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Gravity and in General Relativity: A Comparative Study 
Gauranga C. Samanta1, Nisha Godani and Kazuharu Bamba - arXiv:1811.06834v2 
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Schwarzschild metric 

 

From Wikipedia 

 

 

We place:  μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 and b(r) = Schwarzschild 
radius 
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Less the term , we obtain: 

For: μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

e^(6) sech^4(((2(-2-1)*e^(-1))/(5*(-2)^2))) [(2*5^3*0.9991104684*e^(-6)*(-2)^6 
sinh (((4(-2-1)*e^(-1))/(5*(-2)^2)))] + (5^3*0.9991104684*e^(-6)*(-2)^6) * sinh 
(((8(-2-1)*e^(-1))/(5*(-2)^2)))-8*e^(-3)*((((25*e^(-4) (-3-1)(-
2)^4+16*0.9991104684*(4-2)^2*e^(-6)-16*0.9991104684*4*e^(-5)))) 
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e^(6) sech^4(((2(-2-1)*e^(-1))/(5*(-2)^2))) [(2*5^3*0.99911*e^(-6)*(-2)^6 sinh 
(((4(-2-1)*e^(-1))/(5*(-2)^2))))] 

 
Input: 

 

 
 

 
Result: 

 
-3471.78… 

 

 

(5^3*0.99911*e^(-6)*(-2)^6) * sinh(((8(-3)*e^(-1))/(5*(-2)^2)))-8*e^(-3)*(((25*e^(-
4) (-4)(-2)^4+16*0.9991*4*e^(-6)-16*0.9991*4*e^(-5)))) 

Input: 

 

 
 
Result: 

 
2.7474225866… 

 

e^(6) sech^4(((2(-2-1)*e^(-1))/(5*(-2)^2))) [(2*5^3*0.99911*e^(-6)*(-2)^6 sinh 
(((4(-2-1)*e^(-1))/(5*(-2)^2))))]+2.7474225866269048595879 

Input interpretation: 
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Result: 

 

-3469.04… 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

 

μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 
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cosh(((4(-2-1)*e^(-1))/(5*(-2)^2))) – ((6*5^2*(-2)^5*e^(-7))) + ((6*5^2*(-2)^4*e^(-
7))) – ((2*5^2(-3)*(-2)^4*e^(-7))) *  cosh(((8(-2-1)*e^(-1))/(5*(-2)^2))) 

Input: 

 

 
 
Exact result: 

 
 
Decimal approximation: 

 
9.99526426781… 

 

 

μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

64*((5*0.9991104684*(-2)^2*e^(-7)))*sinh (((4(-2-1)*e^(-1))/(5*(-2)^2))) – 
64*((5*0.9991104684*(-2)^2*e^(-8)))* sinh (((4(-2-1)*e^(-1))/(5*(-2)^2))) – 32* 
((5*0.9991104684*(-2)^5*e^(-7))) 

Input interpretation: 

 

 
 
Result: 

 
4.500646424… 
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μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

 

sinh(((4(-2-1)*e^(-1))/(5*(-2)^2)))+16*((5*0.9991104684*(-2)^5*e^(-8)))* 
sinh(((4(-2-1)*e^(-1))/(5*(-2)^2)))+ 32*((5*0.9991104684*(-2)^4*e^(-7)))* 
sinh(((4(-2-1)*e^(-1))/(5*(-2)^2))) 

Input interpretation: 

 

 
 
 
 
Result: 

 
-0.5505966964… 

 

 

μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

 

-32*((5*0.9991104684*(-2)^4*e^(-8)))*sinh(((4(-2-1)*e^(-1))/(5*(-
2)^2)))+64*((5*0.9991104684*(-2)^3*e^(-7)))* sinh(((4(-2-1)*e^(-1))/(5*(-2)^2)))- 
32*((5*0.9991104684*(-2)^3*e^(-8))) 

 

Input interpretation: 
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Result: 

 
1.138943436… 

 

 

μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

 

sinh(((4(-2-1)*e^(-1))/(5*(-2)^2)))+256*((0.9991*(-2)^4*e^(-9)))-256*((0.9991*(-
2)^4*e^(-8)))-1024*((0.9991*(-2)^2*e^(-9)))+1024*((0.9991*(-2)^2*e^(-8)))-
1024*((0.9991*e^(-8)))+1024*((0.9991*e^(-9))) 

Input: 

 

 
 
Result: 

