4, (—2N)Zp(_%+\/zcoth(N\/z)

2
V| <t |N|”2 > a j . (5.28)

Now, we take the eqgs. (1.11), (1.15), (1.16), (1.18) and (1.19). We have the following possible
connections:

:—j tr(A/\dA+ A/\A/\A)
2 k, 2
=k, I, +kyl, = jtr Ay ndA + DA N AN A, 47[] N An A+ A A A A A

164 [d'x ( ﬂ+(kL i) ; AR

= | an 2= 2N) (_I%ZN ) 7 N Neot(WV2) L) (5.29)
V], <1 |N| 2 2
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Furthermore, for the equation (5.6), we can also write the following connections:

Izij tr(A/\dA+zA/\A/\Aj:>
4w 3

=kl kel = k_L.[tr(AL nA, +2AL ANALA AL)_k_RJtr(AR AdA, +2AR AAg A ARJ =
4z 3 4 3
! ! ; 2 (1, +1,)
d R+—= |t +(k, —k,)~L—F

16G o COSTUXW'  _p2,0 J. x\/g( ﬁj ( L R) > =

o Té’ dx 1

(4| antilog = COSBX =

Zw rw'
e ¢ ¢w'(itw')
A (-2N
:>J. dN—p( 7 )Z —E+Ma2 . (5.30)
|N], <1 |N| p 9 )

Now, we take the eq. (1.58). We have the following connection with the eq. (5.28):

(L vr=[ v ([ vr-] vr) ;dN%Z(gwjo
P

(5.31)
With regard the eq. (1.63), we obtain the following connections with the eq. (5.28):

e’ 4 _ e’ . _ i . -y e’
{1+7(L_2 +L_2)+§(L_4 + L_4)+ 2 (L_2 +L_2) + 90k

LI, + ..}|§2> =

2 2

=JW SldN /1,,|(—|2N)Ip(_ﬁ+\/7c:oth(N\/7)

T —a2j, (5.32)

p

| N(m“lﬁj \/(10+7\/5ﬂ
2 ot o ) 8 4 * 4

1+%(Lﬁ2 + sz)+§(Lﬁ4 +Lj4)+§(Lt2 +sz) +

 COS TXW' o
0 coshmx V142
m2

e " g, (inw)

A, 2N)Zp(_ N, Acoh(N)

NN 2 > j -39

4 antilog o
tw

4
-g—kLt2L:2+... |Q>:J‘

Now, we take the eq. (2.23b). It is possible to obtain the following connection with the eq. (5.28):
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~ 1 A

_ ijk a a a, b a b _c

I —%je em(ajwk -0, )+ E ] O 0 +§gahc€i eje |+
M

i jdﬂxef{w;(akaf -9, +§ea,,cw,’:wfj+ et (0,ef —,e0 )+ 2A¢ wf'e:ef} =

abc™j
A (_ZN) N \/zcoth(N\/Z) )
:J\.N\pSldN p|N|l/2 Zp(_g-"fa . (5.34)

With regard the eq. (4.10), also in this case it is possible to obtain the following connection with the
eq. (5.28):

S, = IdadrEdtT (DQJ(OE)_;(O +v7 (2" )2D0+S~ZEB_S~2E +G,D, x\ 0 X!,

i et

lp(—zN) N \/zcoth(N\/Z) )
IN| <1 W p(——+—a J"'(d) +5,(g).

_i,uEe"‘Yo cosh(wflb_)+ YD, 5 2

(5.35)
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