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Abstract 

Currently, natural philosophy (Physics) is lacking a most fundamental model and 

a complete set of self-consistent explanations. This article attempts to discuss several 

issues related to this lack. Starting from the most basic philosophical paradoxes, I 

deduce a physical model (the natural philosophical outlook) to describe the laws 

governing the operation of the universe. Based on this model, a mathematical model is 

established to describe the generalized diffusion behavior of moving particles, for 

which the form without external field is simply verified. In this article, the gravitational 

force and relativistic effects are interpreted for the first time as a statistical effect of 

randomly moving particles. Thus, the gravitational force and special relativistic effects 

are integrated into a single equation (achieved by selecting an initial wave function with 

a specific norm when solving it), and the cause of stable particle formation is also 

revealed. The derived equation and the method of acquiring the initial wave function 

are fully self-consistent with the hypotheses stated in the physical model, thereby also 

proving the reliability of the physical model to some extent. Some of these ideas may 

have potential value as a basis for understanding the essence of quantum mechanics, 

relativity and superstring theory, as well as for gaining a further understanding of nature 

and the manufacture of quantum computers. 

1. Introduction 

"Birds flock and sing when the wind is warm, Flower-shadows climb when the 

sun is high"1; the Earth, our home, is overflowing with vigor! However, light years 

away, dead silence seems to prevail; from the human perspective, the Earth appears vast, 

but at the scale of the Solar System, it is merely a "little blue dot". By what forces are 

these mysterious phenomena, which are as far apart as Heaven and Earth in our eyes, 

arranged? How enormous is the universe? Why is it like this? Through what mechanism 

does it operate? Is there a beginning or an end? Where does the vast amount of energy 

in our universe come from? Will it ever run out? How do the concepts of time, space 

and speed come into being? Will the total entropy in the universe continue to increase? 

etc. Throughout the history of human existence, these have been difficult questions to 

answer. "Know the enemy and know yourself, and you can fight a hundred battles with 

no danger of defeat"2; to explore the origin of the universe is the only way for human 

beings to conquer nature. 

Since ancient times, human beings have gradually deepened their understanding of 
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the laws of nature and the universe, through a continuous process of development that 

can be roughly divided into the following three stages: 

In the initial period of Aristotle, Ptolemy, Copernicus, Kepler and others, people's 

explorations of nature were restricted not only by the level of technological 

development at that time but also by various political conditions3. The explorations of 

nature and the universe were slow, and the levels of understanding gained were also 

relatively shallow. By the time of Galileo and Newton, technology had greatly 

improved, and a framework of relatively strict logic and scientific thinking methods 

had also been developed. Under the guidance of Newtonian mechanics and calculus, 

the understanding of nature greatly improved. However, Newtonian mechanics held 

that gravitation was generated directly by mass and was not affected by motion or 

energy. The laws of gravitation, inertia and acceleration were all developed based on 

simple rules of experience from the perspective of philosophy (i.e., axioms; although 

the definition of universal gravitation was formulated by Newton, Galileo had already 

established empirical rules in accordance with observation, and the essential nature of 

inertia or acceleration was not clear), and the universe as a whole was considered to be 

relatively static. 

In modern times, Einstein's theory of general relativity emerged, and humans' 

ability to understand natural laws and predict natural phenomena improved 

tremendously. According to general relativity, a gravitation or space-time field is 

affected by matter, energy and motion, which leads to apparent "magical" changes in 

motion. On this basis, the existence of black holes and other celestial bodies was 

predicted3,4. With the subsequent rapid development of quantum mechanics, the human 

understanding of the universe at the microscale greatly improved, resulting in a new era 

of philosophy (the Copenhagen interpretation of quantum mechanics) as well as a large 

number of modern technological advances3. 

However, what are the physical principles behind quantum mechanics? How 

should quantum entanglement and Wheeler's delayed-choice experiment be perceived, 

and is the Dirac equation with special relativistic effects essentially correct or not? What 

is the more fundamental reason behind the curved nature space-time and the principles 

of special relativity? Furthermore, how can dark matter, dark energy and inexplicable 

repulsion, which often arise in discussions of modern cosmology, be explained? etc. 

In all this time, humans have made no effort to explore the answers to these 
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substantive questions (by establishing a more fundamental physical model) but rather 

have remained at the superficial surface of quantum physics. Based on classical physics 

(such as Newtonian mechanics), formulas have been deduced from a mathematical 

point of view, and the conclusions of special relativity and the constraints of Lorentz 

covariance have been added to various equations, yielding results that seem to be very 

fragmented (such as the Dirac equation and quantum field theory). All these practices 

have led to the emergence of various theories but have not fundamentally solved the 

problem3,5. The whole edifice of physics seems to have improved by virtue of various 

explanations, such as the so-called Standard Model of Particle Physics and superstring 

theory, but none of them is completely satisfactory. The Standard Model and various 

models of a Grand Unified Theory that have been developed to date merely integrate 

the previous models from the perspectives of mathematics and the surface nature of 

physical phenomena; as a result, they cannot perfectly explain gravitational effects 

(irreducible normalization after the introduction of gravitation). Superstring theory 

seems to encompass all known successful theories because it includes additional 

degrees of freedom (higher dimensions). However, the invocation of higher dimensions 

is not meaningful for solving more practical problems. Instead, because many 

additional false possibilities arise that make the equations extremely difficult to solve, 

the requirements in terms of the mathematical skills needed to pursue such theory have 

reached an amazing level. Moreover, a "string" is not and should not be considered the 

most basic physical morphology. In addition, the theory of loop quantum gravity is not 

perfect, and it seems to raise more difficulties than can be solved. In view of the above 

problems, it is necessary to further understand the essential nature of physical 

phenomena or physical constraints and to establish a more fundamental physical model. 

Starting from the most basic philosophical paradoxes, this article probes into a 

series of even deeper and more essential problems in physics and attempts to establish 

a most fundamental physical model to describe the laws governing the operation of the 

universe. Based on this, a self-consistent mathematical equation is established in a 

concise form. This equation may be able to unify quantum mechanics and (general and 

special) relativity and solve the problem of the impossibility of renormalization when 

integrating quantum mechanics with general relativity. Furthermore, the cause of stable 

particle formation is also revealed. The frameworks of the physical and mathematical 

models derived in this article may provide guidance for the interpretation and prediction 
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of other natural phenomena. However, many viewpoints in this article are being put 

forward here for the first time, and hence, there must inevitably be some immature ideas 

and even defects. I earnestly request that my readers may read these with an open mind, 

not allowing instances of imprecision or individual mistakes in some of the more 

complicated details to prevent them from being willing to offer constructive suggestions 

for correcting some rough or flawed aspects of the main idea of this article. 

2. Methods 

This article expounds on many ideological experiments based on philosophical 

paradoxes. Mathematica 12.0 for Mac and Linux (Wolfram Research Inc.) were used 

for all of the mathematical calculations, and the operating systems were macOS High 

Sierra 10.13.6 and Red Hat Enterprise Linux Server (Release 6.3, Kernel Linux 2.6.32-

279.el6.x86_64). The solutions to each specific problem can be found in the 

Supplementary Information. If no specific parameters are specified, the default values 

in the software system were used. The effective number of significant figures in the 

numerical methods was no less than 6. In addition, it should be noted that some 

"abnormal" parameter configurations or script details described in the Supplementary 

Information of this article actually arose from empirical actions taken to deal with 

software bugs (for instance, in Fig. 5, different line width settings were used for 

different midlines, such as the lines at x = 0, in the same graphics because this was the 

only way to ensure that the midlines would look consistent and equal in width). If the 

results in this article are to be reproduced completely, the software version used must 

be identical to that used here. 

3. Results and Discussions 

3.1 Can the World be Understood? 

The innate knowledge possessed by human beings is perceptual knowledge that 

corresponds to external stimuli and is established through long-term interaction and 

internalization between an organism and its natural environment constrained by the 

elimination mechanism of nature6,7. Therefore, such innate knowledge shows excellent 

reliability. The acquired knowledge or experience accumulated by human beings 

through a model of innate cognition (even if such a cognitive model includes more or 

less subjective factors) should still be reliable and applicable in practice if such practice 

is based on the same cognitive model. Moreover, in view of the relative stability and 

repeatability of certain external conditions (i.e., the translation invariance of time and 
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space), the innate knowledge and acquired experience possessed by human beings 

should also be reliable throughout the whole range of human practice. 

Therefore, the theories established by human beings, even if they are cognitions 

only from the perspective of human beings on Earth, who in some sense are equivalent 

to cosmic dust, and even if they contain many limitations or mistakes (such "mistakes" 

are relative; they are related to the fact that the appearances and forms of things as 

reflected in the human consciousness are not, in fact, the original appearances and forms 

of those things), as long as they can effectively explain and predict the phenomena we 

observe, are successful theories, even though we cannot confirm whether they represent 

completely correct truth6. 

3.2 The World from the Perspective of Philosophical Paradoxes 

The reason why the world has infinite energy and runs endlessly must be that there 

exists a series of philosophical paradoxes restricting each other8,9. Only under such 

contradictory constraints can the world become balanced and logical (self-consistent). 

Under the guidance of this perspective, this article summarizes three axioms, as follows: 

AXIO 1: Substances exist in the world. 

Whether substances exist in the world is an ancient topic of philosophical 

discussion. However, this debate serves as the original basis for all rational inference 

and logical extrapolation in this article. There are only two possible situations: either 

some substance exists in the world or there is no substance at all. The fact is obvious: 

there are some substances that exist in this world. On average, however, these 

substances are so sparse that they are almost nonexistent10. As a result, the world (or at 

least within the range of human observation) is as sparse as though it is without 

substance. 

AXIO 2: These substances are inhomogeneous. 

If the world is full of substance, then there are only two possibilities for its 

distribution: it is either homogeneous or inhomogeneous. Obviously, the distribution of 

substance in this world is inhomogeneous within the range of our observation. However, 

there is no reason that any one of these inhomogeneous substances should be favored 

more than another, that is, substances should have no greater opportunity to be 

distributed in one place than another. Therefore, it should be considered that the 

probability of the distribution of substances in every location (not limited to only 3 

dimensions) is equal, or homogeneous, from a large-scale perspective11,12. To satisfy 
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both of these properties of inequality of distribution and equality of probability, the 

substances in this world must exist in quantum form. This fact does not require 

discussion because it has been verified by various physical experiments. There is no 

reason for the world to "favor one substance more than another", and similarly, it should 

be probabilistic identical between different "quantum dots". The fact that the above two 

properties of "inequality of distribution" and "equality of probability" are both satisfied 

also necessitates that the world is a paradoxical body with uniform probability but 

inhomogeneous characteristics at the microscale (or in several dimensions). 

AXIO 3: These substances are moving. 

This seems to be another topic of philosophical discussion, but I give it new 

connotation here. The substances observed in the world are moving, or from the 

perspective of human understanding, the substances that exist in the world are moving. 

In any case, the world can be interpreted as dynamic rather than static. Then, what is 

the most reasonable movement pattern? 

The current understanding is as follows: Photons, which have no stationary mass, 

are the fastest substance in the universe. It is impossible to accelerate species with 

stationary masses (such as electrons) to the speed of light. If they were to reach this 

speed, their masses would become infinite, and their energy consumption will also 

become infinite (according to the conclusions of relativity). Therefore, there is no 

species that can move faster than the speed of light, even if there is, it cannot transmit 

information. However, from this point of view, the essential nature of quantum 

entanglement cannot be understood, the phenomenon of Wheeler's delayed-choice 

experiment is astonishing, and the mechanism by which the influence of gravitation can 

reach out beyond a black hole is not easy to explain, ect. 

Therefore, this point of view is abandoned here, and it is instead considered that 

photons are the fastest species that can transmit information that have been found or 

perceived by human beings at present, that photons have a light mass (see Section 3.7 

for further speculations on photonic structure), and that motion cannot substantially 

change the physical mass of an object. Particles at a smaller mass level than photons, 

even if they can transmit information, cannot be perceived (or consciously perceived) 

by human beings at present, and their limiting speed is faster. Therefore, once the speed 

of a particle is sufficiently fast, it must "split" into particles of lower mass levels, until 

the speed reaches infinity and the mass becomes infinitesimal (in the framework based 
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on the assertion that "the substances in this world must exist in quantum form", Section 

3.3.5.2 will confirm that it is possible that particles of lower mass levels can form a 

particle of a higher mass level and that the opposite process can also occur).  

From this point of view, the whole universe will exhibit motion-related phenomena 

as follows: For a particle with infinitesimal mass, its speed can reach infinity. So, no 

matter how large the space in which it exists is, such an infinitesimal particle can 

instantaneously exist at any position. Therefore, it can be everywhere at once, relative 

to it, any arbitrarily large space is also an infinitesimal space in which the concepts of 

time and distance do not apply, and such a particle is infinitely large relative to any such 

space, meaning that no motion in space can be perceived for space at all. Since there is 

no concept of space or time in the case of infinitesimal particles, there is also no concept 

of energy. If the universe is composed of infinitely many such moving particles 

(because they are infinitesimal particles, there are no collisions between them), then it 

will not consume any so-called energy and can continue to exist and run forever. 

However, once a particle of a larger mass level (a particle swarm of infinitesimal 

particles) is observed, its speed will decrease (the relationship between the mass of the 

undisturbed particle swarm and the average speed of the constituent particles obeys the 

Maxwell distribution; see Part 1 of the Supplementary Information for details). 

Simultaneously, the concepts of time, space, speed, mass and energy will arise. 

Therefore, there is no inherent concept of time, space or speed and no inherent concept 

of mass or energy in the universe; all of these concepts instead arise from the 

representations of the universe that are observed from various perspectives. Although a 

particle is infinitesimal, it is infinite relative to the universe; although the universe is 

infinitely great, it is infinitesimal relative to the infinitesimal particles. As the velocity 

of a particle approaches infinity, the very concept of motion will be lost. The universe 

is both large and small; substances both move and do not move within it; and the 

concepts of time, space, speed, mass and energy are both extant and absent. Thus, the 

nature of the universe is described by several pairs of mutually constraining paradoxes. 