 
-0.43947320… (real precise result) 

Thence, from the following equation 
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we obtain: 

  

1/((16*25*(-2)^6))*[(-3469.04)*(9.99526426781)+(4.500646424)*(-0.5505966964)-
(1.138943436)*(-0.43947320)] 

Input interpretation: 

 
 
 
 
Result: 

 
 ρ = -1.354529260216401693690375 (final result) 

Or: 

1/(25600)*((([e^(6) sech^4(((2(-2-1)*e^(-1))/(5*(-2)^2))) ((((2*5^3*0.99911*e^(-
6)*(-2)^6 sinh (((4(-2-1)*e^(-1))/(5*(-2)^2)))))))+ 2.74742258] *(9.99526)+(4.5)*(-
0.5506)-(1.13894)*(-0.439473)))) 
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Input interpretation: 

 

 

 

Result: 

 

-1.35453… 

 
Alternative representations: 
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Series representations: 
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Integral representations: 
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From which: 

[1/(25600)*((([e^(6) sech^4(((2(-2-1)*e^(-1))/(5*(-2)^2))) ((((2*5^3*0.99911*e^(-
6)*(-2)^6 sinh (((4(-2-1)e^(-1))/(5(-2)^2)))))))+2.74742258] (9.99526)+(4.5)(-
0.5506)-(1.13894)(-0.439473))))]^(sqrte) 

Input interpretation: 

 

 

 

Result: 

 

Polar coordinates: 
 

1.64923.... ≈ ζ(2) = 
గమ

଺
= 1.644934… 
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Alternative representations: 
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Series representations: 
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and: 

-[1/(25600)((([e^(6) sech^4(((2(-2-1)*e^(-1))/(5*(-2)^2)))((((2*5^3*0.99911*e^(-
6)*(-2)^6 sinh (((4(-2-1)e^(-1))/(5(-2)^2)))))))+2.74742258] (9.99526)+(4.5)(-
0.5506)-(1.13894)(-0.439473))))]^(1.81147) 
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Input interpretation: 

 

 

 

Result: 

 

 
Polar coordinates: 

 

1.73272 ≈ √3 that is the ratio between the gravitating mass M0  and the Wheelerian 
mass q  
 

       

 
(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? - 
arXiv:1909.13052v1 [gr-qc] 28 Sep 2019) 
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Alternative representations: 
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Series representations: 
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where 1.81147 is about equal to the following expression: 

sqrt(170/69)/π * gamma (1/4) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1.8114698817… 

Alternate forms: 

 



 

 

 
Alternative representations:

 

 

 
Series representations: 

24 

Alternative representations: 

 

 

 

 

 

 



 

 
Integral representations: 

 

Indeed, from the first result of 

1.3545273742037681^(((sqrt(170/69)/π * gamma (1/4))))

Input interpretation: 

Result: 

 

1.732724856977603…. ≈ √3
the Wheelerian mass q  
 

       

 
(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? 
arXiv:1909.13052v1 [gr-qc] 28 Sep 2019)
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Indeed, from the first result of the equation, we have: 

1.3545273742037681^(((sqrt(170/69)/π * gamma (1/4)))) 

 

3 that is the ratio between the gravitating mass M

(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? 
] 28 Sep 2019) 

 

 

 

that is the ratio between the gravitating mass M0  and 

(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? - 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

We observe that the result of the equation -1.354529260216401693690375 is very 
near to the values of the following Ramanujan mock theta functions of 5th order: 

                               

                                     

We obtain: 

1+(0.449329^2)/(1-0.449329) + (0.449329)^8 / ((1-0.449329)(1-0.449329^3)) 
 

 
 

 
 
F(q) = 1.369955709...  
 
2((((((1+(0.449329^2)/(1-0.449329) + (0.449329)^8 / ((1-0.449329)(1-
0.449329^3))))))) 
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2F(q) = 2.73991141808516...  
 
