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Abstract 

In this writing the conventional law concerning the derivatives of the delta function and those 
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Introduction 

The conventional derivative laws in relation to the delta function and their examples have been 

analyzed to bring out certain conflicting features. These conventional laws become questionable but not 

the concept of the delta function by itself in so far as this writing is concerned.  

Inconsistencies with Derivatives of the Delta Function 

We consider the fundamental  result[1][2] on derivatives of the delta function as given below 

∫ 𝑓(𝑥)𝛿𝑛(𝑥)
+∞

−∞

𝑑𝑥 = − ∫ 𝑓′(𝑥)𝛿𝑛−1(𝑥)
+∞

−∞

𝑑𝑥  (1) 

The above holds for any arbitrary function as well as for any subinterval on (−∞, +∞) and we have the 

following result[3] 

𝑓(𝑥)𝛿′(𝑥) = −𝑓′(𝑥)𝛿(𝑥)  (2) 

𝛿′(𝑥) = −
𝑓′(𝑥)

𝑓(𝑥)
𝛿(𝑥)  (3) 

∫ 𝛿′(𝑥)𝑑𝑥
+∞

−∞

= − ∫
𝑓′(𝑥)

𝑓(𝑥)
𝛿(𝑥)

+∞

−∞

 

[𝛿(𝑥)]−∞
+∞

= −
𝑓′(0)

𝑓(0)
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0 = −
𝑓′(0)

𝑓(0)
⇒ 𝑓′(0) = 0  (4) 

Since 𝑓(𝑥) Is an arbitrary function, well behaved in relation to continuity and differentiability of course,, 

equation (4) becomes questionable. 

Equation (2) is differentiated with respect to 𝑥: 

𝑓′(𝑥)𝛿′(𝑥) + 𝑓(𝑥)𝛿′′(𝑥) = −𝑓′(𝑥)𝛿′(𝑥) − 𝑓′′(𝑥)𝛿(𝑥) 

2𝑓′(𝑥)𝛿′(𝑥) + 𝑓(𝑥)𝛿′′(𝑥) + 𝑓′′(𝑥)𝛿(𝑥) = 0 

Applying (3) on the last equation we have, 

−2𝑓′(𝑥) [
𝑓′(𝑥)

𝑓(𝑥)
𝛿(𝑥)] + 𝑓(𝑥)𝛿′′(𝑥) + 𝑓′′(𝑥)𝛿(𝑥) = 0 

𝛿(𝑥) [𝑓′′(𝑥) − 2
[𝑓′(𝑥)]2

𝑓(𝑥)
] + 𝑓(𝑥)𝛿′′(𝑥) = 0  (5) 

𝛿′′(𝑥) = −
1

𝑓(𝑥)
[𝑓′′(𝑥) − 2

[𝑓′(𝑥)]2

𝑓(𝑥)
] 𝛿(𝑥)   (6) 

𝛿′′(𝑥) depends on the nature of the test function  𝑓(𝑥) which is not an acceptable idea. 

Integrating (4) with respect to 𝑥 we obtain, 

 

∫ 𝛿(𝑥) [𝑓′′(𝑥) − 2
[𝑓′(𝑥)]2

𝑓(𝑥)
] 𝑑𝑥

+∞

−∞

+ ∫ 𝑓(𝑥)𝛿′′(𝑥)𝑑𝑥
+∞

−∞

= 0 (7) 

[𝑓′′(0) − 2
[𝑓′(0)]2

𝑓(0)
] + ∫ 𝑓(𝑥)𝛿′′(𝑥)𝑑𝑥

+𝜖

−𝜖

= 0 

Since for 𝑥 ≠ 0,𝛿(𝑥) = 0 we have 𝛿′(𝑥) = 0 and 𝛿′′(𝑥) = 0 [for 𝑥 ≠ 0]. Moreover from (5) 𝛿′′(𝑥) is a 

peaked function like 𝛿(𝑥): 𝑓(𝑥)  is expected to vary much slowly than 𝛿′′(𝑥) on an infinitesimally small 

interval – 𝜖 < 𝑥 < +𝜀. Therefore 

[𝑓′′(0) − 2
[𝑓′(0)]2

𝑓(0)
] + 𝑓(0) ∫ 𝛿′′(𝑥)𝑑𝑥

+𝜖

−𝜖

= 0 

 