The validity of the above three axioms is obvious, and their existence depends on 

the constraints imposed by their counterparts in the mutually constraining paradoxes 

introduced above. Here, only the meaningful sides of these paradoxes are selected for 

further investigation. In addition, under the constraints of logic, the concepts derived 

from the 3 axioms are also contradictory constraints. Only logic that is constrained by 
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paradoxes is complete and self-consistent. On the basis of the above three axioms, this 

article makes reasonable inferences and extracts the following 3 hypotheses: 

HYPO 1: The universe is composed of infinitely many uniform particles with 

infinite speed and infinitesimal mass. 

The concepts of "infinity" and "infinitesimal" are equivalent to those in 

mathematical analysis. The statement that the masses of the particles are uniform refers 

to these masses relative to their standard deviation, and the concept of "uniform 

particles" discussed below also has the same meaning. 

HYPO 2: The speeds of these infinitesimal particles in 3-dimensional space are 

equal, and the directions of their motion are random. 

As mentioned in AXIO 2, these infinitesimal particles are formed in accordance 

with the same law; therefore, their masses and speeds (or norms of momenta) should 

be either strictly equal or equal relative to their standard deviations (the concepts of 

equal masses and speeds discussed below also have the same meaning), and the 

probabilities of the possible directions in each dimension are also equal because there 

is no reason for them to be uneven. 

HYPO 3: There is no interaction between infinitesimal particles. 

In the world we observe, interaction forces exist everywhere. However, this is not 

necessarily true for infinitesimal particles. For infinitesimal particles, it is assumed that 

there is no traditional interaction between them (such as gravitation) and that any 

observed macroscopic force (or interaction) is caused by a statistical effect of these 

infinitesimal moving particles. This assumption does not conflict with the classical 

force concept but will be helpful for establishing a general equation and expanding the 

self-consistent range of theory. 

These are the 3 basic characteristics (hypotheses) extracted from the 3 basic 

axioms regarding the nature of the world. Next, a model will be built on the basis of 

these 3 hypotheses. 

3.3 Model Building Based on Philosophical Paradoxes 

On the basis of the above 3 axioms and 3 hypotheses, this article infers that there 

are only four possibilities regarding the scale (large or small) of space (in any dimension) 

and the number (many or few) of particles in any local domain and that these four 

possibilities are independent in different local domains. This is because the world is 

dynamic (in infinite dimensions) and inhomogeneous, and motion and inhomogeneity 



 10 

are two independent properties. Because of the movement of particles, when a certain 

number of particles are observed without any spatial differences, the concept of velocity 

will be generated in the world. In infinite dimensions, the concept of velocity will be 

characterized in terms of the concepts of time and distance. Due to the inhomogeneity 

of the distribution of particles, when a certain number of particles are observed with 

spatial differences, the concept of density will be generated in the world. In infinite 

dimensions, the concept of density will be characterized in terms of the concepts of 

scale (another single degree of freedom different from distance) and the number of 

particles with spatial differences (disguised distance in another degree of freedom). If 

the latter two degrees of freedom are fixed (that is, the two degrees of freedom or the 

entities they represent are used as references to determine the object under inspection), 

then they will be characterized in terms of the degrees of freedom of distance in the 

other two dimensions. Therefore, there are four independent dimensions in this world, 

being three dimensions characterized in terms of the concept of space in our 

consciousness and one dimension characterized in terms of the concept of time in our 

consciousness. In principle, these 3-dimensional space and 1-dimensional time 

coordinates can describe all natural phenomena. Even methods operating in the so-

called multidimensional space of string theory have the ultimate purpose of solving 

problems in 4-dimensional space-time. 

To understand the world more easily and intuitively, humans tend to project 

various abstract results and conclusions into the world we are familiar with. In principle, 

if a 4-dimensional curvilinear coordinate system is adopted through coordinate 

transformation, the necessary mathematical operations may be simple, but this 

conceptualization will lead to difficulties in understanding the problem. Einstein's 

general relativity uses a 4-dimensional curvilinear coordinate system (space-time), 

which is an "immersive perspective" with a sense of participation. Although individual 

immersive physical events (such as the constant speed of light) are consistent with 

physical observations, difficulties will eventually arise in understanding the essence of 

physical problems. In absolute space-time, the coordinate system consisting of 3 spatial 

dimensions and 1 time dimension is the "God perspective", which is helpful in allowing 

people to look at and understand problems from a macroscopic perspective. Of course, 

no matter which perspective is adopted, it does not affect the descriptions of physical 

phenomena in 4-dimensional space-time. Finally, the evolution of various phenomena 
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should ultimately be measured and understood in the flat coordinate system that we are 

familiar with at present. 

It should be emphasized that the "God perspective" (or "absolute space-time") 

mentioned here also has relativity. When absolute space-time is used as the reference 

system, the particles in it should satisfy the conditions given by HYPO 1–3 (this system 

can also be regarded as the classical "inertial reference system" here). This means that 

if the entire swarm of existing particles moves as a whole, then absolute space-time will 

also move with it; it would be meaningless if absolute space-time (or the corresponding 

absolute coordinate system) did not follow the overall movement of the particle swarm. 

Since our goal is to understand and grasp the world, it is unnecessary to use a 

relatively variable view of space-time. Sometimes, the concept of absolute space-time 

is more advantageous for building models and understanding laws. In view of the above 

analysis, the physical and mathematical models presented in this paper will be 

established in the 4-dimensional (3 dimensions of space plus 1 dimension of time) 

absolute coordinate system. 

3.3.1 Physical Model 

Here, HYPO 1–3 are combined to form the physical model considered in this 

article: The universe is composed of infinitely many uniform particles with infinite 

speed and infinitesimal mass. The speeds of these infinitesimal particles in 3-

dimensional space are equal, and the directions of their motion are random. There is no 

interaction between infinitesimal particles. No additional rules are needed. 

3.3.2 Special Relativistic Effects on Infinitesimal Particles 

It will be proven that (special) relativistic effects exist in the abovementioned 

physical model (Section 3.3.1). Once again, it is emphasized that the speeds of these 

particles (throughout this article, the "infinitesimal particles" described in the above 

physical model are called "particles", "1st-order particles" or "tiny particles", while 

larger finite-mass-level particles composed of k particles are called "kth-order particles") 

are exactly the same (or , where c is the mean value of the particle speeds and 

 is their standard deviation), and the directions of their motions in 3-dimensional 

space are random. Therefore, these particles can be represented by random vectors with 

equal norms in Euclidean space. In this article, statistical methods will be used to prove 

the existence of special relativistic effects in the vector swarm composed of such a 

group of vectors. When a group of particles in the same 3-dimensional space is moving 

σ 1≪ c

σ 1
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in one direction on average (i.e., their centroid is moving in one direction), they will 

lose some probability of movement in other directions due to statistical effects, i.e., the 

movement trends in other directions will decrease, giving rise to a special relativistic 

effect. This phenomenon will be quantitatively explained in detail below. 

Note that the velocity of a kth-order particle is the velocity of the overall center of 

mass of the k particles, which is the average of the velocity vectors of all these particles. 

Moreover, the projection of the velocity vector of a kth-order particle onto one of the 

three equivalent coordinate axes of the 3-dimensional Cartesian coordinate system is 

the mean value of the projection (onto the same axis) of the velocity vectors of the 1st-

order particles forming the kth-order particle, which follow the same distribution; 

therefore, it approximately follows a normal distribution (central limit theorem). There 

are three equivalent (approximate) normal distributions, one on each of the three axes, 

which are not completely independent. However, James Clerk Maxwell13 proved that 

these distribution can, in fact, be equivalently treated as completely independent. This 

is because randomly selecting a vector is equivalent to randomly determining a three-

axis coordinate; moreover, the problem of the momentum transfer of gas molecules 

participating in random collisions is also equivalent to the problem discussed in this 

article. Accordingly, the speed of kth-order particles follows the Maxwell distribution. 

Suppose that the standard deviation of the projection (treated as a random variable; the 

same is done below) of the velocity of any one of the k equivalent particles forming a 

kth-order particle onto each equivalent coordinate axis is . Then, the standard 

deviation of the projection of the velocity of a kth-order particle onto each equivalent 

coordinate axis is . Therefore, the projection onto each coordinate axis follows a 

normal distribution with a standard deviation of . As a result, the speed of kth-

order particles follows the Maxwell distribution with scale parameter  (see Part 1 

of the Supplementary Information for details). 

As already mentioned, it is assumed that the speed of all particles is c (c > 0) and 

that the directions of their movement are evenly distributed in 3-dimensional space. 

Among the possible systems composed of randomly moving particles, the system with 

an average velocity of 0 (i.e., the "absolute space-time" mentioned earlier) is called the 

σ

σ
k

σ
k

σ
k
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stationary reference system (denoted by R0), and a 3-dimensional Cartesian 

(rectangular) coordinate system Oxyz is established for it. A particle swarm formed by 

a subset of particles in a certain period of time and moving at an average velocity u is 

called a moving reference system (denoted by Ru). Let the direction of the velocity of 

Ru be parallel to the z-axis in the direction of increasing z. Then, the mean value of the 

velocity component of the particles in Ru along the z-axis must be u. Under the 

assumptions that all particles in Ru are represented by vectors with their starting points 

at the origin of the coordinate system and that the point (0, 0, u) is taken as the dividing 

point of the z-axis, the vectors in Ru can be separated into two groups: the components 

of the vectors above this dividing point and the components of the vectors below it. 

These vectors randomly enter Ru from R0 with equal probability. Therefore, the 

distribution of the vectors in Ru can be thought of as a mixed distribution of the vector 

distribution of the components above the dividing point and the vector distribution of 

the components below the dividing point. When the mean value of the components on 

the z-axis of this mixed distribution is u, the mixture weights w can be determined. With 

this value as the reference, the distribution of the vectors that form the mixed 

distribution on the x-axis (or y-axis) can be determined; thus, their standard deviation 

 can also be obtained. When the standard deviation of the components on the z-axis 

of this mixed distribution is also , then the speed of kth-order particles (of mass 

, where  is the mass of a single particle; the same is true below) in Ru follows 

the Maxwell distribution with scale parameter , where 

   (1) 

Therefore,  is directly proportional to the average speed  of the kth-order 

particle, namely, 

   (2) 

By substituting Equ. 1 into Equ. 2, we obtain 

   (3) 

The distribution of the vectors in R0 is relatively simple. Suppose that the standard 

deviation of their components on the x-axis (or y- or z-axis) is ; similarly, the 

average velocity of the kth-order particles that is formed by them is 

σ u

σ u

µk µ

σ u,k

σ u,k =
σ u

k
.

σ u,k vu,k

vu,k = 2
2
π
σ u,k .

vu,k = 2
2
π
⋅
σ u

k
.

σ 0
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   (4) 

When particles of the same mass level are formed in both Ru and R0, the ratio between 

their average speeds (Equ. 3 to Equ. 4) is 

   (5) 

Therefore, the ratio of  to  is the ratio between the speeds of particles of higher 

mass levels in Ru and R0. A more detailed introduction will be presented in the 

following. 

As mentioned above, in the 3-dimensional Cartesian coordinate system 

constructed in the stationary reference system R0, if the moving reference system Ru 

moves along the z-axis at velocity u, then the x- and y-coordinates are equivalent; hence, 

only the x-coordinate is considered in the following. In R0, if the components of these 

vectors along the z-axis are uniformly distributed in the interval [–c, c], then the 

probability density on the x-axis is 

   (6) 

where the random variables are Q~U(–p, p) and H~U(–1, 1). Note that in this article, 

random variables (vectors) are expressed in capital letters, and the values of random 

variable (vectors) are expressed in the corresponding lower-case letters. The component 

distribution of the vectors whose components are above (0, 0, u) on the x-axis is denoted 

by D1, and its probability density is written as 

   (7) 

where the random variables are Q~U(–p, p) and H~U( , 1). Correspondingly, the 

component distribution of these vectors on the z-axis is denoted by D3, namely, D3~U(u, 

c). The component distribution of the vectors whose components are below (0, 0, u) on 

the x-axis is denoted by D2, and its probability density is written as 

   (8) 

where the random variables are Q~U(–p, p) and H~U(–1, ). Correspondingly, the 

component distribution of these vectors on the z-axis is denoted by D4, namely, D4~U(–

c, u). When the mean value of the components of the mixed distribution consisting of 

v0,k = 2
2
π
⋅
σ 0

k
.

vu,k
v0,k

=
σ u

σ 0

.

σ u σ 0

D(θ ,η) = c ⋅cosθ ⋅sincos−1η,

D1(θ ,η) = c ⋅cosθ ⋅sincos
−1η,

u
c

D2(θ ,η) = c ⋅cosθ ⋅sincos
−1η,

u
c
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D3 and D4 on the z-axis is u, the corresponding mixture weights are  and , 

respectively. Similarly, the mixed distribution consisting of D1 and D2 can be calculated 

in accordance with their weights (the analytical form of this mixed distribution cannot 

be given in this article at present); then, it can be found that the standard deviation of 

the velocity components on the x-axis of the particles in Ru is 

   (9) 

By evaluating the ratio between Equ. 9 and the standard deviation of the velocity 

components on the x-axis of the particles in R0, we can obtain the corresponding scale 

factor, namely, 

 . (10) 

This is equivalent to the Lorentz factor when c represents the speed of light. Obviously, 

the ratio of the standard deviations of the velocity components on the y-axis is also this 

scale factor, as shown in Equ. 10. This same factor can also be obtained by evaluating 

the ratio of the standard deviation of the velocity components on the z-axis of the mixed 

distribution in Ru to the standard deviation of the velocity components on the z-axis in 

R0. The detailed Mathematica code for the above calculation can be found in Part 2 of 

the Supplementary Information. This result implies that when a subset of the particles 

in the reference system R0 composed of particles moving at the same speed (such as c) 

and in random directions forms a reference system Ru moving at speed u, the speed of 

the moving aggregate particle of a larger mass level in Ru will be relatively decreased, 

with a degree of deceleration corresponding to the value determined by the scale factor 

given by Equ. 10. 