 
Indeed:  F(q) = 1.369955709... is very near to the result 1.3545292602164   
 

 

Thence, from the following equation 

 

μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

 

-1/2*5*0.99911 tanh((((2(-3)*e^(-1))/(5(-2)^2))))+1/(5(-2)^4)[0.99911*e(5*e^(-2)*(-
2)^3-8(2))(((e^(-2)-e^(-3))))tanh((((2(-3)*e^(-1))/(5(-2)^2))))sech^2((((2(-3)*e^(-
1))/(5(-2)^2))))]-1/(4e) 

Input: 

 

 

 

 
Result: 

 

pr = 0.189333488469534537 
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Alternative representations: 

 

 

 

Series representations: 
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Integral representation: 
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We have also that: 

1/(sqrt(3) e log(2)) 1/(0.189333488469534537) 

Input interpretation: 

 

 

Result: 

 

1.61842281785993638…. result that is a very good approximation to the value of the 
golden ratio 1,618033988749 

 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

 

From 

 

μ = 0.9991104684;  Rc = 5;  r =  – 2;  r0 =  – 3 

 

1/320*e*sech^2((((2(-3)*e^(-1))/(5(-2)^2))))16*0.99911*2(((e^(-2)-e^(-
3)))*(((tanh((2(-3)*e^(-1))/(5(-2)^2)))))+5(2*0.9911-1)*e^(-2)*(-16)-5*e^(-2)*(-
16)*cosh((((4(-3)*e^(-1))/(5(-2)^2))))) 
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Input: 

 

 

 

 

 
Result: 

 

ρ + pt = 0.120236    

 
Alternative representations: 
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Series representations: 
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Integral representations: 
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We have that: 

ρ = -1.354529260216401693690375  

pr = 0.189333488469534537 

pt = 1.474765260216401693690375 

ρ + pt = 0.120236    
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from: 

 

(-1.354529260216401693690375  + 0.189333488469534537) 

Input interpretation: 
 

Result: 

 
ρ + pr = -1.165195771746867156690375 

 

For to obtain pt  
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From ρ + pt = 0.120236    

we calculate:  

-1.354529260216401693690375+x = 0.120236 

0.120236+1.354529260216401693690375 

Input interpretation: 
 

 
Result: 

 
pt = 1.474765260216401693690375 

 

From the three principal result, we obtain: 

sqrt(1.3545292602  - 0.1893334884 + 1.4747652602) 

Input interpretation: 

 
 
Result: 

 
1.6247956893... 

 

From which: 

sqrt(1.3545292602  - 0.1893334884 + 1.4747652602)-7/10^3 

Input interpretation: 

 
 
Result: 

 
1.6177956893.... result that is a very good approximation to the value of the golden 
ratio 1,618033988749 
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and: 

sqrt(1.3545292602  - 0.1893334884 + 1.4747652602)+(27*4)/10^3 

 
Input interpretation: 

 
 
Result: 

 
1.7327956893... ≈ √3 that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

       

 
(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? - 
arXiv:1909.13052v1 [gr-qc] 28 Sep 2019) 
 
 
 

We have also: 

(((1/(-1.354529260216 + 0.1893334884695 + 1.474765260216))))^4+18-golden ratio 

Input interpretation: 

 

 

Result: 

 

125.26680213… result very near to the Higgs boson mass 125.18 GeV 
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Alternative representations: 

 

 

 

 

(((1/(-1.354529260216 + 0.1893334884695 + 1.474765260216))))^4+29+golden 
ratio 

Input interpretation: 

 

 

Result: 

 

139.502870107…. result practically equal to the rest mass of  Pion meson 139.57 
MeV 
 

Alternative representations: 
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27*1/2((((((1/(-1.35452926 + 0.189333488 + 1.47476526))))^4+18+golden ratio-
1/2)))+1 

Input interpretation: 

 

 

Result: 

 

1729.039….  

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–
Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 
1729  (taxicab number) 

 

 
Alternative representations: 
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From the three results 

ρ = -1.354529260216401693690375  

pr = 0.189333488469534537 

pt = 1.474765260216401693690375 

we have also: 

 

 

(-1.354529260216401693690375 +0.189333488469534537 
+2*1.474765260216401693690375) 

Input interpretation: 

 
 
Result: 

 
1.784334748685936230690375 = ρ + pr + 2pt 
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(-1.354529260216401693690375  - 0.189333488469534537) 

Input interpretation: 
 

 
Result: 

 
-1.543862748685936230690375 = ρ - pr 

 

From which: 

1-1/(-1.354529260216401693690375  - 0.189333488469534537) 

Input interpretation: 

 
 
Result: 

 

1.6477259723.... ≈ ζ(2) = 
గమ

଺
= 1.644934… 
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(-1.354529260216401693690375 - 1.474765260216401693690375) 

Input interpretation: 
 

 
Result: 

 
-2.82929452043280338738075 = ρ - pt  
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From which: 

