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Charged lepton flavor violation (CLFV) is an interesting phenomenon to investigate in going
beyond the Standard Model (BSM). This direction of investigation also inspires a new look at the
idea of µ and τ being excitations of the electron (e). For this, the electron is required to have
a substructure that is held together by some potential. However, even the simplest model of a
two-body substructure has several troubling issues. First, a relativistically covariant formulation
of such a bound system is non-trivial. However, this has been resolved in the past in a different
context. Second, a consistent field theory of composite objects is needed to handle this model of
leptons with substructure. This has also been done in the past in a different context. Third, the
large observed mass ratios (mµ/me = 206.6) of e and µ and (mτ/mµ = 16.81) of µ and τ rule out
binding potentials that depend only on the relative positions of constituents. Here it is shown that
a concept similar to the “running coupling constant” of strong interactions generates a model that
fits these ratios very well (mµ/me = 206.6, mτ/mµ = 18.49).

I. INTRODUCTION

Efforts at going beyond the Standard Model (BSM)
are picking up rapidly in recent years. In particular, the
search for charged lepton flavor violation (CLFV) is an
interesting direction[1, 2]. Historically, the discovery of
µ was followed by the consideration of it being an exci-
tation of the electron (e)[3]. Hence, the radiative decay
of µ to e with photon emission (µ→ eγ) was considered
natural. However, the lack of observation of such decay
led to the selection rule against flavor violation. Present
searches of flavor violation do not necessarily indicate
that µ and τ are excitations of e. But it is a possibil-
ity. It is also possible that the three charged leptons
are structureless and they transition from one to another
through field interactions. This paper considers the first
possibility – the possibility of these particles being differ-
ent eigenstates of the same bound composite object. For
this purpose, the usual quantum field theory (QFT) of
structureless electrons needs to be extended to a compos-
ite particle quantum field theory (CQFT)[4–6]. In such
a model, the composite electron mass turns out to be the
energy eigenvalue of a variation of the time-independent
Klein-Gordon equation[5].

II. ELECTRON AS A COMPOSITE

For simplicity, let us consider the electron to be com-
posed of a spin-half fermionic vertex particle and a spin-
zero bosonic satellite[6] held together by a scalar poten-
tial introduced as a mass function of the satellite. In the
center of mass (CM) frame, the vertex can be assigned
zero energy. This makes the energy E of the satellite
alone the total energy of the composite in the CM frame
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which is, by definition, its mass[7][9]. Such an assignment
can be made without loss of generality due to the com-
posite nature of the electron. Hence, the ground state
value of E is the electron mass and µ and τ masses are
excited state values of E. The full equation of state for
the composite can be decoupled such that the satellite
part has the appearance of a Klein-Gordon equation as
follows[6].

(∂µ∂
µ −m2

s)ψ = 0, (1)

where ∂µ is the relativistic gradient operator, ψ the wave-
function and ms a scalar function of r the radial coor-
dinate of the satellite position relative to the vertex in
the CM frame. Unlike in the free particle Klein-Gordon
equation, ms is not a constant. We shall call it the “mass
function”. Here, it provides the binding for the com-
posite. The time-independent version of equation 1 in
the CM frame provides the CM energy E of the satellite
which is also the mass of the composite. It is as follows.

∇2Ψ−m2
sΨ + E2Ψ = 0, (2)

where Ψ is the time-independent part of ψ. As ms has to
be spherically symmetric in the CM frame, the angular
part of Ψ is given by the usual spherical harmonics Y ml .
Hence,

Ψ = Rnl(r)Y
m
l (θ, φ), (3)

where, (r, θ, φ) are the usual polar coordinates in the CM
frame and Rnl is the radial part of the wave-function.
Suppressing the subscripts of Rnl, the radial equation is
as follows.

1

r2
d

dr

(
r2
dR

dr

)
− l(l + 1)

r2
R+ (E2 −m2

s)R = 0, (4)

where l is the usual total angular momentum quantum
number.
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III. A “RUNNING COUPLING CONSTANT”
DEPENDING ON MASS

The mass function ms can provide a binding effect for
the satellite if it is an appropriate function of r. So,
it plays the role of a binding scalar potential. How-
ever, no ordinary function of r seems to produce any-
thing remotely close to the very large observed mass ra-
tios mµ/me and mτ/mµ where me, mµ and mτ are the
observed masses of e, µ and τ .

mµ/me = 206.6, mτ/mµ = 16.81. (5)