In this article, we will not discuss further special relativistic effects (such as time 

expansion and length contraction) based on this logic. It is obvious that from the 

deceleration effect, all other related phenomena follow. 

The abovementioned results prove that vectors with equal norms in Euclidean 

space exhibit special relativistic effects. In a stationary (inertial) reference system, if 

particles of different mass levels are moving in accordance with the relationship 

determined by Equ. 40 below, they will be considered to have different average 

velocities based on the corresponding Maxwell distributions. When the average 
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2c

σ u =
c2 − u2

3
.

c2 − u2

c



 16 

velocity of a larger-mass-level particle composed of Kth-order particles is measured in 

a moving reference system Ru with velocity u, the corresponding degree of deceleration 

is determined by the average speed cK of the Kth-order particles in accordance with the 

scale factor , and when the average velocity of a larger-mass-level particle 

composed of Lth-order particles is measured similarly, the corresponding degree of 

deceleration is determined by the average speed cL of the Lth-order particles in 

accordance with the scale factor . If a moving species in a moving reference 

system Ru consists entirely of photons (an energy group of photons), then the degree 

of reduction in their average velocity is calculated using the Lorentz factor given in Equ. 

10 (or determined by special relativity). At present, human beings can detect only 

photons and photon-level formations (such as electromagnetic waves and atomic 

clocks); from this point of view, the quantitative relationship given by special relativity 

is extremely accurate! It is also noted that in Ru, the slowdown on all three axes is the 

same. This means that there is no difference in physical laws that can be perceived 

between Ru and the stationary reference system R0. Therefore, when another moving 

reference system  appears in Ru, Ru can, in turn, be treated as a stationary 

reference system, which is a useful feature. This reveals that any reference system that 

satisfies the conditions given in HYPO 1–3 can be regarded as a stationary reference 

system, regardless of whether it is an absolutely stationary reference system. Special 

relativistic effects are statistical effects of moving particles. If the equation established 

in this article can capture the statistical effects of moving particles, then it can also 

describe the effects of (special) relativity. 

3.3.3 Establishment of the Classical Diffusion Equation 

To comprehensively describe the above physical model, we should establish a 

four-parameter equation, including time, for the law governing the motion of each 

particle, i.e., Ã(x, y, z, t). For a system with n particles, it is necessary to establish an 

equation with 3n + 1 degrees of freedom in the same time dimension, where n ® +¥. 

This is obviously extremely unrealistic. Attempting to establish equations in 

accordance with this idea will only increase the complexity of the solution. For example, 

in superstring theory, equations with even tens of degrees of freedom are often 

established. Although such equations can be "all inclusive" to a great extent, the 

c
K
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difficulty of solving them is already unimaginable and has given rise to the rhetorical 

statement that “String theory is 21st century physics that fell accidentally into the 20th 

century”5. By extrapolation, equations established in accordance with the above 

approach may be expected to be difficult to solve even in the 210th century! 

In this article, we take the second best approach. We do not expect to describe all 

of the motion characteristics of all particles; instead, we wish only to describe the laws 

of particle motion succinctly and practically, to establish an equation that does not 

fundamentally fail to capture any critical motion characteristics of particles and can be 

described (solved) in actuality to the greatest possible extent. To do so, it may be 

appropriate to approach the problem from the perspective of statistics, that is, to 

establish a mathematical model with certain statistical characteristics on the basis of the 

physical model. 

Theoretically, infinitely many aggregations of any number of particles can be 

found in infinite 4-dimensional space-time, although the greater the difference between 

the degree of aggregation and the total average density in space-time, the lower the 

formation probability of the corresponding particles, and the more unstable they will be 

in the time dimension. However, it is difficult to describe this situation with a specific 

function. Therefore, this article does not seek functions that apply at the micro level or 

for uncertain cases but rather seeks statistical description functions that are relatively 

certain by expanding the considered scope to cover a sufficiently large range of cases. 

Regardless of how these particles move in 3-dimensional space, their trajectories are 

continuous, which will lead to diffusion (or agglomeration) behavior that is the 

generalized diffusion of randomly moving particles. Here, each moving particle is 

regarded as a vector, whose direction is the same as the movement direction of the 

particle and whose norm is equal to the movement speed. Therefore, the generalized 

diffusivity of randomly moving particles is equivalent to the generalized diffusivity of 

random vectors (in direction). Thus, the "random vectors" and "randomly moving 

particles (or velocities)" mentioned below have the same meaning. Considering 

particles of the same mass and speed, the generalized diffusivity of the corresponding 

random vectors is equivalent to the generalized diffusivity of random momenta (which 

are also vectors). It is considered that the scale of the "generalized diffusivity of vectors" 

is simply the scale that is most suitable for describing the invariant laws for randomly 

moving particles. More information will be lost if the scale is even slightly more 
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macroscopic (e.g., the scale can be approximately described by real diffusion), and there 

will be no invariant statistical law to follow if the scale is even slightly more 

microscopic (for example, the scale described at the beginning of this paragraph). At 

this scale, the external behavior of the vectors in a tiny space cannot be considered 

isotropic. When the randomly moving particles are not disturbed, according to the 

Maxwell distribution, the total vector in a certain domain always points in an uncertain 

direction, and the norm is directly proportional to , where k is the number of vectors 
(see Part 1 of the Supplementary Information for details). Although the direction of the 

total vector in a tiny space cannot be determined from the Maxwell distribution, we 

hope to use appropriate constraints to obtain the distribution rules governing the norm 

and direction of the total vector at any position in space. 

First, we determine the constraints acting on spatial vectors. Let the density of the 

vector sum at some point in space be denoted by X, which is a function of position and 

time, namely, X(x, y, z, t). It is defined as follows: At a certain time t, let Y(V) be a 

function of the sum of all vectors in the closed domain V containing P(x, y, z); then, 

) (in the following, X is also a function of the spatial 

coordinates (x, y, z) and the time coordinate t). The situation in which particle position 

aggregation is dominant will be studied in the following. 

X is a statistical average vector. When the system is undisturbed, the relationship 

between X and the number of vectors follows the Maxwell distribution. As illustrated 

in Fig. 1a, it is assumed that there are two microdomains  and  of the same size 

along the normal direction on both sides of the segmentation surface F. If the sum of 

all vectors in  is  and the sum of all vectors in  is , then their sum is 

, and their difference is . Let the sum and difference vectors intersect at point 
M (Fig. 1b). In view of the previous assumption that the domains  and  on both 

sides of F are equal, there is no need to consider statistical effects before the particles 

move. Due to the characteristic that the distribution of the velocity directions is 

homogeneous, both vectors must tend to approach their average value , that is, 

both  and  will tend towards . Accordingly, the rate of change in X 
along the normal direction at a particular point should be related to the time-dependent 

rate of change in X. This time-dependent rate of change is also affected by another 

inherent factor (i.e., the velocity of the particles forming X), the concrete value of which 
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is temporally uncertain. Therefore, the above two rates of change should be directly 

proportional when the differences between particles caused by density (including 

position aggregation and direction aggregation) are neglected. 

 
Figure 1 | Illustration of the principle of the generation of a mutual diffusion 

potential in microdomains VA and VB. 

In view of the similar calculus properties of vector and scalar, the derivation 

method for real diffusion is imitated here. If a domain W is enclosed by a closed surface 

S, then during the infinitesimal period , the directional derivative  of X along 

the normal direction of an infinitesimal area element dS on the surface S is directly 

proportional to the vector  flowing through dS along the normal direction in the 

closed domain W enclosed by S (Fig. 2), under the assumption that the coefficient is a 

positive real number D. 

 

Figure 2 | Illustration of the diffusion of the vector sum density X. 

dt
∂X
∂N

dX
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From time t1 to time t2, when the influence of the vector density on D is not 

considered (i.e., the diffusion coefficient is the same at every position), the variation of 

the vector sum A inside the closed surface S is 

   (11) 

According to the Gauss formula, the right-hand side of Equ. 11 can also be written in 

the form 

   (12) 

where D is the Laplace operator, which describes the second derivative with respect to 

the position (x, y, z). And the left-hand side of Equ. 11 (namely, ) can be written 

as 

   (13) 

By setting Equ. 13 equal to Equ. 12 and transforming the order of integration, we can 

obtain 

   (14) 

Based on the observation that t1, t2 and the domain W are all arbitrary, the following 

equation can be written: 

   (15) 

It is clear that the above conclusion still holds when X is dominated by the aggregation 

of the velocity direction rather than the position of the particles. This is because this 

situation is also a statistical characteristic of a large number of particles, and the 

diffusion behavior does not discriminate between these two types of aggregation. 

To facilitate the task of vector decomposition in the following, a 3-dimensional 

vector needs to be converted into a plane vector. Next, we determine the constraints 

acting on plane vectors. Although the operation in Equ. 15 is performed using 3-

dimensional vectors, when differential operations are performed on a spatial vector, the 

(sum or) difference operations are always performed at two points on the vectors that 

are separated by an infinitesimal distance; thus, all 3-dimensional vectors can exhibit 

only relative 2-dimensional characteristics. Consequently, by solving this differential 
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equation, only 2-dimensional constraints can be obtained. Therefore, only the 

derivatives of plane vectors are needed to act as the derivatives of the 3-dimensional 

vectors (in this case, plane vectors can retain the important information, such as the 

norms of the vectors and the included angle between them). Moreover, the function of 

plane vectors obtained by solving the partial differential equation expressed in terms of 

plane vectors is unique and corresponds to the 3-dimensional vectors obtained from a 

differential equation of the same form. It is assumed that the function of plane vectors 

describing the density of the vectors or momenta is M(x, y, z, t), which corresponds to 

X at the point (x, y, z, t) (unless otherwise stated, in the following, M is a function of 

the spatial coordinates (x, y, z) and the time coordinate t). Thus, the abovementioned X 

can be replaced with M. After this replacement, it is obvious that the norm of the plane 

vector will not change, but its direction will be reoriented. Finally, Equ. 15 can be 

written as 

   (16) 

Now, let us determine the constraints on the direction of the plane vector M. In 

view of the continuity of the trajectories of infinitesimal particles, since M is also 

characterized in terms of the statistical properties of an enormous number of particles, 

it should also be smooth. According to the theory of plane curves, the first and second 

derivatives of a plane vector in any direction in space are vertical. If an equation relating 

these derivatives is established following the above derivative relationship (Equ. 16), 

the direction needs to be adjusted to be consistent; then, this relationship can be written 

in the form 

   (17) 

where i is the imaginary unit. By multiplying both sides of Equ. 17 by i, the form of the 

Schrödinger equation can be obtained: 

   (18) 

Equ. 18 describes the distribution of a moving particle swarm (including the 

direction of movement) in space following the same diffusion coefficient; in other 

words, it is the classical diffusion equation. However, when the particle swarm is 

moving faster or more particles are aggregating in a certain microdomain, the effect on 
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diffusion is not clear. To more comprehensively describe this kind of diffusion process 

(which is called generalized diffusion), further analysis is needed. 

3.3.4 Construction of the Generalized Diffusion Equation 

To construct the generalized diffusion equation, we need to take into account many 

aspects, including whether the generalized diffusion coefficient Ð should vary and how 

to describe it to include the effects of general relativity (gravitation) and special 

relativity. 

The classical view is that regardless of how large the target norms of vectors are, 

they follow a diffusion equation with the same diffusion coefficient (the Schrödinger 

equation). However, this article adopts an alternative viewpoint: Ð should vary with the 

value of the target vector. As derived above, when the influence of the vector sum 

density (including the aggregation densities of position and direction; the same is also 

considered below) on D is not considered, the diffusion equation for the vectors 

conforms to the form of the Schrödinger equation. However, when the vector sum 

density is large, the effect on D cannot be ignored. Suppose that, as illustrated in Fig. 

1a, the vector sum density in the microdomain VA is greater than that in VB. If both 

microdomains exist in the same background field, there is a cost for the higher density 

in VA. If this high density is maintained at the next moment (in terms of probability, 

more uncertainty is introduced into the unit volume), which will inevitably affect the 

(average) movement speed of the particles, the overall movement speed of the particles 

in VA will decrease (Section 3.3.2). As mentioned above (or in Equ. 31 below), the 

particle speed is what determines D; therefore, the law governing the diffusion rate 

towards the right (DA) is not the same as the law governing the diffusion rate in VB 

towards the left (DB) (under the assumption that Ð is a combination of DA and DB). 

Therefore, it is necessary for the generalized diffusion coefficient to vary in time with 

the vector sum density to reflect this inequality. 

In view of the above considerations, choosing the appropriate quantitative function 

to describe this phenomenon is the main problem to be solved in this article. First, the 

momentum vector in the microdomain is decomposed. 

3.3.4.1 Vector Decomposition 

Let us determine the distribution function for particles with equal probability in a 

certain domain, as follows: Suppose that the whole domain contains n particles in total. 

For convenience of description, the whole domain is also partitioned into n boxes of 
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equal size. The gaps between boxes and the wall thickness are both 0. Now, let us 

determine the probability of k ( ; the same also holds below) particles in a local 

area containing M boxes (suppose that the particles are small enough to fall into the 

box, not the wall). In view of the statement described above, the probability of particles 

existing in each domain is the same. Accordingly, the total number of possible cases 

describing how n particles can be randomly distributed among n boxes is , there are 

 total ways that k particles can be randomly chosen from among n particles, there 

are  total ways in which the k chosen particles can be randomly distributed among 

M boxes, and there are  total ways in which the remaining n – k particles 

can be randomly distributed among the remaining n – M boxes. Therefore, the 

probability P(M, k) of k particles existing in M boxes can be expressed as 

  (19) 

Suppose that the number n of particles in the whole domain is infinite; then, by taking 

the limit of Equ. 19 as n ® +¥, we find that 

   (20) 

where M denotes the number of boxes comprising the local domain of interest (the size 

of the volume in 3-dimensional space), k denotes the number of particles in that domain 

of M boxes, and P denotes the probability that k particles exist in that domain. Equ. 20 

is the (position-based) Poisson distribution. 