∫ 𝛿′′(𝑥)𝑑𝑥
+𝜖

−𝜖

= −
1

𝑓(0)
[𝑓′′(0) − 2

[𝑓′(0)]2

𝑓(0)
] (8) 
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[𝛿′(𝑥)]−𝜖
+𝜖

= −
1

𝑓(0)
[𝑓′′(0) − 2

[𝑓′(0)]2

𝑓(0)
]   

−
1

𝑓(0)
[𝑓′′(0) − 2

[𝑓′(0)]2

𝑓(0)
] = 0 

𝑓′′(0) = 2
[𝑓′(0)]2

𝑓(0)
  (9) 

The above formula[represented by (9) ]is not acceptable  

We consider the following result[4] : 

𝑥𝛿′(𝑥) = −𝛿(𝑥)  (10)   

𝑥𝑛𝛿𝑛(𝑥) = −𝑛! (−1)𝑛𝛿(𝑥) 

𝑥2𝛿′(𝑥) = −𝑥𝛿(𝑥) 

∫ 𝑥2𝛿′
∞

−∞

(𝑥) = − ∫ 𝑥𝛿(𝑥)
+∞

−∞

𝑑𝑥 

⇒ ∫ 𝑥2𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = − ∫ 𝑥𝛿(𝑥)
+𝜖

−𝜖

𝑑𝑥 = 0 

⇒ ∫ 𝑥2𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = 0 (11) 

The above is true of any arbitrary interval(−𝜖, 𝜖). Therefore 𝑥2𝛿′(𝑥) should be an odd function. 

Since 𝑥2is an even function  𝛿′(𝑥) should be odd. That implies 𝛿(𝑥)should be even. 

Indeed by integration  

∫ 𝛿′(𝑥) 𝑑𝑥 = 𝑓𝑒𝑣𝑒𝑛(𝑥) 

𝛿(𝑥) = 𝑓𝑒𝑣𝑒𝑛(𝑥) 

Since a constant is an even function it may be included in 𝑓𝑒𝑣𝑒𝑛(𝑥) 

[In general any arbitrary function may be expressed as the sum of an even and an odd function. If the 

even part is not a constant the derivative  will be the sum of an even and an odd function. ] 

Now we consider 

𝑥3𝛿′(𝑥) = −𝑥2𝛿(𝑥) 
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∫ 𝑥3𝛿′
∞

−∞

(𝑥) = − ∫ 𝑥2𝛿(𝑥)
+∞

−∞

𝑑𝑥 

⇒ ∫ 𝑥3𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = − ∫ 𝑥2𝛿(𝑥)
+𝜖

−𝜖

𝑑𝑥 = 0 

∫ 𝑥3𝛿′
𝜖

−𝜖

(𝑥)𝑑𝑥 = 0 (12) 

The above is true of any (−𝜖, 𝜖). Therefore 𝛿′(x) should be an even function. With 𝛿′(𝑥) we have  

∫ 𝛿′(𝑥) 𝑑𝑥 = 𝑓𝑜𝑑𝑑(𝑥) + 𝐶 

 

𝛿(𝑥) = 𝑓𝑜𝑑𝑑 (𝑥) + 𝐶 

[In general any arbitrary function may be expressed as the sum of an even and an odd function. If the 

even part is not a constant the derivative  will be the sum of an even and an odd function. ] 

 

 and 𝛿(𝑥), consequently, an odd function at most with an additive constant  as opposed to what we saw 

earlier: 𝛿(𝑥)= 𝑓𝑒𝑣𝑒𝑛(𝑥), 

From (10) cannot arrive at (2) by power series technique:(10) ⇏ (2). Consequently 

Let 

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ … . +𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

𝑓′(𝑥) = 𝑎𝑛𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2 + (𝑛 − 2)𝑎𝑛−2𝑥𝑛−3 + ⋯ … . +2𝑎2𝑥 + 𝑎1 

 

From the above expansions it is evident that 𝑓(𝑥)𝛿′(𝑥) = −𝑓′(𝑥)𝛿(𝑥) ⇏ 𝑥𝛿′(𝑥) = −𝛿(𝑥) and  

