
The Math Underlying

the Schrodinger Equation

by Doug Jensen

Table of Contents

Page Section Key Formula

2 Properties of Light ω = ck

3 The energy of light E = h̄ω

4 Modeling the behavior of light Ψ = ei(kx−ωt)

5 Deriving a complex energy equation EΨ = ih̄
dΨ

dt

6 Schrodinger's kinetic energy formula KEΨ = − h̄
2

2m

d2Ψ

dx2

7 The Schrodinger equation EΨ = KEΨ + PEΨ

1



1 Properties of light

The observed speed of light (c) is 300,000km/second.

c = 300, 000km/second (1)

If we think of light as coming in waves, then the frequency is the number of waves
that pass by each second.

f = waves/second (2)

The wavelength (λ) can be calculated by taking the distance light travels in one
second (300,000km), and dividing that by the number of waves.

λ = 300, 000km/waves (3)

How they relate is, the frequency times the wavelength is equal to the speed of
light.

f × λ = c (4)

waves

second
× 300, 000km

waves
=

300, 000km

second
(5)

If we work in units of radians (multiply the left side of the equation by 2π/2π
which is 1), then

radians

second
× 300, 000km

radians
=

300, 000km

second
(6)

And if we multiply both sides by radians/300,000km (the inverse of the radian-
length) then we get an interesting equation.

radians

second
=

300, 000km

second
× radians

300, 000km
(7)
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This equation tells us that the change in time is equal to the speed of light times
the change in space.

∆time = c×∆space (8)

The variables ω and k are used to represent the ∆time and ∆space respectively.

ω = ck (9)

2 The energy of light

Early in the 20th century, Albert Einstein learned through experiments, that the
number of radians/second (ω) is directly proportional to the energy. More speci�-
cally, the energy (E) is equal to the constant h̄ (pronounced h-bar) times ω.

E = h̄ω (10)

And similarly, the momentum (p) is equal to h̄ times k.

p = h̄k (11)
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3 Modeling the behavior of light

Below is a fundamental representation of the behavior of light.

Ψ = ei(kx−ωt) (12)

[Note the �ωt� term above is subtracted to stay consistent with accepted math, and
since technically this term can be added or subtracted as long as the measurement
direction is assigned appropriately.]

This is a somewhat mysterious equation, but we know some things about it. We
can see that it uses the change in time and space (k and ω) information. And since
E = h̄ω (formula 10), then

ω = E/h̄ (13)

And since p = h̄k (formula 11)

k = p/h̄ (14)

So our fundamental equation can be rewritten in a form that is easier to work
with.

Ψ = ei(
p
h̄x−

E
h̄ t) (15)

4 Deriving a complex energy equation

We also know something about the derivative of Ψ (with respect to time). The
�rst derivative of Ψ (dΨ/dt) is de�ned to be how Ψ changes in time - which we
know is measured in radians/second.

dΨ

dt
=

∆Ψ

∆t
= radians/second (16)
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So we can take the �rst derivative of Ψ

dΨ

dt
= −iE

h̄
Ψ (17)

And then multiply both sides by ih̄ to get an energy formula for Ψ (EΨ) based on
the number of radians/second.

ih̄
dΨ

dt
= EΨ (18)

EΨ = ih̄
dΨ

dt
(19)

EΨ = ih̄× radians/second (20)

The energy equation by Einstein (E = h̄ω) also says that the amount of energy
can be calculated by multiplying h̄ times the number of radians/second. Only the
EΨ formula carries polarity information (i).

5 Schrodinger's kinetic energy formula

Schrodinger knew the formulas for the energy (EΨ) and momentum (pΨ). He also

knew that the momentum (mv) was the derivative of the kinetic energy

(
1

2
mv2

)
.

d

dv

[
1

2
mv2

]
= mv (21)

So Schrodinger may have reasoned, since the �rst derivative of Ψ yielded the
momentum formula, one more derivative (d2Ψ/dx2) should yield the kinetic energy
of Ψ (KEΨ).

It almost worked, however the second derivative of Ψ yields.

d2Ψ

dx2
=
c2m2v2Ψ

h̄2
=
−m2v2Ψ

h̄2
(22)
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and it is close, but not equal to the kinetic energy.

−m2v2Ψ

h̄2
6= 1

2
mv2Ψ (23)

The problem was, the momentum is the derivative of the kinetic energy with
respect to the velocity (v). The derivative of Ψ is with respect to imv/h̄ - and the
two are not equal.

imv

h̄
6= v (24)

So if you use Ψ to �nd the kinetic energy, then you need a �patch� backing out
two unneeded factors of i and h̄, one too many factors of m, and 1/2.

patch =
h̄2

i2m2
= − h̄2

2m
(25)

But if you multiply the second derivative of Ψ (d2Ψ/dx2) by the patch, you get
the kinetic energy.

d2Ψ

dx2
× patch = KEΨ (26)

−m2v2

h̄2
Ψ×− h̄2

2m
=

1

2
mv2Ψ (27)

d2Ψ

dx2
×− h̄2

2m
= KEΨ (28)

KEΨ = − h̄2

2m

d2Ψ

dx2
(29)
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6 The Schrodinger equation

The kinetic energy of Ψ can be added to any potential energy of Ψ (PEΨ) to get
the total energy.

Total energy of Ψ = KEΨ + PEΨ (30)

The Schrodinger equation setsEΨ (the energy equation based on the radians/second)
equal to his kinetic energy formula plus any potential energy (written as υΨ).

EΨ = KEΨ + PEΨ (31)

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
Ψ + υΨ (32)
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