It is considered that this is the most appropriate method of partitioning a whole 

domain (the domain can be the whole universe or simply a broad range including the 

objects of investigation) into the uniform boxes with the same number as that of 

particles. In addition to reducing the parameters involved and facilitating discussion, 

the reasons are as follows: if the boxes are slightly larger, they will not ensure the 

accuracy of the following vector decomposition; if they are slightly smaller, they will 

not adequately reflect the grouping effect of the particles. Therefore, in this article, the 

whole domain is divided into a number of uniform boxes equal to the number of 

particles it contains, and this partitioning serves as the basis for all of the following 

discussions. In this article, the whole domain (environment) is called the T-domain, and 
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the local domain (target) is called the S-domain; the set of all particles contained in the 

T-domain is called the T-particle swarm, and the subset of particles contained in the S-

domain is called the S-particle swarm. 

Next, we will investigate the equiprobability distribution of the static particle 

swarm in the abovementioned S-domain V. In Equ. 20, M denotes the number of boxes 

(volume) spanned by some S-domain (which belonged to the domain in which the target 

particles are distributed). Put another way, when the T-domain is partitioned into 

uniform boxes following the above method, M can also denote the average relative 

density of the particles in the S-domain V, where the reference density is the average 

density of the T-particle swarm in the T-domain. M represents the corresponding 

multiple of the average density, k denotes the number of particles in one box, and P is 

the probability of k particles existing in that box. Thus, the distribution of the S-particle 

swarm in V is a Poisson distribution with density intensity M. Next, we will analyze 

the Poisson distribution formula given in Equ. 20. In fact, it is the proportion of each 

term determined by k (when  is expanded as a power series) to the value of . 

The meaning here is that it is also the proportion of the number of boxes containing k 

particles each to the total number of boxes in V when the S-particle swarm of relative 

density M is distributed among the reference boxes determined by the above criteria 

and spanned by the S-domain V (supposing that the number of boxes spanned by V is 

sufficiently large). According to mathematical analysis, we can see that the power series 

expansion for this case is unique, and obviously, this ratio distribution is also unique. If 

the right-hand side of Equ. 20 is multiplied by k, the result, denoted by R(M, k), takes 

the following form: 

   (21) 

In this way, termwise addition (by k) based on this expression offers a possible form for 

the decomposition of M into infinite items. Because the power series expansion above 

is unique, this decomposition form of power series is also unique. According to the 

previous statement of physical meaning, the meaning of Equ. 21 is the relative density 

contributed by the particles in the boxes that contain k particles each to the total relative 

density M (the average relative density in V) after the particles of relative density M 

are dispersed among the (infinitely many) reference boxes spanned by V with equal 

probability. Multiplying Equ. 21 by the number of boxes contained in V yields the total 
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number of particles in the boxes containing k particles each. Since the distribution of 

particles in this form is definite (following the Poisson distribution), from this point of 

view, the decomposition of the relative density M in this form is also unique.  

If M is a complex number (or plane vector), Equ. 21 can be written in vector form 

as follows: 

   (22) 

The form obtained by dividing Equ. 22 by k is still the ratio of each term (complex) 

determined by k (when  is expanded as a power series) to the complex of . 
There is one more dimension here, and the power series expansion is still unique. 

Similarly, the termwise addition of Equ. 22 also provides a decomposition form for the 

vector M. This power series decomposition form is also unique. 

Now, we study the distribution of the velocity of the moving S-particle swarm in 

the abovementioned S-domain V. If the particles of the T-particle swarm are moving 

randomly in the T-domain, the distribution of the S-particle swarm in a time slice in a 

sufficiently small S-domain (when the particle speed is fast enough) can also be 

approximately regarded as the equiprobable distribution. At the human scale, the 

number of S-particles in almost every "microdomain" of the universe can be regarded 

as approaching infinity; therefore, the distribution of the moving S-particle swarm in a 

certain microdomain V can be described by Equ. 20. The moving particles in each type 

of boxes partitioned by k in one S-domain V can form a component vector, and these 

components can be added together to form the total vector in V. Once the total 3-

dimensional vector Y of the moving S-particle swarm in V is determined, the norm of 

each component vector should be directly proportional to the number of particles 

forming it; in other words, the norm of each component vector which is directly 

proportional to each term (determined by k) given in Equ. 21 is distributed among 

various boxes (partitioned by the same k) spanned by V. This is because, according to 

the central limit theorem, when samples are taken from a population with a determined 

distribution, the mean value of sum of these samples should be approximately 

proportional to the sample size (see Part 3 of the Supplementary Information for details). 

It should be noted that even for k = 1, the number of samples in V should be very large. 

Thus far, both the number of particles and the ratios between the norms of the 

component vectors of Y in V follow the same Poisson distribution, which has a fixed 
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form and is partitioned in terms of k, and they correspond to each other. 

We will determine the directions of the abovementioned component vectors in the 

following. Once Y in V is determined (i.e., the state of the system is determined), the 

directions of the component vectors according to the abovementioned decomposition 

form should also be determined. This article studies the limiting value of the quotient 

of Y and V (namely, X), which can still be considered as a sum of 3-dimensional vectors 

in the S-domain V. When the 3-dimensional component vectors (spanning various 

boxes) of the 3-dimensional vector X are mapped to the 2-dimensional component 

vectors (spanning various boxes) of the plane vector M, in fact, the directions should 

also be unique. The ratios between the 2-dimensional component vectors of M and the 

ratios between the 3-dimensional component vectors of X should be the same—both 

should follow the Poisson distribution. However, the specified value of the norm and 

the direction of each component vector of M have not been determined. Fortunately, 

Equ. 22 exactly specifies a set of component vectors whose norm ratios conform to the 

Poisson distribution and with definite sizes and directions. In view of the discussion in 

the preceding paragraph, each norm of component-vector is directly proportional to the 

number of moving particles forming it. Therefore, the fact that the norm ratios of the 

component vectors determined by Equ. 22 are consistent with those of the 2-

dimensional component vectors of M (or the 3-dimensional component vectors of X, 

i.e., the velocities in various boxes) means that the numbers of moving particles in 

various boxes as implied by Equ. 22 are consistent with those of the moving particles 

that form the 2-dimensional component vectors of M. Therefore, such a set of 

component vectors can also be thought of as being separately generated by the particles 

(with the same particle number ratio, mapped to the plane) in various boxes partitioned 

by k; in other words, it is possible that M can be decomposed into the termwise 

addition form of R(M, k) given in Equ. 22. The decomposition of the plane vector M 

in such a form may also be unique, but this conclusion will not be proven here for the 

time being. In any case, it will not affect the discussion of the following issues. This is 

because, even if such a decomposition is not consistent with the established combined 

representation of the boxes but rather distributed in each box, as long as it is partitioned 

in accordance with the pattern of the Poisson distribution, it still follows the same law 

of motion (deceleration or diffusion) and can be thought of as that there is such a 

decomposition spanning various boxes. The decomposition form given in this article is 
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one of several equivalent cases (regardless of whether the moving particles are 

dominated by position or direction aggregation, as long as their vectors are equal, their 

influences on diffusion are the same; therefore, when direction aggregation is dominant, 

it can be equally interpreted as position aggregation being dominant). In summary, the 

plane mapping of the sum of all vectors in the boxes containing the same number k of 

particles can be thought of as the component vector determined by k in Equ. 22. When 

k takes all values in , the termwise sum of these terms is at least an equivalent 

decomposition of M, namely, 

   (23) 

The decomposition form in Equ. 23 is independent of the number of vectors 

forming the total vector in the S-domain but dependent on the value of the relative total 

vector. As mentioned above, M represents the relative density of particles in the S-

domain V, which is a concept of multiple. Therefore, M is also a relative vector and 

represents the multiple of the speed of a single particle in each partitioned box after the 

T-particle swarm is averaged across the T-domain. Moreover, it is also the multiple of 

the number of boxes spanned by the infinitesimal S-domain (i.e., the relative density of 

the particles at a target point), and its direction is the same as that of the absolute sum 

vector. Therefore, M in Section 3.3.3 should be exactly the relative vector sum density. 

As mentioned above, the sum and difference operations between two spatial vectors are 

performed in their shared plane. In this plane, they can be decomposed respectively into 

a sum of plane vectors, as described in Equ. 23. Therefore, the two sets of plane 

component vectors can also serve as their respective spatial component vectors to 

correspondingly perform sum, difference or derivative operations. 

3.3.4.2 Description of Diffusion 

Suppose that the standard deviation of the projection (treated as a random variable; 

the same is done below) of the velocity of any one of the k equivalent particles forming 

a kth-order particle onto each equivalent coordinate axis is . As mentioned earlier, 

the speed of kth-order particles follows the Maxwell distribution with scale parameter 

 (in this case, it is unnecessary to consider the situation in which direction 

aggregation is dominant; the diffusion coefficient is the inherent statistical effect in the 

system, and only the average speed needs to be calculated in accordance with its 
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definition). Then, the average speed of kth-order particles is 

  (24) 

For k1th- and k2th-order particles, the ratio of their average speeds is 

  (25) 

Because the sizes, or masses, of all 1st-order particles are the same, if the masses of a 

k1th-order particle and a k2th-order particle are m1 and m2, respectively ( ), then 

according to the relationship shown in Equ. 25, the ratio of their average speeds can be 

written as 

   (26) 

See Part 1 of the Supplementary Information for the detailed calculation and derivation 

process. According to Equ. 26, when the mass of a kth-order particle is m, compared 

with that of a 1st-order particle, its average speed is 

   (27) 

where  is a constant coefficient. 

The diffusion coefficient is defined as follows: it is the mass or mole number of a 

substance that diffuses vertically through a unit of area along the diffusion direction per 

unit time and per unit concentration gradient. Therefore, it is believed that such real 

diffusion, in the traditional view, is consistent with the essence of vector diffusion 

described here. According to the Einstein-Brown displacement equation, the diffusion 

coefficient is 

   (28) 

where  is the average displacement of kth-order particles along the direction of the 

x-axis. To replace the average displacement  in Equ. 28 with the average 

velocity (namely, ) of kth-order particles, this diffusion coefficient can be 

transformed into 
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   (29) 

The unit of the diffusion coefficient D is m2·s–1. By combining Equ. 28 and Equ. 29 

(where t1 and the t implied in  are consistent, so t1 = 1 s), the abovementioned 

diffusion coefficient can also be regarded as follows: it is the average area over which 

kth-order particles spread out on a plane per unit time. This average area is related to 

the speed of a single kth-order particle. If the (average) speed of a single kth-order 

particle is , then the statistical average speed of these particles in one direction is 

   (30) 

The kth-order particle swarm spreads in the plane at this rate. By substituting Equ. 30 

into Equ. 29 and combining t1 = 1 s into the coefficient, which we then denote by , 

we can obtain 

   (31) 

where  is a constant coefficient with units of seconds (s). 

By substituting Equ. 27 into Equ. 31, the diffusion coefficient of a (kth-order) 

particle swarm of (average) mass m is obtained: 

   (32) 

The above equation (Equ. 32) can also be thought of as the apparent diffusion 

coefficient of particle(s) with mass m described by 1st-order particle swarm (which 

forms a particle of mass m after collapse) without relativistic effects. Moreover, the 

specific form of this coefficient is given in the Schrödinger equation without relativistic 

effects (i.e., in the case of the apparent diffusion described by a 1st-order particle 

swarm). By comparing the diffusion coefficient in Schrödinger equation with Equ. 32, 

the following relationship can be immediately obtained: 

   (33) 

where ħ is the reduced Planck's constant. 

3.3.4.3 Construction of the Generalized Diffusion Equation 

Previously, we have adopted the assumption that there is no interaction between 

infinitesimal particles. Even if there are interactions between particles of larger mass 

levels (this article claims that these "interactions" are produced by statistical effects), 
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there is also a continuous process of particle disappearance and generation, meaning 

that in fact, there is no interaction. In addition, considering that the essence of these 

"interactions" is gravitation (that is, the statistical effects of moving particles; other 

forces can be treated similarly), it is equivalent to the concept that there is no interaction 

between particles of various mass levels. In a time slice of a microdomain, the 

decomposition of velocity given by Equ. 23 must be exhibited, and all boxes containing 

the same number of particles in different microdomains containing different densities 

of vectors are equivalent. This is because there should be no differences between boxes 

of the same type (i.e., containing the same number of particles) when the Poisson 

distribution determines the numbers of boxes of different types in different 

microdomains of different vector densities. Although the moving particles are 

distributed throughout the microdomains with the same probability, when k particles 

are counted, their average speed will inevitably slow down. The particles in various 

boxes partitioned by k move at their average speed (the centroides of boxes containing 

k particles each are, on average, located at the center of each box). Among all boxes of 

the same type (i.e., containing k particles), the average speed of each kth-order particle 

is the same and must conform to the diffusion form of the Schrödinger equation 

determined by the diffusion coefficient for particles of this type. Therefore, according 

to the particle numbers k in the previously partitioned boxes, from 1 to ¥, we study the 

corresponding term R(M, k), which is the component vector of M. First, we 

investigate the diffusion of individual term, and then, we add them together. 

Here, all the particles in each box containing k particles are regarded as forming a 

kth-order particle of a larger mass level, and together, all kth-order particles in all boxes 

containing k particles in microdomain V are called the kth-order particle swarm in that 

microdomain. Based on the above discussion, it can be considered that the average 

speed of each (kth-order) particle in the kth-order particle swarm is the same when there 

is no external disturbance, and all of them have the same diffusion coefficient. 

According to the relationship given in Equ. 32 (the diffusion coefficient is inversely 

proportional to the mass of a kth-order particle, or the number of 1st-order particles 

forming a kth-order particle), if the diffusion coefficient of a 1st-order particle swarm 

is D1, then the diffusion coefficient of a kth-order particle swarm is 

   (34) Dk = D1 ⋅
1
k
,
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where  is called the diffusion coefficient factor. 