(-(-1.354529260216401693690375 - 1.474765260216401693690375))^1/2+5/10^2 

Input interpretation: 

 
 
Result: 

 
1.732050689020043589298856.... ≈ √3 that is the ratio between the gravitating mass 
M0  and the Wheelerian mass q  
 

       

 
(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? - 
arXiv:1909.13052v1 [gr-qc] 28 Sep 2019) 
 
  

1.7320506890 

Possible closed forms: 
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(0.189333488469534537 / -1.354529260216401693690375) 

Input interpretation: 

 
 
Result: 

 
-0.139778072006... = pr / ρ  

From which: 

-((21+2)/10^2)*1/ (0.189333488469534537 *1/ -1.354529260216401693690375) 

Input interpretation: 

 
 
Result: 

 

1.6454655347.... ≈ ζ(2) = 
గమ

଺
= 1.644934… 
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From: Manuscript Book 2 of Srinivasa Ramanujan  

Page 89 

We have: 

 

 

1/8 ln(5) + 3/10 ln(2) + 3/(4sqrt5) ln ((sqrt5+1)/2) +1/40 (10-2sqrt5)^1/2 ln ((((4+(10-
2sqrt5)^1/2))/((4-(10-2sqrt5)^1/2)))) + 1/40 (10+2sqrt5)^1/2 ln 
((((4+(10+2sqrt5)^1/2))/((4-(10+2sqrt5)^1/2)))) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1.00030116388510649…. 

 
 
 



 

Alternate forms: 

 
Alternative representations:
 

48 

 

Alternative representations: 
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From which: 

[1/8 ln(5)+3/10 ln(2)+3/(4sqrt5) ln ((sqrt5+1)/2)+1/40 (10-2sqrt5)^1/2 ln ((((4+(10-
2sqrt5)^1/2))/((4-(10-2sqrt5)^1/2))))+1/40 (10+2sqrt5)^1/2 ln 
((((4+(10+2sqrt5)^1/2))/((4-(10+2sqrt5)^1/2))))]^1008 

Input: 
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Exact result: 

 
 

Decimal approximation: 

 
1.354628832863576…. ≈ ρ  

 

We note that, from the formula of coefficients of the '5th order' mock theta function 
𝜓1(q): (A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))  

for n = 160, we obtain: 

sqrt(golden ratio) * exp(Pi*sqrt(160/15)) / (2*5^(1/4)*sqrt(160))+47 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1007.9390539… 

Property: 
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Alternate forms: 
 

 

 

 

Series representations: 
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Thence, for the previous expression, we obtain: 

 

1.0003011638851064993005942^(((((sqrt(golden ratio) * exp(Pi*sqrt(160/15)) / 
(2*5^(1/4)*sqrt(160))+47))))) 

Input interpretation: 

 

 

Result: 

 

1.3546039729574…. ≈ ρ  

Series representations: 

 



 

Integral representation: 

 

[1/8 ln(5)+3/10 ln(2)+3/(4sqrt5) ln ((sqrt5+1)/2)+1/40 (10
2sqrt5)^1/2))/((4-(10-2sqrt5)^1/2))))+1/40 (10+2sqrt5)^1/2 ln 
((((4+(10+2sqrt5)^1/2))/((4-

Input: 

 
 
 
Exact result: 
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[1/8 ln(5)+3/10 ln(2)+3/(4sqrt5) ln ((sqrt5+1)/2)+1/40 (10-2sqrt5)^1/2 ln ((((4+(10
2sqrt5)^1/2))))+1/40 (10+2sqrt5)^1/2 ln 

-(10+2sqrt5)^1/2))))]^1598 

 

 

 

 

 

 

 

2sqrt5)^1/2 ln ((((4+(10-
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Decimal approximation: 
 

 
1.6179945235.... result that is a very good approximation to the value of the golden 
ratio 1,618033988749... 
 