𝑥𝛿′(𝑥) = −𝛿(𝑥) ⇏ 𝑓(𝑥)𝛿′(𝑥) = −𝑓′(𝑥)𝛿(𝑥) though 𝑓′(𝑥) = 1 if 𝑓(𝑥) = 𝑥 

The reason ,as we shall see soon is , that  for each function f(x) we require a separate sequence of 

functions representing the delta function: we have to consider distributions: mapping from functions to 

real numbers in the form of a linear functional . Even that does not help as we shall see. The delta 

function, as we know and the idea is a highlighted one in literature , is not a function in the usual sense 

of being a function. We have ignored this fact while arriving at the contradiction. 

Next we consider the standard formula[ 5] 



5 
 

𝛿(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑥  (13)

+∞

−∞

 

Differentiating with respect to x, we have, 

⇒ 𝛿′(𝑥) = 𝑖𝑥
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑘

+∞

−∞

= 𝑖𝑘𝛿(𝑥) 

𝛿′(𝑥) = 𝑖𝑥𝛿(𝑥)  (14) 

The result given by (14) stands opposed to the standard result given by (10) 

𝑥𝛿′(𝑥) = −𝛿(𝑥)  (15) 

 

The Delta Function in Formal Theory and with Applications 

We consider the formal definition of the delta function[6] as a distribution, The Dirac delta function is a 

linear functional that maps every function to its value at zero. ... In many applications, the Dirac delta 

is regarded as a kind of limit (a weak limit) of a sequence of functions having a tall spike at the origin 

(in theory of distributions, this is a true limit). 

〈δ, φ〉 = φ(0) (16) 

We have a mapping from a function to a real number[functional] 

δ: φ → φ(0)  

By way of example the mapping may be achieved as 

∫ φ(x)δ(x)dx = φ(0)
+∞

−∞

  (17) 

The above example is relevant in applications like physics . As an example[7] we may refer to the 

derivation of Helmholtz theorem where the following is considered 

∇F = −∇2U = −
1

4π
∫ D(r⃗′)∇2

1

|r⃗′ − r⃗|
dV′ = ∫ D(r⃗′)δ(r⃗′ − r⃗)dV′ = D(r⃗)  (18) 

But we have seen the serious errors with  

∫ φ(x)δ(x)dx = φ(0)
+∞

−∞

 

when it comes to the derivatives 
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Further Investigation[for locating the source of error] 

A distribution is a mapping from a asset of functions to real numbers. To that end we consider a 

sequence of functions 𝐺𝑛(𝑥) such that 

1. 𝐺𝑛(𝑥) ≠ 0for – 𝜖1(𝑛) < 𝑥 < 𝜖2(𝑛) else 𝐺𝑛(𝑥) = 0; 𝜖1(𝑛) > 0, 𝜖2(𝑛) > 0 

2. .   𝑙𝑖𝑚𝑛→∞𝜖𝑖(𝑛) = 0; 𝑖 = 1,2; 𝑙𝑖𝑚𝑛→∞𝐺𝑛(0) = ∞;and 𝑙𝑖𝑚𝑛→∞ ∫ 𝐺𝑛(𝑥) = 1
+∞

−∞
 

 

Next we consider for very large ’n’[n tending to infinity] 𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞
𝑑𝑥 

∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥 +
−𝜖1(𝑛))

−∞

∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥
+∞

𝜖2(𝑛)

+𝜖2(𝑛)

−𝜖1(𝑛)
 

Since ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥
−𝜖1(𝑛)

−∞
= 0and ∫ 𝑓(𝑥)𝐺𝑛(𝑥)𝑑𝑥

+∞

𝜖2(𝑛) = 0 we have 

∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+𝜖2(𝑛)

−𝜖1(𝑛)
𝑑𝑥  (19) 

If 𝑓(𝑥) changes much slowly with respect to 𝐺𝑛(𝑥) on the interval −𝜖1(𝑛) < 𝑥 < 𝜖2(𝑛) 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+𝜖2(𝑛)

−𝜖1(𝑛)
𝑑𝑥 = 𝑓(0); 

 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑓(𝑥)𝐺𝑛(𝑥)
+∞

−∞

𝑑𝑥 = 𝑓(0) (16) 