When it is not necessary to consider the influence of the deceleration effect of the 

statistical speed due to particle aggregation on diffusion, the diffusion behavior of 

interest is that of a 1st-order particle swarm, which is consistent with the description of 

diffusion given by the Schrödinger equation. Therefore, the diffusion coefficient is 

   (35) 

The diffusion equation determined by this coefficient describes the dynamics of the 

probabilistic diffusion of a target object (or the aggregation after collapse) of mass m 

on the basis of the apparent diffusion rate (after deceleration) determined by the 1st-

order particles forming it (before collapse); however, the distribution characteristics of 

the target object in its dispersion space is determined by the diffusion behavior of the 

1st-order particles in the background field. When , according to the above 

discussion, the diffusion coefficient of a kth-order particle swarm can be obtained by 

substituting Equ. 35 into Equ. 34, namely, 

   (36) 

This is equivalent to the proportional decline in the apparent diffusion rate of a target 

object (or the aggregation after collapse) of mass m due to the slowdown in the speed 

of the kth-order particles forming the target object. The meaning of the diffusion 

equation determined by this diffusion coefficient is similar to the case for 1st-order 

particles as considered above, that is, the dynamics of the probabilistic diffusion of a 

target object (or the aggregation after collapse) of mass m are described on the basis of 

the apparent diffusion rate (after deceleration) determined by the kth-order particles 

forming it (before collapse); however, the distribution characteristics of the target object 

in its dispersion space is determined by the diffusion behavior of the kth-order particles 

in the background field. 

By taking the second partial derivative of R(M, k) (this is the plane vector sum in 

the boxes containing k moving particles, namely, the kth-order particle swarm, which 

is one of the component vectors in the whole microdomain V) with respect to position 

(x, y, z) and considering the intermediate variable M, we obtain the following 

expression: 

1
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   (37) 

where . It should be emphasized that the 

absolute sizes of the two (infinitesimal) microdomains V1 and V2, which are selected to 

compare their differences, are equal when calculating the derivative of the vector M. 

After multiplying Equ. 37 by the diffusion coefficient for the particle swarm of each 

order (Equ. 36) and then adding the products for all orders together, the complete 

generalized diffusion expression (including coefficients) can be obtained as follows: 

   (38) 

The diffusion calculated in this way is the generalized diffusion from the whole 

(infinitesimal) microdomain V1 to V2. Equ. 38 can be simplified as follows: 

   (39) 

By combining the left-hand side of Equ. 18 with Equ. 39, a complete expression for the 

generalized diffusion equation for vectors is obtained: 

 . (40) 

Therefore, the expression for the generalized diffusion coefficient with relativistic 

effects (including gravitation) is 

 . (41) 

The diffusion coefficient here is not a constant but rather a natural exponential function 

that varies with the relative vector density of moving particles. Hence, the generalized 

diffusion equation and the generalized diffusion coefficient Ð for vectors have been 

determined. The norms of the spatial vectors in an undisturbed microdomain can be 

determined in accordance with the Maxwell distribution, while the norms and directions 

of the spatial vectors in the complex plane can be determined in accordance with Equ. 

40. Thus, the basic effective information for a spatial (moving) particle swarm has been 

derived. 

Returning to the vector decomposition presented in Section 3.3.4.1, we will now 

prove that Equ. 23 is the unique form of the plane decomposition when the 3-
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dimensional vector X is mapped to the plane vector M. It can be seen from the above 

that the ratios between the norms of the plane component vectors obtained through such 

mapping follow a Poisson distribution, whereas the directions are unknown. Suppose 

that there are many sets of directions conforming to this distribution of norms of the 

plane component vectors. Since the result of generalized diffusion is definite, all these 

sets of directions should be equivalent. When they are operated on in the manner shown 

in Equ. 38, it can be seen that the identical Equ. 39 cannot be obtained after substituting 

the component vectors with different sets of directions. Therefore, Equ. 23 given in this 

article is the unique decomposition result that satisfies the necessary conditions. 

For Equ. 39, the overall diffusion potential is reflected in the term  without 

considering its own "gravitation" (particle agglomeration), and the remaining terms 

arise from relativistic effects. This is because the special relativistic effect mentioned 

in Section 3.3.2 arises only when the scenario in Ru is evaluated from R0. If the 

particles in Ru are observed together with those in R0, the velocity sum of some 

particles in Ru will be slightly different from the situation described in the case of the 

previously discussed special relativistic effect. In this case, all moving particles in Ru 

will have an additional velocity component u along the z-axis. However, the diffusion 

of these particles will still follow the rule that applies in R0. Obviously, when such a 

moving particle swarm (sum of the vector swarm) is decomposed into plane component 

vectors, the same rule must be followed. The vector decomposition in Equ. 23 is unique. 

The total vector in all boxes containing k vectors is the sum of the vectors in R0, which 

is converted from the vectors in Ru. The statistical effects of these moving particles can 

be incorporated into Equ. 38 by multiplying the second derivatives of the component 

vectors (after comparative treatment) by different diffusion coefficients according to 

the classification standard based on k and summing the results. It can be clearly seen 

from the above proof process for special relativity that the principle of the special 

relativistic effect of moving particles in space is a statistical effect of randomly moving 

particles. More precisely, it is a statistical effect that arises from direction aggregation 

being dominant. It should be noted that when direction aggregation is dominant, this 

special relativistic effect manifests, while in general, the possible aggregation effects 

also include the situation in which position aggregation is dominant. Here, these two 

(aggregation) effects are collectively called the general relativistic effect. From this 

perspective, these two aggregation effects are unified, and both conform to the law 

ΔM
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given by Equ. 10. Therefore, the proof process for the special relativistic effect is also 

the proof process for the general relativistic effect. Both of these effects are, in essence, 

a statistical effect of moving particles. Obviously, the treatment presented in this article 

(Equ. 40) can also cover all possible aggregation effects, that is, all relativistic effects 

are included. By contrast, equations that are subject to the constraints of Lorentz 

covariance (such as the Dirac equation and quantum field theory) are not sufficient to 

reflect all relativistic effects. 

3.3.5 Further Study of Equ. 40 

3.3.5.1 The Relationship with the Schrödinger Equation 

By expanding the right-hand side of Equ. 40 using the power-series representation 

of e–M, we can obtain the following form: 

   (42) 

When only the first term to the right of the equals sign in the second line of Equ. 42 is 

considered, this equation has the form of the Schrödinger equation without an external 

field. Thus, it can be concluded that Equ. 40 is the result of adding several corrections 

to the Schrödinger equation. When the norm of the wave function , obviously, 

 is an infinitesimal of higher order than  (this is similar to the case of 

the sine and cosine wave functions when the velocity is small but the acceleration is 

large). Moreover, the terms after  to the right of the equals sign in the second 

line of Equ. 42 are all related to M, and the product of each term and M is also an 

infinitesimal of higher order than . Therefore, when  is sufficiently small, 

Equ. 40 can be approximated to take the form of the Schrödinger equation without an 

external field; however, when  is larger, the relativistic effect (the statistical effect 

of moving particles) in Equ. 40 is nonnegligible, and this equation cannot be replaced 

by the Schrödinger equation. 

3.3.5.2 Nondispersive Particle Swarm 

Creation and annihilation operators for particles are included in quantum field 
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theory, but such descriptions are rigid. By contrast, the equation (Equ. 40) presented in 

this article naturally contains the processes of the appearance and disappearance of 

particles and can even give their half-lives (we will not study this problem in detail 

here). Equ. 40 is the equation describing the generalized diffusion of a particle swarm. 

When 

   (43) 

M does not vary with time t, and a particle swarm that meets this condition is a 

nondispersive particle swarm. Such a particle swarm can also be regarded as a particle 

of a higher mass level, which is composed of a set of particles of a lower mass level 

that obey statistical laws. 

Under the assumption that M is a function only of position (x, y, z), a general 

analytical solution containing 9 arbitrary constants (Equ. 44) can be obtained by solving 

Equ. 43 using the method of separating variables: 

   (44) 

Based on the equivalence of the three coordinate axes, C7, C8 and C9 are complex 

constants that are not equal to 0, such that the sum of any two of these constants is equal 

to the additive inverse of the third; thus, it should hold that . 

However, it is very difficult to eliminate all possible arbitrary constants under certain 

initial conditions, and doing so is neither the focus nor the interest of this article. 

Therefore, without affecting the further discussion of the problem, the concrete form of 

the actual analytical solution will not be explored here, and a numerical solution will 

be adopted instead. 

To investigate the shape of a nondispersive particle swarm in detail, it is again 

assumed that M is a function only of position (x, y, z) and that the position aggregation 

of moving particles is dominant. In 3-dimensional space, the following initial 
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conditions are specified for Equ. 43: 

   (45) 

To numerically solve the simultaneous equations given in Equ. 43 and Equ. 45 (see the 

description of the process of generating Fig. 3 in Part 8 of the Supplementary 

Information for the detailed Mathematica code for the solution process), the distribution 

of mass density ( ) can be obtained, as illustrated in Fig. 3. 

 

Figure 3 | Distribution of mass density for a particle swarm meeting the 

conditions given by Equ. 43 and Equ. 45 (shown from various perspectives): a, 3-

dimensional density distribution; b, 2-dimensional density distribution at z = 0; c, 2-

dimensional density distribution on the plane at z = 0; d, 1-dimensional density 

distribution at y = 0 and z = 0. For convenience of comparison, the three (two) 

coordinate axes in each figure are displayed at a scale of 1:1. 

It can be seen from the figure that the mass of such a stable particle is almost 

entirely concentrated in a small spherical area near the center of a larger spherical region 

and that the rest of this region is very sparse (with a very low mass density), similar to 
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the structure of an atom. This result further qualitatively shows that we can study not 

only the distribution of electrons but also the distribution of nuclear mass by solving 

Equ. 40. 

It should be noted that for the boundary condition  given in 

Equ. 45, the value on the sphere described by  is assigned to be 1 

+ 2 i in the solution process to approximate this condition. It can be inferred that when 

the radius of this (inner boundary) sphere approaches infinitesimal, what is shown in 

Fig. 3 is still similar to this shape. Moreover, the equations for the 2-dimensional case 

under the same conditions are also solved in this article; see Part 3 of the Supplementary 

Information for details. Without affecting the discussion of the problem, only a small 

value ( ) as the norm of initial wave function and a relatively larger radius (0.04) of 
the inner boundary sphere are taken for the initial conditions. If the norm is further 

increased or the radius of the inner boundary sphere is further reduced, there will be a 

more obvious contrast in mass density, but the difficulty of solving the equation and 

drawing the graph will also be greatly increased. In addition, the value of the function 

on the sphere with a radius of 4 is 0 with the above boundary conditions, which is also 

approximately consistent with the actual situation. In reality, the mass density 

environment around the research object is complex. Even if this complex environment 

is not considered, the object will exist in a background field with a nonzero mass density. 

In this case, the outer boundary condition should be a constant value close to 0 or a 

wave function with a norm close to 0 at infinity (when M is a function of position (x, 

y, z) and time t). 

Based on the analysis of the above equation (Equ. 40), the formation mechanism 

for particles of a large mass level in the universe can be estimated as follows: As 

particles of a lower mass level in the universe undergo randomly fluctuating movements, 

if they meet the appropriate external conditions, they will have the chance to form many 

standing waves with the same distribution. When the external conditions change, these 

standing waves will undergo generalized diffusion over time. Some of them will 

disappear; some of them will form particle swarms that also essentially meet the above 

conditions. These particle swarms will become larger-mass-level particles that will 

decay extremely slowly (the decay rate depends on the value of  in Equ. 40 and 

the conformity of the particle shape to the condition given in Equ. 43) and thus will 

continue to stably exist in the universe for a long time (if the external or boundary 
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x2 + y2 + z2 = 0.042
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conditions do not change significantly). At different positions and under different 

external conditions, standing waves of different densities may form. Once the above 

conditions are essentially met, these standing waves can persist for a long time, thus 

forming more stable particles of different mass levels. Thus, it can be concluded that 

the concept of macroscopic mass is a characterization of a number of agglomerated 

lower-mass-level particles in a certain domain, while the concept of macroscopic 

energy is a characterization of a number of nonagglomerated lower-mass-level particles 

in a certain domain. Moreover, the boundary between these two concepts is extremely 

blurred. It should be noted that due to limitations of computing scale, it is impossible 

to simulate or watch the process of the generation of particles from uniformly 

distributed energy or other conditions described in this article; therefore, the above 

possible generation process is merely hypothesized, and its veracity remains to be 

investigated. 

3.3.5.3 Method of Acquiring the Initial Wave Function 

Obviously, the initial conditions for the solution to Equ. 40 place constraints on 

the norm of the wave function. The following presents the method of acquiring the 

initial wave function when the position aggregation of lower-mass-level particles is 

dominant (mostly, in this case). To eliminate D by solving the simultaneous equations 

given by Equ. 29, Equ. 32 and Equ. 33, we can obtain 

   (46) 

Note that t1 = 1 s in Equ. 46; we ignore it for now. By replacing m in Equ. 46 with 

the mass  in a certain domain V and extracting the roots of both sides of the 

equation, we can obtain a quantitative expression for the average velocity  of the 

particle swarm in this domain after finding the norm of both sides of the equation: 

  (47) 

From a statistical point of view, the norm of the vector sum in a certain domain is 

 in a system with identical norms and identical probabilities of all 

directions in space, where  is the average contribution of each particle to the total 

norm of the vector sum in the domain and k is the number of vectors. If these random 
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vectors are regarded as representing the random movements of small particles moving 

with the same speed in space, then the total momentum of the particle swarm in domain 

V, or the sum of the total velocity in domain V from a statistical point of view, is 

   (48) 

where k is the number of particles in domain V. By substituting Equ. 47 into Equ. 48 

and replacing k with , we obtain 

   (49) 

where µ is the mass of a single particle. 

From the perspective of Max Born's interpretation of the wave function, after the 

wave function of a system is normalized (let it be denoted by ), the mass density of 

the wave function everywhere it reaches is expressed as follows: 

   (50) 

where m is the mass of the target object (the same as the m given in Equ. 40). In fact, 

even from the perspective of statistics in accordance with the logic of this article, the 

square of the speed or the square of the norm of the wave function is also directly 

proportional to the mass; see Part 1 of the Supplementary Information for details. 

