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Abstract 
Contrary to common belief, shock thickness in supersonic and hypersonic flow is not an 
unchanging function of Mach number and not simply an infinitely thin discontinuity in 
the flow field. This discussion proves that shock wave thickness decreases significantly 
as Mach number increases and is not an absolute and unchanging discontinuity in 
external and internal flows. To prove that shock thickness decreases significantly with 
Mach number the specific case of a normal shock wave in the diverging section of a 
converging-diverging nozzle is considered. This analysis reveals that shock wave 
thickness becomes significantly smaller as Mach number is increased. Therefore, a shock 
wave has a finite but very small thickness, dx caused by the "packing" of molecules 
during the compression process as the shock wave moves through an undisturbed fluid. In 
addition, fluid density in the region of the shock wave tries to distribute itself evenly 
during the passage of the shock wave into undisturbed fluid. In this discussion shock 
thickness is determined as a function of Mach number and fluid viscosity. 
 
 

Nomenclature 
𝑎         =   Local speed of sound 

𝑀        =    Free stream Mach number 

𝑃         =   Static pressure 

𝑅!"#    =   Gas constant 

𝑇         =    Fluid temperature           

𝑇!        =   Free stream temperature                                     

𝑉         =   Fluid velocity 

𝑑𝑥       =   Shock thickness 

 

Greek symbols 

𝜇         =   Coefficient of viscosity  

𝜌         =   Fluid density 

𝜈         =   Kinematic viscosity (𝜇 𝜌) 

𝛾         =   Ratio of specific heat 
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Fluid Dynamics Background Discussion 
When an object or fluid disturbance moves so fast that fluid particles cannot move out of 
the way, the molecular structure of the fluid permits the relative position of the molecules 
to move closer together or to compress. Thus, as the mean free path of the molecules is 
shortened, layers of spherical (3D) or planar (2D) disturbances come together to form a 
shock wave. A pressure build-up or pressure pulse is created which grows larger and 
larger until it becomes a shock wave resulting in a rise in temperature and pressure. In 
short, as a disturbance approaches the speed of sound, gas molecules pack closer and 
closer together until a region of compressed fluid results called a shock wave1. A shock 
wave is actually a wave front of compressed gas molecules with some unique properties.  
All three-dimensional objects that travel faster than Mach 1 produce shocks and oblique 
shocks as illustrated in Figure-1 of a projectile traveling at Mach 2.81. The contour plot 
presented in Figure-1 was generated using the CFD program, AeroCFD2. 
 

 
Figure-1, AeroCFD2 Pressure Contours, Cone-Cylinder-Flare, M = 2.81, AOA = 0.5 degrees 

 
For converging-diverging nozzles1, 3, fluid flow begins when the exit backpressure, 𝑃! is 
reduced below the chamber pressure, 𝑃!. If 𝑃! is only slightly less than 𝑃!, the flow 
throughout the nozzle is subsonic and the pressure profile along the axis would be like 
curve-A in Figure-1. Reducing 𝑃! increases the mass flow rate through the nozzle. As the 
flow rate increases, the pressure at the throat decreases until it reaches the critical 
pressure indicated by curve-B. For the condition represented by curve-B the exit pressure 
𝑃! that corresponds to sonic conditions at the throat and subsonic everywhere else can be 
easily determined using isentropic flow relations. The flow is subsonic everywhere in the 
nozzle except at the throat and mass flow is the maximum possible for given nozzle and 
reservoir conditions. Now, suppose the exit pressure is reduced to a value corresponding 
to curve-F in Figure-1 where no shocks are present in the nozzle. The exit pressure at F is 
such that the entire expansion is isentropic and the flow is subsonic in the converging 
portion of the nozzle and supersonic in the diverging section. The value for pressure is 
simply obtained from the isentropic relationships for Mach number, pressure, temperature 
and density and represents an optimal nozzle design. The pressure within the nozzle exit 
cannot be reduced further and when the external pressure is reduced to G the fluid 
leaving the nozzle changes its pressure through a complicated flow pattern outside the 
nozzle. Thus, curve-B and curve-F represent the two limiting cases of exit pressure for 
isentropic flow in such a nozzle. For exit pressures below that at B, a shock wave forms 
within the diverging part of the nozzle, changing the flow from supersonic to subsonic 