Equation (16) relates to the defining criterion for the delta function 

For the nth function 

∫ 𝑓(𝑥)𝐺𝑛′(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝑓(𝑥)𝐺𝑛 ′(𝑥)
+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥 = [𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)

+𝜖(𝑛)
− ∫ 𝑓′(𝑥)𝐺𝑛(𝑥)

+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥  (20) 

Now for n tending to infinity 𝐺𝑛(𝑥) → ∞ and at the same time we may consider 𝑓(𝑥) ≪ 𝐺𝑛(𝑥).We may 

replace 𝑓(𝑥) by a straight line[tangent] on (– 𝜀, 𝜀). 𝑓(𝑥)𝐺𝑛  will not be exactly symmetrical unless f(x) 

isparallrel to the x axis on the interval(– 𝜀, 𝜀).  

We may rewrite equation (17) as 

[𝑓(𝑥)𝐺𝑛
′ (𝑥)]𝐴𝑣𝑔(𝜀2 + 𝜀1) = 𝑓(𝜀2)𝐺𝑛(𝜀2) − 𝑓(−𝜀1)𝐺𝑛(−𝜀1) − 𝑓′(0) (21) 
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The first term on the right side of (17) or (18) may be written as 

𝑓(𝜀2)𝐺𝑛(𝜀2) − 𝑓(−𝜀1)𝐺𝑛(−𝜀1) = 𝑓(𝜀2)𝐺𝑛(𝜀2) − 𝑓(𝜀2)𝐺𝑛(−𝜀1) + 𝑓(𝜀2)𝐺𝑛(−𝜀1) − 𝑓(−𝜀1)𝐺𝑛(−𝜀1) 

= 𝑓(𝜀2)[𝐺𝑛(𝜀2) − 𝐺𝑛(−𝜀1)] + [𝑓(𝜀2) − 𝑓(−𝜀1)]𝐺𝑛(−𝜀1) 

We recall the fundamental law for derivatives of the delta function: 

∫ 𝑓(𝑥)𝐺𝑛 ′(𝑥)
+∞

−∞

𝑑𝑥 = − ∫ 𝑓′(𝑥)𝐺𝑛(𝑥)
+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥 

When viewed in respect of (20) we have, 

|[𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)
+𝜖(𝑛)

| ≪ |∫ 𝑓′(𝑥)𝐺𝑛(𝑥)
+𝜖(𝑛)

−𝜖(𝑛)
𝑑𝑥 |  (22) 

⇒ [𝑓(𝑥)𝐺𝑛(𝑥)]−𝜖(𝑛)
+𝜖(𝑛)

≪ 𝑓′(0) 

 

|𝑓(𝜀2)𝐺𝑛(𝜀2) − 𝑓(−𝜀1)𝐺𝑛(−𝜀1)| ≪ |𝑓′(0)| 

|
𝑓(𝜀2)𝐺𝑛(𝜀2) − 𝑓(−𝜀1)𝐺𝑛(−𝜀1)

𝜀2 − (−𝜀1)
| (𝜀2 − (−𝜀1)) ≪ |𝑓′(0)| 

|
𝑓(𝜀2)[𝐺𝑛(𝜀2) − 𝐺𝑛(−𝜀1)] + [𝑓(𝜀2) − 𝑓(−𝜀1)]𝐺𝑛(−𝜀1)

𝜀2 − (−𝜀1)
| (𝜀2 + 𝜀1) ≪ |𝑓′(0)|; (𝜀2 + 𝜀1) > 0 

[𝑓(𝜀2)
[𝐺𝑛(𝜀2) − 𝐺𝑛(−𝜀1)]

𝜀2 − (−𝜀1)
+ 𝐺𝑛(−𝜀1)

[𝑓(𝜀2) − 𝑓(−𝜀1)]𝐺𝑛(−𝜀1)

𝜀2 − (−𝜀1)
] (𝜀2 + 𝜀1) ≪ |𝑓′(0)| 

On taking limits on either side:𝑛 → ∞, 𝑀𝑎𝑥{𝜀1, 𝜀2} → 0 

|𝑓(0)𝐺𝑛
′ (0) + 𝐺𝑛(0)𝑓′(0)|(𝜀2 + 𝜀1) ≪ |𝑓′(0)| 

|
𝑓(0)