Since the wave function represents the velocity or velocity density per unit volume, 

if  is used to denote the wave function at a certain point, then by substituting Equ. 

50 into Equ. 49, the norm of the wave function at a certain point can be obtained as 

follows: 

   (51) 

In view of the discussion presented in Section 3.3.4.1, a further operation on  

is needed to obtain the relative wave function M0 (  is divided by the speed of a 

single particle and the number of particles per unit volume in background field, and 

M0 is assigned to the same direction as ). If the system is composed of particles at 

the photon level, M0 can be written as 

 , (52) 
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where c is the speed of light,  is the average mass density over a range larger than 

V (the background field) and is generally accepted to be , and 

 is the unit coefficient, whose value is . The purpose of this coefficient is 

mainly to correct the dimensional difference caused by the conversion of the diffusion 

coefficient into a velocity and to compensate for the specification of the unit volume 

implied in the conversion relationship. The method described above is the acquisition 

method for the initial condition for Equ. 40. 

In the case of a low mass density (such as the electron distribution outside the 

nucleus of an atom), the norm  of the wave function is extremely small in the 

initial condition obtained from Equ. 52 (electrostatic interaction is not considered in the 

initial condition; however, even if the electrostatic interaction with the nucleus were to 

be considered in the calculation process, the norm of the wave function would still be 

small, as detailed in Section 3.6). As mentioned before, in this case, Equ. 40 is almost 

the same as the Schrödinger equation. That is, Equ. 40 will reduce to the Schrödinger 

equation when solving for the electron distribution outside the nucleus of an atom, 

while the case of the application of an external electromagnetic field to the atomic 

system needs to be investigated separately. It should be noted that, as mentioned above, 

when the target system (background field) is composed of particles at the photon level, 

c in Equ. 52 is equal to the speed of light, while if the target system is composed of 

particles at another mass level, c is equal to the speed of particles at that mass level. 

The background domain here can be either the whole universe or a smaller range that 

encompasses the research objects. Once the background domain is defined, the 

corresponding average mass density  of the background field can be determined. 

In addition, as seen from Equ. 40 and the acquisition method for the initial wave 

function, only when both the position aggregation and direction aggregation are at a 

maximum is  infinitesimal and can a particle swarm ( ) that does not satisfy 

the condition in Equ. 43 be completely nondispersive. In other words, for a particle 
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swarm for which only direction or position aggregation is dominant, diffusion cannot 

be completely prohibited when the shape of the particle swarm does not satisfy the 

condition described in Equ. 43. 

3.3.5.4 Further Discussion 

The way in which the initial wave function M0 is acquired from Equ. 52 reflects 

the way in which the wave function at a point is calculated. Therefore, to judge whether 

the wave function M at a point changes with the selections of the reference system or 

the minimum reference particles, it is necessary only to examine whether the method 

of acquiring the initial wave function M0 has changed. In view of the discussion in 

Section 3.3.2, in any stationary (inertial) reference system, the synchronous change in 

movement and time from which movement is measured, from which the obtained speed 

of light c and the velocity determining M are both constant; in addition, the speed of 

light is included in Equ. 52, and other parameters are not limited by the reference system. 

Therefore, in any reference system, as long as the conditions HYPO 1–3 are satisfied, 

Equ. 40, which is deduced in this article, and Equ. 52, which is the acquisition method 

for the initial wave function, are applicable. Moreover, let us consider the case of 

particles of different mass levels being thought of as the minimum (infinitesimal) 

reference particles in the same reference system. There is no need to consider the mass 

of an infinitesimal particle in the acquisition method for the initial wave function; 

regardless of which mass-level particle is treated as the minimum reference particle, the 

synchronous change in movement and time from which movement is measured, from 

which the obtained speed of light c and the velocity determining M are both constant; 

in addition, the other parameters in the acquisition method for the initial wave function 

M0 are not limited by the selection of the minimum reference particle. Therefore, 

regardless of how large the particles are that are regarded as the minimum reference 

particles, Equ. 40 and Equ. 52 are still applicable. In summary, the gravitational effect 

between various particles can be regarded as a statistical effect of moving particles; it 

can be considered that there is no interaction between particles of any mass level. This 

is self-consistent with the hypothesis stated in HYPO 3. In this way, particles can be 

constructed step by step, and particles of a high mass level can form particles of a higher 

mass level under appropriate conditions. The whole universe is quantized regardless of 

the mass level, and each mass level is also equivalent. This is self-consistent with the 

statement that "the substance in the world is quantized", which is the axiomatic 
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inference (or hypothesis) derived from AXIO 2. 

When direction aggregation is dominant, the form of Equ. 43 allows the velocities 

of some particles to be extremely fast, while the velocities of other particles that are not 

far from them decrease rapidly. Particles with a very fast velocity can also have a higher 

mass density than their surroundings, and under certain conditions, the mass and 

velocity can mutually transform (as long as the condition of Equ. 43 is met). The above 

conclusion is consistent with the hypothesis of "high-speed and random motion of 

particles in the universe" mentioned above. 

To summarize the results stated above, in any reference system that satisfies the 

conditions of HYPO 1–3, no matter what the mass level of the basic (infinitesimal) 

reference particle considered in this article actually is, and no matter how slow the 

"absolute" movement speed of that particle, from the perspective of human 

understanding, the particle mass at this level is infinitesimal, and the speed is infinite 

(corresponding to the expansion of the self-consistent range). At the same time, this 

conclusion also gives legitimacy to the vector decomposition in the (infinitesimal) 

microdomain V introduced in Section 3.3.4.1 and the viewpoint that "the absolute 

coordinate system needs to move along with the whole particle swarm". In this way, 

Equ. 40, which is derived in this article, and Equ. 52, which is the acquisition method 

for the initial wave function, can be applied not only in a local space but also in a 

broader space (or in various inertial reference systems), and they can also be applied 

not only in a low-mass-level particle system but also in a high-mass-level particle 

system (i.e., either low-mass-level particles or high mass-level particles can be treated 

as infinitesimal particles). Based on the above conclusions, we infer that Equ. 40 and 

the abovementioned physical model are completely equivalent. 

3.4 A Simple Verification of the Mathematical Model 

It can be seen from the above discussion that Equ. 40 can completely describe all 

objects and phenomena in nature and that the situation described by Equ. 40 is logically 

self-consistent with the physical model (hypotheses) given at the beginning of this 

article; however, its reliability in real situations should be further tested. In this article, 

the description of the time-dependent diffusion of a 1-dimensional Gaussian wave 

packet without an external field with even parity along the x-axis and the initial 

condition  is solved for comparison with known theories to guide further 
discussion. For convenience of operations, we adopt natural units (i.e., ħ = c = 1) and 
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set m = 1 eV for all evaluations in this section, while the International System of Units 

is still adopted in other sections. 

As mentioned above, to correctly solve Equ. 40, it is necessary to give the equation 

an initial condition with an appropriate norm in accordance with Equ. 52, which is 

different from solving the Schrödinger equation. In the following, the average electron 

mass density outside the nucleus of the hydrogen atom is taken as a reference to 

determine the norm of the wave function for the initial condition of the Gaussian wave 

packet  in the case of time-dependent diffusion. It is assumed that these two kinds 
of problems are essentially the same; both of them concern the movements of particles 

at the photon level. Let m = 9.109 389 7(54) ´ 10–31 kg, which is the electron mass; 

then, the coefficient pre the normalized wave function  in Equ. 52 can be evaluated 

to be approximately . The normalized norm of the above Gaussian wave-

packet is . Therefore, the approximate value  of the same 

order of magnitude can be taken as the initial condition without affecting the discussion 

of the problem (after verification, when the coefficient of  is less than , the 
maximum relative deviation between the contours for the wave packet obtained using 

these two methods is less than 1.14% in all ranges; see Part 6 of the Supplementary 

Information for details). For comparison, the case of a larger norm in the initial 

conditions (such as ) is also evaluated. At the same time, the 

Schrödinger and Dirac equations are used to solve for the description of the time-

dependent diffusion of this wave packet. For the Dirac equation, the case in which the 

two components of the wave function are equal (i.e., ) is 

taken as the initial condition here (see the description of the process of generating Fig. 

4 in Part 8 of the Supplementary Information for the detailed Mathematica code for the 

solution process). 
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Figure 4 | Illustrations of the 1-dimensional time-dependent diffusion of the Gaussian 

wave packet  as obtained using various methods in natural units. a, 
Computation result of Equ. 40 when the initial condition is . 

The norm has been magnified ( ) to facilitate the shape comparison. b, 

Computation result of Equ. 40 when the initial condition is . c, 

Computation result of the Schrödinger equation. d, Computation result of the Dirac 

equation. 

As illustrated in Fig. 4, there is almost no difference between the visualization of 

the time-dependent diffusion of the wave packet obtained from Equ. 40 under an 

appropriate initial condition  (Fig. 4a) and that obtained from the 

Schrödinger equation (Fig. 4c) (note: for convenience, the norms of wave functions, 

not the squares of the norms, are discussed in this section). This small difference is 

illustrated in greater detail in Fig. 5 by presenting the standard deviations of the norms 

at different diffusion times, from which it can be seen that the profiles of the Gaussian 

wave packets predicted by the two methods almost completely coincide at each time 

point. Thus, it is further verified that the equation given in this article well approximates 

the Schrödinger equation (at least for the problem of a Gaussian wave packet) in a 
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domain with an extremely sparse mass density (such as the distribution of electrons 

outside the nucleus of an atom, excluding the influence of the electric field of the 

nucleus), which is consistent with the conclusion presented in Section 3.3.5.1 above. In 

Part 6 of the Supplementary Information, it is further verified that the visualization of 

the time-dependent diffusion of a Gaussian wave packet as obtained from Equ. 40 in 

accordance with the initial condition estimated from the product of Equ. 72 and the 

norm  of the normalized wave function is still basically consistent with that 

obtained from the Schrödinger equation in the presence of a nuclear electric field. 

 
Figure 5 | Visualizations of the time-dependent diffusion trend of a Gaussian wave 

packet (norm) as predicted using four methods (for Equ. 401, the initial condition is 

; for Equ. 402, the initial condition is ) in 

natural units at various moments in time (t = 0.0, 0.2, 0.4, and 0.6 eV–1). 

If the norm of the wave function in the initial condition is large (such as 

), the profile of the wave packet will show an obvious bulge or particle 

(position or direction) aggregation near t = 0.3 eV–1 (Fig. 4b). Because of self-

aggregation, the profile obtained from Equ. 40 is steeper along the direction of the x-

axis, which can be clearly seen from the standard deviation of the norm of the Gaussian 

wave packet in Fig. 5 at the three nonzero times. Under such initial conditions, the 

diffusion rate predicted by Equ. 40 is not as fast as that predicted by the Schrödinger 
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equation, and the main peak in the profile does not tend to quickly dissipate; this is 

closer to the situation described by the Dirac equation (Fig. 4d). It can be speculated 

that this behavior is mainly caused by the gravitation of the wave packet itself. After t 

= 1 eV–1, the main peak begins to split into two peaks (for more obvious splitting, see 

the case in which the coefficient of  is 1.4 in Part 7 of the Supplementary 
Information); in the case described by the Dirac equation, strong splitting occurs after 

t = 0.5 eV–1 (the main peak splits into two secondary peaks, and then each secondary 

peak splits into two smaller peaks). This phenomenon is considered to be caused by the 

fact that the gravitation of the wave packet itself is not considered in the Dirac equation 

and the corresponding correction to the real result is excessive. This is also confirmed 

by the standard deviation profiles illustrated in Fig. 5. 

To study the influence of the norm in the initial condition on the diffusion of the 

wave packet in greater detail, we also compare the shapes of the key parts of the profiles 

(the time-dependent trend of the norm for the wave packet at x = 0 and the wave packet 

at the maximum value of the norm) after assigning various initial conditions ( , 

,  and ) for Equ. 40 (see the description of the process of 

generating Fig. 6 in Part 7 of the Supplementary Information for the detailed 

Mathematica code for the solution process); the results are illustrated in Fig. 6. It can 

be seen from this figure that when different initial conditions are specified, with norms 

ranging from small to large, the wave-packet diffusion profiles predicted by Equ. 40 (at 

x = 0) are initially consistent with those predicted by the Schrödinger equation and then 

gradually tend to continue to agglomerate near 0.3 eV–1 (the profile gradually begins to 

bulge); the corresponding trend is shown in Fig. 6a. In addition, Fig. 6b shows the shape 

of the wave packet at the highest point (see Part 7 of the Supplementary Information 

for the full spectrum waveforms for the initial conditions of  and 

 and the corresponding comparisons with the Dirac equation). As 

the initial norm gradually increases, the wave packet initially will gradually shrink, and 

when the norm reaches the maximum, the waveform will gradually become steeper and 

steeper and (presumably) will gradually approach that of the function satisfying Equ. 

43. It can also be seen from this trend that as the mass density of the wave packet 

increases, the attenuation speed of the wave packet becomes slower. 
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Figure 6 | Comparison of the shapes of the Gaussian wave packets obtained when 

assuming different initial conditions M0 = (10, 1.0, 1.2, 1.4)  in natural units. a, 
Time-dependent trends of the norm for the wave packet at x = 0 (solid line) and for 

the wave packet at the maximum value of the norm (dashed line of the same color). b, 

Profiles at the maximum values of the norms. The numbers in the legend are the 

coefficients of  corresponding to the different initial conditions. The initial norm 
at t = 0 eV–1 in each case is normalized to facilitate the shape comparison. 

3.5 Adding External Fields to the Equation 

Theoretically, the particle motion law for the whole system, as described by Equ. 

40, is basically sufficient. All forces and phenomena in nature are caused by the 

generalized diffusion of particles. However, when dealing with practical problems, to 

reduce the scale of computation, etc., a local process is often studied. Therefore, it is 

necessary to add external fields to Equ. 40. 