and compressing the gas exactly enough to match the nozzle exit conditions. Because of 
the entropy rise across the shock, the overall flow through the nozzle is not isentropic, 
although the flow on either side of the shock can still be considered isentropic. The lower 
limit for this kind of flow pattern is given by a shock occurring exactly at the exit of the 
nozzle as indicated by curve-D. The flow conditions for exit pressures between curve-B 
and curve-D may be computed with aid of the isentropic relationships and normal shock 
analysis across the shock. At still lower exit pressures the fluid flow adjusts itself through 
a series of two-dimensional or three-dimensional shock waves and the average exhaust 
velocity is generally still supersonic. The nozzle designer must choose an appropriate 
condition from the previous possibilities for his/her particular application. When the flow 
leaves the nozzle at supersonic speeds and its pressure exactly equals the surroundings 
the nozzle is called correctly expanded as represented by curve-F. If the exit area of the 
nozzle is less than the correctly expanded value for a given backpressure, the nozzle is 
underexpanded and the fluid leaving the nozzle has a pressure greater than the 
surroundings as represented by curve-G. On the other hand, if the exit area of the nozzle 
is too large, shock waves form within or just outside the nozzle and the flow is called 
overexpanded as represented by curve-E. Establishing the limiting pressure between 
curve-B and curve-D and comparing them with the specified exit pressure the designer 
quickly determines the particular mode of operation of any nozzle.  
 

     
Figure-2 and Figure-3, Nozzle flow conditions depending on Pressure Ratio (𝑃! 𝑃!) 

 

Normal Shock Wave Thickness Discussion 
To prove that shock thickness decreases significantly with increasing Mach number the 
specific case of a normal shock wave in the diverging section of a converging-diverging 
nozzle is considered. Curve-C in Figure-2 represents the condition where a normal shock 
exists in the diverging portion of the nozzle and is the case used here to compute normal 
shock thickness as a function of Mach number. Some engineers and Computational Fluid 
Dynamics4 (CFD) researchers incorrectly define a shock wave as an infinitely thin 
discontinuity in the flow. This misconception is probably due to the fact that CFD codes 
rarely attempt to mesh the region within a shock wave because of the huge computational 
resources required. However, a shock wave is not discontinuous, i.e. a shock wave is not 



infinitely thin, because a shock wave has a finite thickness where fluid properties vary 
continuously across the region defined within the shock wave. Upstream of a normal 
shock the flow is supersonic, whereas downstream of a normal shock the flow is always 
subsonic. In addition, upstream and downstream of a shock wave the flow is isentropic 
but the flow is not isentropic in a region defined by the shock wave. The flow is not 
isentropic in a shock wave because friction or shear stress causes the flow to be internally 
irreversible. Within a shock wave, internal irreversibility (losses) due to friction cause the 
entropy, ds to be greater than 0.0. Whereas, before and after a shock wave ds = 0.0. 

 
Figure-4, Backpressure (𝑃! 𝑃!) that causes a normal shock in the diverging part of the nozzle, curve-C 

 
Normal Shock Wave Thickness Analysis 

This analysis reveals that shock wave thickness5 becomes significantly smaller as Mach 
number is increased. Therefore, a shock wave has a finite but very small thickness, dx 
caused by the "packing" of molecules during the compression process as the shock wave 
moves through an undisturbed fluid. The density of the fluid in the region of a shock tries 
to distribute itself evenly during the passage of the shock wave into undisturbed fluid. 
The equations that follow determine shock wave thickness as a function of Mach number 
before the shock, 𝑀! and fluid viscosity, 𝜈. 
 

 
Figure-5, Control volume around a normal shock wave 

 
Figure-5 displays the control volume around a shock wave that assumes the fluid is in 
motion past a stationary shock. In addition, the applied shear stress, 𝑃!" is proportional to 
the velocity gradient in the x-direction for common linear fluids like air. The equation for 
shear stress1, 3 acting on the shock control volume is the following. 

𝑃!" = 𝜇 !"
!"

.                                                        (1) 
 

Assume that for the control volume displayed in Figure-5, the shear stress, 𝑃!" acting 
within the shock is approximately equal to the normal stress1, 3, Δ𝑃 acting on the shock.  

𝑃!" ≈ Δ𝑃 = 𝑃! − 𝑃!.                                                 (2) 



After Substituting Equation 2 into Equation 1 the following relationship is achieved.  
                                                            𝑃! − 𝑃! =

! !!!!!
!"

.																																																							(3) 
 
Define the continuity equation1, 3 for fluid mechanics. 

𝜌!𝑉! = 𝜌!𝑉!.                                                      (4) 
 
Define the x-momentum equation1, 3 for fluid mechanics. 

𝑃! − 𝑃! = 𝜌!𝑉!! − 𝜌!𝑉!!.                                         (5) 
                                                          
Determine shock pressure change using the continuity and x-momentum equations.  

𝑃! − 𝑃! = 𝜌𝑉!! 1− !!
!!

.                                          (6) 
 

After Substituting Equation 6 into Equation 3 the shock thickness, dx is. 