 

Page 100 

 

 

((1)^1/2 /  (2)^1/2 * (3)^1/3 / (4)^1/4 * (5)^1/5 / (6)^1/6 * (7)^1/7 / 
(8)^1/8)^(1/(ln(2))) / ((1)^1/2 /  (3)^1/3 * (5)^1/5 / (7)^1/7 * (9)^1/9 / (11)^1/11 * 
(13)^1/13 / (15)^1/15)^(4/Pi) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

0.94521932533… result very near to the spectral index ns , to the mesonic Regge 
slope, to the inflaton value at the end of the inflation 0.9402 and to the value of the 
following Rogers-Ramanujan continued fraction: 



55 
 

 

 
 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 
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sqrt2 (((1)^1/2 /  (2)^1/2 * (3)^1/3 / (4)^1/4 * (5)^1/5 / (6)^1/6 * (7)^1/7 / 
(8)^1/8)^(1/(ln(2))) / ((1)^1/2 /  (3)^1/3 * (5)^1/5 / (7)^1/7 * (9)^1/9 / (11)^1/11 * 
(13)^1/13 / (15)^1/15)^(4/Pi)) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1.3367419893… result very near to the value of ρ 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 
(55+2)/10^3+sqrt(Pi)(((1)^1/2 / (2)^1/2  (3)^1/3 / (4)^1/4  (5)^1/5 / (6)^1/6  (7)^1/7 / 
(8)^1/8)^(1/(ln(2))) / ((1)^1/2 / (3)^1/3  (5)^1/5 / (7)^1/7  (9)^1/9 / (11)^1/11 
(13)^1/13 /(15)^1/15)^(4/Pi)) 

Input: 
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Exact result: 

 

Decimal approximation: 

 

1.732357633133… ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q  
 

       

 
(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? - 
arXiv:1909.13052v1 [gr-qc] 28 Sep 2019) 
 
 

Alternate forms: 

 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 
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(89+47)/10^3+sqrt(2)(((1)^1/2 / (2)^1/2  (3)^1/3 / (4)^1/4  (5)^1/5 / (6)^1/6  (7)^1/7 / 
(8)^1/8)^(1/(ln(2))) / ((1)^1/2 / (3)^1/3  (5)^1/5 / (7)^1/7  (9)^1/9 / (11)^1/11 
(13)^1/13 /(15)^1/15)^(4/Pi)) 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1.4727419893…. ≈ pt 

Alternate forms: 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 
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Observations  

Figs. 

 

 

 

 

 

The ratio between M0  and  q  
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i.e. the gravitating mass M0  and the Wheelerian mass q of the wormhole, is equal to: 
 
 

 
 

 

 

1.7320507879 ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q of  the wormhole 
 

We note that: 
 

 

 
 

 

 
1.73205 

 
This result is very near to the ratio between M0  and  q, that is equal to 1.7320507879 
≈ √3 
 
 

With regard √3 , we note that is a fundamental value of the formula structure that we 
need to calculate a Cubic Equation 
 

We have that the previous result 
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  =   =  
 
=  
 

 
 
can be related with: 
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Thence: 
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We observe how the graph above, concerning the cubic function, is very similar 
to the graph that represent the scalar field (in red). It is possible to hypothesize 
that cubic functions and cubic equations, with their roots, are connected to the 
scalar field. 

From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8mpSjRs1BDeremA 
 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
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such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
From Wikipedia 
 
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki 
Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa 
interaction can be used to describe the nuclear force between nucleons (which 
are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa 
interaction is also used in the Standard Model to describe the coupling between 
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion 
particles). Through spontaneous symmetry breaking, these fermions acquire a mass 
proportional to the vacuum expectation value of the Higgs field.  
 
 

Can be this the motivation that from the development of the Ramanujan’s equations 
we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV and practically equal to 
the rest mass of  Pion meson 139.57 MeV 

 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, called 
the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 
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0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses 
the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two 
consecutive Fibonacci numbers tends to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas 
numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 

3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that sequence and 
the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form 
complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each 
term is the sum of the two previous terms, but with different starting values. This produces a 
sequence where the ratios of successive terms approach the golden ratio, and in fact the terms 
themselves are roundings of integer powers of the golden ratio.[1] The sequence also has a variety 
of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers 
two terms apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 
24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 
4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the 
Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all 
Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to 
the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... 
(sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden 
ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every 
quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms 
of spiral galaxies[3] - golden spirals are one special case of these logarithmic spirals 
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We note how the following three values: 137.508 (golden angle), 139.57 (mass of the Pion - 
meson Pi) and 125.18 (mass of the Higgs boson), are connected to each other. In fact, just add 
2 to 137.508 to obtain a result very close to the mass of the Pion and subtract 12 to 137.508 to 
obtain a result that is also very close to the mass of the Higgs boson. We can therefore 
hypothesize that it is the golden angle (and the related golden ratio inherent in it) to be a 
fundamental ingredient both in the structures of the microcosm and in those of the 
macrocosm. 
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