In Section 3.7, we speculate on the essence of the four fundamental forces of 

nature that have been discovered by human beings. Since the strong force can be 

regarded as describing the energy interaction between a single point and another single 

point, it is not necessary to use the form of external fields. Therefore, it is easy to 

address this force directly with Equ. 40; hence, this kind of interaction is not considered 

here. Only the gravitational, electromagnetic and weak interaction fields are considered 

in the following. In view of the different forms (in particular, there is no repulsion in 

gravitation) of gravitation and other forces (such as the electromagnetic force and weak 

force) and the understanding of gravitation in this article, it is considered that the 

possible external fields should be divided into two types: gravitational fields and other 

potential fields. A gravitational field originates from the difference in the 

spatiotemporal probability of the spatial anisotropy of (randomly moving) larger-mass-
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level particles (or tiny particles) formed by the local background density produced by 

the equiprobable distribution of randomly moving tiny particles in space-time, which 

is a statistical effect dominated by position aggregation. Other fields originate from the 

acceleration (or change in direction) of particles of higher mass levels (or tiny particles) 

induced by the spin field, which is a statistical effect dominated by direction 

aggregation. For a gravitational field, the acceleration effect can generally be ignored; 

for other potential fields, the gravitational effect can generally be ignored. A more 

detailed description follows. 

First, let us consider the principle of the generation of random spins for particles 

with a large mass level. If relativistic effects (statistical effects of moving particles) are 

not considered, then the agglomeration of particles in space can be regarded as 

following the Poisson distribution given above (Equ. 20). Here, we study the 

aggregation of particles in one box (or several adjacent boxes), under the assumptions 

that the aggregation is spherical and that there is no aggregation caused by relativistic 

effects. This is the case when the particle volume and the density differences of the 

vectors are both sufficiently small. Given particles of a certain mass level, the more 

microscopic the investigated system is (where the property of being microscopic is 

relative), the closer the situation is to this case. Given a number of particles with the 

same speed and random direction agglomeration in 3-dimensional space, there must be 

a corresponding movement component to produce a spin effect on the overall centroid 

at a certain moment in time. To illustrate this problem, the particles with equal speed 

and random directions are still regarded as random vectors with equal norms, and the 

analysis is divided into the following two steps: first, the distribution of the norm of the 

angular velocity generated by a single random vector relative to the total centroid is 

obtained, and then, this distribution is extended to the distribution of the norm of the 

angular velocity generated by a number of random vectors relative to their centroid. 

First, let us study the distribution of the norm  of the random angular velocity 

generated by a random vector VS with a given norm (the linear velocity of the random 

points on the sphere) uniformly distributed on a unit sphere S. The contribution of VS 

to the random angular velocity of the center of the sphere is in all possible directions in 

space. How can multiple rotation contributions be added together to specify the overall 

rotation? The vector product  of the linear velocity  of a point on the sphere 

and the radius r of the unit sphere S on which this point located can easily explain the 

ΩS

ωS vS
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total rotation contribution, or the distribution of the contribution to the angular velocity 

by a single random vector (here, ; if , then  is the contribution of the 

linear velocity  to the angular velocity ), namely, 

   (53) 

The process of solving the above problem can be divided into two independent 

steps. The first step is to determine the direction of the unit vector r in space, that is, to 

determine the position of the end point of the vector r on the unit sphere S. This position 

is uniformly distributed over the whole sphere S and is represented by a random vector 

R. The second step is to determine the direction of the linear velocity  of the point 

at this position, which is also uniformly distributed throughout the whole space and is 

represented by the random vector VS. Suppose that there is a sphere  of radius  

at the end of r (specifically, the end that lies on the sphere S). Then, the random vector 

VS is equivalent to the vector formed by connecting the uniformly distributed points on 

the sphere  to the center of . Considering that  and the definition of the 

cross product, when the direction of r is determined,  is equivalent to the norm 

of the vector obtained by connecting the center of the sphere  to the projection of 

the uniformly distributed points on the sphere  along a direction parallel to r onto a 

tangent disk that passes through the center of the sphere  and is perpendicular 

to r; this vector norm is denoted by  (Fig. 7). 

 

Figure 7 | Schematic diagram of the generation method for the vector . 

When the random vector R changes, it is equivalent to driving the tangent disk 

 on the unit sphere S to move. Since the sum of two uniform distributions is also a 
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uniform distribution, the result of  can be regarded as the uniform distribution 

of the random vector  throughout the entire space. Thus, one can find the 

distribution of the norm  of the random vector on the disk  and assign it a 

random direction in space to obtain the distribution of the norm  of the angular 

velocity generated by the contribution of VS to the center of the sphere S. 

Under the assumption that the random variables N1~N (0, 1), N2~N (0, 1) and 

N3~N (0, 1) are independent of each other, one coordinate X that is equivalent to the 

three coordinates of R, which is the unit random vector, can be written as14,15 

   (54) 

the probability density of which is 

   (55) 

Let us establish a 3-dimensional Cartesian coordinate system for . Suppose that the 

disk  is perpendicular to the z-axis and consider the random variables Q~U(–1, 1) 

and H~U(–p, p). Then, the coordinates of the random vector  obtained by 

projecting the uniformly distributed points on sphere  onto disc  are 

,  and Z = 0, and the norm of this 

random vector is 

   (56) 

Therefore, the probability of  is 

   (57) 

Note that the distribution of the random variable  is the random distribution 

generated by the random motion of  in space driven by R. Therefore, by taking a 

product  of random variables, we can obtain the probability density of 

the equivalent coordinate X, which represents the contribution  of the random 

vector VS to the angular velocity, namely, 
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   (58) 

The angular velocity contribution  of the random vector VB, which is 

uniformly distributed throughout the whole unit ball enclosed by the sphere S, is also 

multiplied by the reciprocal  of the norm r of the radius r at which the starting point 

of this vector VB is located within the ball. Therefore, the contribution of VB to the 
equivalent coordinate  of  is calculated as follows: 

   (59) 

Hence, the new probability density is 

   (60) 

Thus, the distribution function  of the contribution of VB to one of the 

equivalent coordinates of  is obtained. Next,  is integrated over the whole 

unit ball: 

   (61) 

Equ. 61 describes the case in which the particles are uniformly distributed in the ball. 

If the particles are instead distributed in the (nondispersive) shape described by Equ. 

43, the integration should be performed approximately in accordance with this density 

function; however, this analytical function is not available at present. Nevertheless, 

even if only the case of a uniform distribution is considered, the discussion of the 

following problems will not be affected. The case described by Equ. 43 is a spherical 

particle swarm with an nonuniform particle density distribution along the radial 
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direction. It can be inferred that this is still a similar case with a rotation effect (in fact, 

for every layer of the sphere, a spin vector with random norm and direction can be 

generated; according to the central limit theorem, the norm of the total vector must 

follow the Maxwell distribution with a certain parameter). The probability density of 

the contribution of VB in the whole unit ball to an equivalent coordinate X of the angular 

velocity  can be obtained by finding the derivative of Equ. 61 with respect to x and 

normalizing it, as follows: 

   (62) 

where . This is the case of a random vector VB 

inside the unit sphere S (including S). 

Next, we extend the analysis to the case in which the radius of the ball has an 

arbitrary value R. When the radius of the ball is R, the above situation scales to 

. Accordingly, the probability density of the contribution of the random vector 

V to the single equivalent coordinate X of angular velocity  is 

   (63) 
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where , the standard deviation of 

which is . If R = 3 and c = 1, the above probability density (Equ. 63) of the angular 

velocity can be plotted as shown in Fig. 8. 

 

Figure 8 | The contribution of the random vector V to the distribution of the single 

equivalent coordinate  of the angular velocity  when R = 3 and c = 1. 

Therefore, when k independent and identically distributed random vectors V move 

randomly in space, according to the central limit theorem (when they are grouped 

together), the norm  of the average angular velocity generated by all of their 

components relative to their total centroid follows the Maxwell distribution with scale 

parameter . To verify this conclusion, values of k = 103, R = 3 and c = 100 are 

considered here, and this theoretical distribution is compared with the results of 

simulating 106 samples with the same parameters. The results are illustrated in Fig. 9 

(see the description of the process of generating Fig. 9 in Part 8 of the Supplementary 

Information for the details of the simulation). It can be seen from this figure that the 

analytical expression derived in this article is in good agreement with the simulated 

results. 
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Figure 9 | The distribution of the norm  of the total angular velocity when 103 

random vectors with a norm of 100 are grouped together (with R = 3). 

See Part 4 of Supplementary Information for the detailed Mathematica code of the 

above calculation process. So far, this article proves that there are more or less rotational 

components in the agglomeration (even if there is no aggregation) generated by the 

aggregation of randomly moving particles in space, and the angular velocity of the 

agglomeration follows the Maxwell distribution with a certain parameter. If the 

strengthening influence of the statistical effect of moving particles is added to this 

agglomeration and rotation, it can be seen that, like aggregation, spin is the general 

characteristics of the universe. 

It is believed that the acceleration in a certain direction that we can perceive is 

essentially a time-dependent rate of change in the average velocity of the tiny particles 

in the target domain towards that direction (if it is only the average velocity without a 

time-dependent change, it has been proven in Section 3.3.2 that the target object will 

form an inertial system, with no difference in physical laws compared with the previous 

state, and the target object will then lose the sense of acceleration). The essence of 

gravitational acceleration is a time-dependent rate of change in the average velocity of 

tiny particles at a lower vector density to a higher vector density due to the statistical 

effect of the moving particles (e.g., when a particle agglomeration that meets the 

condition of Equ. 43 is located in a gravitational field, the particles in it are replaced by 

the particles of higher density in the gravitational field, resulting in the deformation of 

the agglomeration and causing the movement trend of particles forming the 

Ω
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agglomeration weakly towards the low-density domain and strongly towards the high-

density domain). The essence of other types of acceleration is an increase in the time-

dependent rate of change in the average velocity in the opposite direction in a (moving) 

reference system composed of tiny particles. Fundamentally, the causes of these forces 

or potentials are the same, but they are of different types. 

For uniform circular motion, the acceleration direction is perpendicular to the 

velocity direction, and the principle of acceleration generation is the same as above, but 

the form is special. When a spherical agglomeration domain of particles produces spin 

(which can be approximately thought of as uniform circular motion), from the overall 

view (ignoring the behavior of single particles), the spherical matter domain rotates 

continuously and is subject to a continuous centripetal force that changes the direction 

of motion. If there is no spin, a particle S can be formed that satisfies the condition of 

Equ. 43. As the rotation intensifies, more centripetal force is needed to maintain the 

acceleration. In this case, S must satisfy the condition of Equ. 43 again by changing its 

previous shape, that is, by increasing the norm  of the wave function near the 

center of rotation (from another point of view, if the norm of the wave function at each 

point near the edge of S becomes larger,  must become larger near the center to 

meet the condition of Equ. 43). Thus, a larger  can indicate not only a higher 

particle concentration but also a faster particle speed. In this article, we study only the 

case in which a faster speed results in an increase in . There are four cases in 

which the particle speed is faster at the center of rotation, as shown in Fig. 10a–d. 

 
Figure 10 | Possible cases with a faster velocity of particles at the center of rotation, 
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satisfying the condition of Equ. 43. 

On the other hand, if S does not rotate, a certain number of tiny particles escape along 

the radial direction (in balance with the number of tiny particles absorbed by S). With 

increasing rotation, according to the above analysis of acceleration, there may be either 

more tiny particles escaping along the radial direction or almost no particles escaping. 

Considering the gravitation and mass stability of the particle swarm (which must 

basically satisfy the condition given in Equ. 43), if some particles escape, the whole 

particle swarm needs to be replenished. This replenishment can only be provided in the 

axial direction perpendicular to the plane of rotation. This causes the particle swarm to 

be in a state of suction along the direction of the spin axis (excluding the possibility of 

Fig. 10c), and the particle swarm will tend to be in the state shown in Fig. 10d. When 

there is almost no particle escape, the particle swarm is more likely to be in one of the 

states shown in Fig. 10a and Fig. 10b. We will study only the latter case in the following. 

As a result, the spin results in a field of direction aggregation in both the axial and radial 

directions (especially in the axial direction), resulting in a radial spin axis (similar to 

the formation mechanism of the solar wind16). When a series of such spin particle 

swarms come together, if the axes of radiation are consistent with each other, there will 

be an obvious direction aggregation field of velocity (similar to the mechanism of the 

passive magnetic field generation of iron bars). In addition, particles of different mass 

levels (larger particle groups) formed by the spin particles will form direction 

aggregation fields of different intensities. Such a direction aggregation field is 

considered to be another type of potential field (electromagnetic field or weak 

interaction field). When studying single particles of the spin particle swarms, strings 

similar to those in string theory may be found, and the lengths of these strings should 

also be computable (although this problem will not be studied in depth here). Other 

potential fields generated in this way will change only the aggregation state of particles 

in space (including the aggregation of velocity direction) but not the original velocity 

of the particles. Since spin is also spontaneously formed and exists in the background 

field, the aggregation of the velocity direction will also be limited by the background 

field in accordance with statistical laws. 

It is believed that the reason for the change in the movement speed of an 

agglomerate caused by gravitational potential energy is the accumulation of the 

position-aggregation-dominated statistical effects produced by the moving particles in 
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the gravitational field. By contrast, the reason that other types of potential energy cause 

changes in the movement speed of an agglomerate is the accumulation of the direction-

aggregation-dominated statistical effects produced by the moving particles in other 

types of potential fields. The mechanism by which a gravitational field realizes 

acceleration process is the gradual aggregation of the positions of the particles forming 

the target object (after being replaced by particles with a position aggregation effect), 

which leads to an unbalanced diffusion trend that promotes the accumulation of velocity. 