𝑑𝑥 = !
!

!!!!!!
!! !!!!!!

.                                                  (7) 

 
Then, after simplification, Equation 7 becomes, where 𝜈 = !

!
. 

𝑑𝑥 = !
!!

.                                                         (8) 
 

The local speed of sound1, 3 before the shock wave is the following.  
𝑎! = 𝛾𝑅!"#𝑇!.                                                    (9) 

 
Mach number1, 3 before the shock when fluid velocity is known are.   

𝑀! =
!!
!!

. Where 𝑉! = 𝑎!𝑀!.                                        (10) 
 

Finally, shock wave thickness, dx in terms of initial Mach number and viscosity is.   
𝑑𝑥 = !

!!!!
.                                                      (11)    

 
Numerical Algorithm For Shock Wave Thickness 

Fluid properties and numerical constants before the shock wave are the following. 
𝑇! = 288.15 𝐾            𝛾 = 1.4                𝜈 = 1.4607 𝑥 10!! !

!

!"#
             𝑅!"# = 287 !!

!"#!!
 

𝐼!"# = 100                𝑀!"# = 20           𝑀!"# = 1       
 
Generate array of Mach number values before the stationary shock wave. 

𝑀! = 𝑀!"# + 𝑀!"# −𝑀!"#
!!!

!!"#!!
.                          (12) 

 
Generate array of temperature1 values before shock wave as a function of Mach number. 

𝑇! = 𝑇! 1+ !!!
!
𝑀!

! !!
.                                        (13) 

 
Generate array of speed of sound1 values before shock as a function of temperature. 

𝑎! = 𝛾𝑅!"#𝑇!.                                                  (14) 
 



Finally, determine shock thickness, dx as a function of Mach number, M. 
𝑑𝑥 = !

!!!!
.                                                          (15) 

 
Normal Shock Thickness Example 

Shock thickness decreases with increasing Mach number 
The following example uses Equation 15 to determine normal shock thickness in the 
diverging section of a converging-diverging nozzle when free stream velocity is Mach 
2.81. The Standard Atmospheric value6 for air temperature, 𝑇! at sea level is 15 C and 
kinematic viscosity, 𝜈 for air is 1.4607 x 10!! m^2/sec. In figure-6 the normal shock 
thickness is plotted as a function of Mach number. For this example at Mach 2.81 the 
shock wave thickness is determined from Equation 15 to be 2.453 x 10!! mm and is 
represented as a blue dot in the dx verses Mach number plot in Figure-6. Please note that 
in Figure-6 shock wave thickness as a function of Mach number is normalized by shock 
wave thickness at Mach 1. Figure-6 illustrates that normal shock wave thickness; dx 
varies from 4.703 x 10!! mm at Mach 1 to 1.932 x 10!! mm at Mach 20. This analysis 
proves that shock wave thickness decreases with increasing Mach number representing a 
41.1 percent decrease in shock thickness from Mach 1 to Mach 20.  

	

	
Figure-6, Normal shock thickness as a function of Mach number from Mach 1 to Mach 20 

 
 

History of the Shock Thickness Results Presented Here 
This paper presents results and basic principals that were rejected during a presentation to 
leadership of the CFD Section of the Munitions Directorate at the Air Force Research 
Laboratory (AFRL) that proved shock thickness decreases for increasing Mach number. 
 
Beginning June 1989 John Cipolla was the first Eglin Air Force Base engineer to develop 
the capability to simulate holographic interference flow fields and shock wave patterns 
from Computational Fluid Dynamics solutions and then successfully compare these flow 
patterns with experimentally obtained interferograms. John Cipolla’s work in the area of 
interferometric analyses for predicting shock wave patterns from CFD results was 
documented in his report, Computational and Experimental Interferometric Analysis of 
a Cone-Cylinder-Flare Body7 and was presented in November 1989 after six months of 
intense work. Figure-7 presents a theoretical interferogram7 for supersonic flow past a 
body at Mach 2.81 that was a point of discussion. During the staff briefing to several 
USAF AFRL/MN personnel, John Cipolla was about to discuss the fluid dynamics 



mechanism that causes shock thickness to decrease with increasing Mach number. 
However, Dr. Gregg Abate and Dr. Davy Belk disagreed and insisted without proof that 
shock wave thickness could not possibly decrease or even change with increasing Mach 
number. However, Reference 5 independently demonstrates that shock wave thickness 
does indeed decrease with increasing Mach number. This paper, which proves shock 
wave thickness decreases with increasing Mach number, is a long overdue response to the 
two USAF AFRL/MN researchers. 
 

 
Figure-7, Theoretical Interferogram generated in the Aeroballistic Tunnel at Eglin AFB 
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