Hence, it is evident that some unconventional choices
need to be made. One such choice is to have ms include
the energy E in its functional form. Note that E, the
energy eigenvalue in equation 4, is the mass of the com-
posite, and three of its values are the masses me, mµ and
mτ . Of course, this makes equation 4 depend on E in a
nontrivial way. Nonetheless, it has physically meaningful
solutions for appropriately chosen mass functions. In this
paper, the following function is seen to provide surprising
agreement with experiment.

m2
s = ΛE(Er)q, (6)

where Λ is a fitted parameter with the dimension of mass
and q is a dimensionless positive power. As we are work-
ing with natural units where h̄ = c = 1, (Er) can be
seen as a dimensionless radial coordinate. Hence, we may
write,

m2
s = ΛE(ρ)q, (7)

where,

ρ = Er. (8)

One may consider Λ to be the analog of a usual cou-
pling constant. However, from the point of view of the
usual radial coordinate r, Λ is not the coupling constant
by itself. The dependence of ms on E adds to the ef-
fect of a coupling constant. This is akin to the “running
coupling constant” of strong interactions.

Dividing equation 4 by E2 produces the following.

1

ρ2
d

dρ

(
ρ2
dR

dρ

)
− l(l + 1)

ρ2
R+

(
1− ρq

ε

)
R = 0, (9)

where,

ε =
E

Λ
. (10)

Equation 9 can be solved numerically to find the energy
eigenvalues E.

IV. THE NUMERICAL METHOD

Equation 9 is prepared for a numerical solution by the
following substitution.

R(ρ) = ρsG(ρ). (11)

It gives

d2G

dρ2
+

2(s+ 1)

ρ

dG

dρ
− l(l + 1)− s(s+ 1)

ρ2
G

+

(
1− ρq

ε

)
G = 0. (12)

For solutions that are non-singular at the origin, we must
choose,

s = l, G′(0) = 0 and G(0) 6= 0. (13)

This gives,

d2G

dρ2
+

2(l + 1)

ρ

dG

dρ
+

(
1− ρq

ε

)
G = 0. (14)

To use the Runge-Kutta method, we split the above sec-
ond order equation into two first order equations by the
following substitutions.

y0 = G, y1 = G′. (15)

The resulting first order equations are,

dy0
dρ

= y1, (16)

dy1
dρ

=

(
ρq

ε
− 1

)
y0 −

2(l + 1)

ρ
y1, for ρ 6= 0. (17)

For the ρ = 0 case of equation 17, the following first-order
approximation for y1 is used on the right-hand-side for
ρ→ 0.

y1(ρ) = y1(0) + ρy′1(0). (18)

As y1(0) = G′(0) = 0 (from the initial value equations 13)
and q is positive, this gives,

dy1
dρ

= − y0(0)

1 + 2(l + 1)
, for ρ = 0. (19)

With this form of the equations, the shooting method
is used to numerically search for the eigenvalues ε.

V. RESULTS

In the following, the eigenvalues ε are labeled by the
subscripts n and l. n is the number of nodes of the func-
tion Rnl including the node at infinity and l is the usual
total angular momentum quantum number. Note that
here n is not the usual hydrogen atom quantum num-
ber. It does not include l in its definition. Hence, for
each n the possible values of l are not limited. Also, the
corresponding values of E are given by equation 10 to be,

Enl = Λεnl. (20)

Note that the mass ratios are independent of the fitted
parameter Λ. Then, using the half-integer value,

q = 13/2, (21)
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for the only other adjusted parameter, the theoretical
mass ratios are computed to be,

mµ

me
=
E20

E10
= 206.6,

mτ

mµ
=
E30

E20
= 18.49. (22)

This shows strong agreement with the experimental val-
ues of equation 5.

To fit the actual masses, we need,

Λ = 8.9687× 10−4 Mev. (23)

Then the fitted values for the lepton masses are,

me = E10 = 0.5117 Mev, (24)

mµ = E20 = 105.7 Mev, (25)

mτ = E30 = 1955 Mev. (26)

Here it is assumed that non-zero values for l are difficult
to observe in practice. This is similar to the excited states
of mesons.

The observed values for the masses are,

me = 0.5117Mev, mµ = 105.7 Mev, mτ = 1777 Mev.
(27)

VI. CONCLUSION

Here, the three charged leptons are considered to be
different energy states of the same composite object[8].
However, ordinary binding potentials are unable to pro-
duce the large differences in the masses me, mµ and mτ .
So, a mass function that depends both on the separation
of the constituents and the total energy is used. This
allows the fitted values to be very close to the observed
ones.

The results presented here are preliminary. Further
consideration must be given to the following issues be-
sides others.

• Other mass functions might produce better fits to
experiment.

• More elaborate models are possible using a spin-one
satellite.
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