𝑓′(0)
𝐺𝑛

′ (0) + 𝐺𝑛(0)| (𝜀2 + 𝜀1) ≪ 1 

|
𝑓(0)

𝑓′(0)
𝐺𝑛

′ (0)(𝜀2 + 𝜀1) + 𝐺𝑛(0)(𝜀2 + 𝜀1)| ≪ 1 

Since𝑙𝑖𝑚𝑛→∞𝐺𝑛(𝑥)(𝜀2 + 𝜀1) = 1; −𝜀1 < 𝑥 < 𝜀2 

|
𝑓(0)

𝑓′(0)
𝐺𝑛

′ (0)(𝜀2 + 𝜀1) + 1| ≪ 1  (23) 
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The last relation will fail if  |
𝑓(0)

𝑓′(0)
𝐺𝑛

′ (0)| > 0 [keeping in mind that (𝜀2 + 𝜀1) > 0 and also  with 𝑛 →

∞, 𝐺𝑛(0) → ∞, 𝐺𝑛
′ (0) → ∞. Therefore equation (20) represents an absurd relation. 

If we have a look at the fundamental equation for the derivative of the delta function we may impose 

Again imposing 𝑓(𝑥)𝐺𝑛
′ (𝑥) = −𝑓′(𝑥)𝐺𝑛(𝑥)for very large n]that is by using equation (2) 

𝐺𝑛′

𝐺𝑛
= −

𝑓′(𝑥)

𝑓(𝑥)
 

∫
𝐺𝑛′

𝐺𝑛
𝑑𝑥 = − ∫

𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 

𝑙𝑛(𝐺𝑛/𝐶) = −𝑙𝑛𝑓(𝑥) 

𝐺𝑛 = −𝐶𝑓(𝑥) (24) 

Equation (21) indicates that each function f(x) requires its own distinct sequence{𝐺𝑛} representing the 

delta function. Even that will not suffice[example:𝛿(𝑥) is both even and odd as we saw earlier in the 

section “Inconsistencies with Derivatives of the Delta Function] 

 

As 𝑛 → ∞,𝐶𝑛 → ∞ 

In the vicinity of zero f(x) will be a straight line of positive ,negative or zero gradient: we may replace f(x) 

by the  tangent at x=0 

in the vicinity of the x axis we may approximate 𝑓(𝑥) = 𝑎𝑥 + 𝑏 

In any case 

 

𝐺𝑛 = −𝐶𝑓(𝑥) = −𝐶𝑛(𝑎𝑥 + 𝑏) (25) 

or 𝐺𝑛 ≈ −𝐶𝑛(𝑎𝑥 + 𝑏) 

We apply equation (22) on the relation: 𝑓(𝑥)𝐺𝑛
′ (𝑥) = −𝑓′(𝑥)𝐺𝑛(𝑥) 

− (𝑎𝑥 + 𝑏)𝐶𝑛 = 𝑎𝐶𝑛(𝑎𝑥 + 𝑏) 

Considering 𝐶𝑛  arbitrarily large but finite 

(1 + 𝑎)(𝑎𝑥 + 𝑏)𝐶𝑛 = 0(26) 

𝐶𝑛 = 0or 𝑎 = −1 or 𝑎𝑥 + 𝑏 = 0 ⇒ 𝑏 ≈ 0 since 𝑥 ≈ 0 on (– 𝜖, 𝜖) 
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The derivative law in relation to the as given by (10) is at stake .But the delta function as represented by 

equation (16) , viewed independent of the conventional derivative law as given by (1), stands 

unchallenged . 

[We may consider ∫ 𝐺𝑛(𝑥) = 1
+∞

−∞
for all  𝑛 in place of and 𝑙𝑖𝑚𝑛→∞ ∫ 𝐺𝑛(𝑥) = 1

+∞

−∞
. Theconclusionswe 

have arrived at in this article remain unaffected]. 

The derivatives of the delta function in so far as the conventional law is concerned  its allied derivations 

come into question.  

Conclusions 

As claimed the analysis of the Delta function brings out unacceptable features in relation to the 

conventional law in regarding its derivatives. The concept of the delta function viewed independent of 

these conventional derivative law stands unchallenged. 
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