For other potential fields, the particles forming the target object are constantly replaced 

by particles with a velocity aggregation effect, which leads to a gradual accumulation 

of the velocity aggregation effect and thus causes acceleration. At first, such a process 

can only manifest as a trend, that is, a so-called force. Once the target object begins to 

move along the trend line, the trend will continue to accumulate. In these potential fields, 

the particles that form the potential fields will continue to follow the statistical laws 

together with the particles forming the target object in the fields (exhibiting the 

generalized diffusion behavior described by Equ. 40). When the particles of the target 

object are studied separately, the phenomenon of continuous aggregation of position or 

direction will appear. This phenomenon is characterized by an increase in the potential 

energy of the target particles. In Section 3.7, we deduce the particle structure of the 

matrix for an electron. It is considered that other external fields (electromagnetic fields 

and weak interaction fields) possess similar structures. The existence of other external 

fields leads to an increase in the potential energy of particles in this structure, while the 

existence of a gravitational field leads to an increase in the potential energy caused by 

the aggregation of particles in a unit of volume. In this way, most of the mass (in 

accordance with the viewpoint in Section 3.3.5.2) in the whole target particle can be 

accelerated by an external potential field. The scale of the target wave function is 

generally much smaller than the particle structure of the electron matrix, and the point 

at which the wave function is located is generally among these larger particles; while it 

can be equivalently treated in a gravitational field. The wave function (norm) at a point 

before the action of the external field is much smaller than that after the action of the 

external field (if the wave function created by an external field, such as a gravitational 

field, is small, it can be either ignored or studied together with the target object). The 

superposition of the wave functions at this point can be approximately regarded as 

characterizing only the speed of these larger particles after acceleration. 
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Therefore, the contribution of other external fields to the time-dependent rate of 

change in the density M of the total relative vector at a point can be regarded as 

consisting of two superposable components. On the one hand, since the diffusion part 

of this (infinitesimal) microdomain is still in the background field, regardless of the 

effect of acceleration, the diffusion behavior of the affected vector is no different from 

that of a spontaneously formed vector that is not affected by acceleration and still 

follows the same generalized diffusion law. On the other hand, it exhibits the direction 

aggregation effect induced by the accelerating field in the (infinitesimal) microdomain, 

which needs to satisfy the corresponding change in the average potential energy, and 

the direction is approximately the direction of M at this point; it is an additional time-

dependent change in M that cannot be affected by diffusion. Throught the joint action 

of these two vectors, the time-dependent rate of change in the total relative vector 

density at a certain point is the sum of these two terms. Regarding the additional time-

dependent rate of change in M caused by other potential fields, a potential field here 

can be understood as an additional particle diffusion coefficient (since the diffusion 

coefficient is related to the square of the speed and such a potential field changes the 

velocity of the particle swarm; for example, in a gravitational field, , 

and the diffusion coefficient is , where t1 = 1 s). In addition, relativistic effects 

do not need to be considered to determine the potential energy of large monopole 

particles because regardless of whether there are relativistic effects,  is a fixed 

value that depends on the potential energy where the monopole particles are located. 

From another perspective, since the potential energy of a particle with a larger mass 

level is related only to its position, no matter what its motion state is, whether it is 

affected by special relativistic effects or not, its potential energy will not change. 

Moreover, the existing particles must be dispersed throughout the whole field, so a 

change in a particle's potential energy will inevitably lead to a corresponding change in 

the particle's kinetic energy. With regard to this additional diffusion behavior in an 

external field, in Fig. 1a, it can be seen that the wave function at A is a certain value 

M, and at B, it is 0. The same wave function (M) can be obtained by taking A and B 

as one point at which to find the second derivative. Therefore, the current wave function 

is numerically consistent with the second derivative, and the corresponding diffusion 
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coefficient is also consistent with the current coefficient. Therefore, regardless of their 

dimensions, the numerically study will not be affected. Since M is a plane vector, its 

direction should be perpendicular to . Since M is a plane vector, its direction 

should be perpendicular to . Therefore, the product of another potential energy E 

as a diffusion coefficient and M at a certain point is directly proportional to the change 

in the diffusion rate of the relative vector. The specific form of this expression is verified 

by the Schrödinger equation, namely, 

  (64) 

In summary, the final form of the equation for characterizing the generalized 

diffusion of relative momenta (vectors) in the presence of external fields can be written 

as 

 . (65) 

Here, again, it is emphasized that Equ. 65 is not a final solution; it is only a 

compromise solution to reduce the computational scale in certain specific cases. If the 

whole universe is represented by the physical model established in this article, and 

considering the essential origins of the four fundamental forces (as speculated in 

Section 3.7), then either Equ. 40 or Equ. 65 derived in this article can even be called 

the real Theory of Everything. Since it describes the most basic laws of motion in nature 

(if a spin description is added, where the method used for this addition is the same as 

the traditional method), it can reveal the essence of all phenomena and characteristics 

of objects in the universe. In accordance with the logic of particle classification by mass 

put forward in this article, there is no need to add a spin description. The spin effect is 

also caused by the generalized diffusion behavior of moving particles, and therefore, 

spin information can be obtained by considering the generalized diffusion behavior of 

particles of lower mass levels. 

3.6 Preliminary Exploration of the Spin Magnetic Moment of the Electron 

First, the expression for the momentum operator is determined following the logic 

of this article, as follows. To find the first derivative of Equ. 22 with respect to position 

(x, y, z), we obtain 

∂M
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   (66) 

In view of the statistical effect of moving particles, the actual momentum of the particle 

swarm of each order will not be directly proportional to Equ. 66 but rather will be 

"weakened" by corresponding diffusion coefficient factors . Therefore, by 

multiplying Equ. 66, representing each complex value, by  and adding each order 

together, we can obtain 

   (67) 

Accordingly, following this logic, the momentum operator can be expressed as 

   (68) 
where  is the applied quantity. 

Based on the analysis of Equ. 46 and the discussion of Equ. 64 in Section 3.5, the 

effect of external potential fields on the velocity of a tiny particle swarm can be 

quantitatively expressed as 

   (69) 

where t1 = 1 s. Here, we take the situation of the electron in the hydrogen atom as the 

basic reference (note that the same conclusion could be obtained using another atom as 

the reference) to construct the expression of interest. The average electric potential 

energy of the electron in the hydrogen atom is 

   (70) 

where = –1.602 177 33(49) ´ 10–10 C is the charge of the electron, 

 is the permittivity of vacuum, and  is the average electron radius 

of the hydrogen atom, for which the Bohr radius is adopted, namely, . For 

the same reasons as in Equ. 47, t1 is temporarily ignored. By substituting Equ. 70 into 

Equ. 69, we can obtain a quantitative expression for the norm of the average velocity 

 of a particle swarm in a domain V, namely, 

∇R(M,k).
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   (71) 

where  is the fine structure constant,  is the mass of the electron, and 

c is the speed of light. This average velocity in V is a constant that does not change with 

the number of particles. In the electron dispersion region, the number of tiny particles 

forming the electron matrix is , which can be substituted into Equ. 48 together with 

Equ. 71 before dividing by the speed and number density of tiny particles in the 

background field to obtain the norm of the relative vector of the whole electron or the 

norm of the total wave function in the electron dispersion region, namely, 

   (72) 

where , the purpose of which is to correct the dimensional difference 

caused by the transformation between different physical quantities. The expression for 

the equivalent wave function of the whole electron in the potential field is determined 

above (the product of Equ. 72 and the norm of the normalized wave function is the 

initial wave function here). However, the contribution of the mass density to the wave 

function is not considered here because it is negligible compared with the contribution 

of the electric potential field. 

Suppose that the Hamiltonian of a free electron can be written as 

   (73) 

where s is the Pauli operator and p is the electron momentum. Under an external 

magnetic field  (where A is the electric vector potential), H can be 

transformed into 

   (74) 

If A and p both commute with s, then 
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   (75) 

After the above treatment, the terms describing the interaction of the orbital magnetic 

moment with the external magnetic field (the first term on the right-hand side of Equ. 

75) and the spin term of the electron (the second term on the right-hand side of Equ. 75) 

have been successfully separated. Next, we will study the spin term separately. 

The experimentally measured spin magnetic moment of an electron actually 

reflects the effect of the external magnetic field on the whole atom. Therefore, the whole 

wave function of the electron is of great significance here. In view of the discussion in 

Section 3.5, Equ. 72 is the intrinsic relative wave function of the whole electron, which 

does not vary with time. Therefore, it (Equ. 72) appears only in the natural exponential 

term of Equ. 68 and is not affected by the Hamiltonian operator Ñ. When the external 

magnetic field B is weak, its relativistic effect on the electron momentum can also be 

ignored. Therefore, only  alone affects the natural exponential term in Equ. 68. 

If the distribution of the electron matrix outside the nucleus is regarded as a flat field, 

only the real part of the system is contributed by the wave function that denotes the flat 

field. Since it is in the position of the natural exponential term, indicating a statistical 

effect that is independent of the tiny particle location, the real wave function can be 

superposed together to denotes a whole particle, which can be expressed as a real 

. Because of the special structure of the electron (see the speculations on the 

electronic structure presented in Section 3.7), its diffusion trend is exactly opposite to 

the usual behavior of the density gradient, so this scalar must be negative; therefore, the 

negative value  of the norm of  is the best choice. On these grounds, 

the second term on the right-hand side of Equ. 75 can be transformed into 

   (76) 

Therefore, the expression for the spin magnetic moment of the electron derived in this 
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article is 

   (77) 

where  can be calculated using Equ. 72. If the average mass density 

 of a broader space is used, then , where 

 is the Bohr magneton. However, when a larger value is used, such as the 

average mass density near the earth (from a comparison with the experimental value 

measured on earth, it is obvious that this value should be used, but the specific form of 
this value cannot be obtained at present; hence, we can only assume = 7.537 648 

754 4 ´ 10–28 kg·m–3), we can obtain . Thus, in turn, the 

average mass density near the earth can be deduced from the spin magnetic moment of 

the electrons located there. 

It is amazing that small electrons can form such an enormous spin magnetic 

moment. It is estimated that this spin magnetic moment is induced by the total spin of 

the tiny particles of the background in the whole atomic domain, and the details of their 

motion need to be further investigated on the basis of Equ. 40. However, no further in-

depth exploration will be presented here. 

3.7 Speculations Based on the Physical Model 

Following the logic of this article, the black holes observed in the universe should 

not be very small singularities, as they are considered in the traditional theory. A black 

hole should have a certain or huge volume with a relatively large density. The mass of 

photons is at a sufficiently high level that they cannot escape from the event horizon. 

However, not all substances cannot escape, at least gravitational effects can escape and 

be perceived (if there were no substance that could convey this information, it would 

obviously be impossible for it to be perceived). Therefore, there may be other worlds, 

even dense forms of life or civilized societies, in some black holes. These civilized life 

forms in black holes (if they exist) may regard us as being as light, loose and 

meaningless as we regard clouds in the sky on earth. They may even be able to 

communicate through particles of lower mass levels. 

In light of the model presented in this article, it is speculated that outer space can 

be divided into interstellar space of varying degrees of emptiness at the levels of 
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interplanetary, interstellar, intergalactic and galactic clusters, etc. The matter in these 

spaces becomes increasingly sparse until it reaches a certain threshold at which even 

photons cannot be formed, so that light cannot traverse it. This broad outer space is a 

field that is untouchable by the electromagnetic wave detection technology that has 

currently been mastered by human beings. However, gravitation can travel through it. 

If we regard the galactic groups with lower connections with each other as multiple 

universes (these universes as a whole can still be regarded as part of the larger universe), 

then if one of them could be observed, it would be born at a certain moment in time and 

eventually die. Such a dead universe, like dead stars, will eventually evaporate. If these 

multiple universes (multiverses) were completely unconnected, they might be regarded 

as parallel universes; however, according to the logic of this article, there should be 

connections between these universes. They must be distributed symmetrically due to 

their mutual influence. Therefore, parallel universes cannot exist, and only a 

symmetrical universe can appear. 

The concept of the Big Bang is not accepted according to the logic of this article. 

The idea that the universe originated from an infinitesimal point is absurd. General 

relativity can be applied only under certain conditions and should not be extended 

unconditionally. For example, the earth or the sun may be treated as a point mass to 

calculate gravitation in Newtonian mechanics, but they are not infinitesimal points 

themselves. The sun is constantly radiating and spreading, and its main body will 

expand farther in the future, but no one believes that the sun originated from an 

infinitesimal point. Therefore, according to the view of multiple universes, our universe 

should have a life cycle similar to that of stars. The universe that we can observe is 

constantly spreading (which may be the cause of the repulsion between celestial bodies) 

or expanding, but the total matter of the larger universe will not change, nor will its 

total entropy. Following the logic of this article, the concept of the ratio of the 

abundances of hydrogen and helium in the universe is very easy to understand. 

Speculations on photonic structure: It is believed that photons are composed of 

particles of a lower mass level (kth-order) than that of a photon energy agglomeration 

itself. According to the above discussion, the average speed of these lower-mass-level 

particles is a fixed value, and they can form structures with different spin periods (S1 

or S2). Two kinds of photonic structures with different spin periods (frequencies) are 

illustrated in Fig. 11. 



 65 

 

Figure 11 | Schematic diagram of two photonic structures with different frequencies. 

Ellipses with arrows pointing in different directions represent perpendicular rotations. 

According to the logic of this article, the standard for measuring the energy of a 

photon in a given location is the density of kth-order particles present there, or the 

number of kth-order particles passing through that location per unit time. Therefore, 

from the model structures shown in Fig. 11, it can be seen that frequency is directly 

proportional to energy. Since the speed of all kth-order particles is the same, when they 

form the structures S1 and S2, which are of different sizes, the spin periods of these two 

structures will be different, and thus, photons of different frequencies will appear. 

However, in any case, it is obvious that the overall speed of a kth-order particle swarm 

is certain (it is directly proportional to the speed of kth-order particles, by a factor of 

). Therefore, although the particles have mass, the photons of different frequencies 

that are formed by them still move at the same speed. The kth-order particles do not 

move in a straight line, and they move faster than the speed of light. However, the norm 

of their group velocity is the speed of light. Therefore, we can think of such groups as 

larger particles (photons), whose speed is the speed of light. This conceptualization 

does not affect the use of the photon frequency as a tool for measuring the expansion 

of the universe, nor does it affect the method of taking the speed of light as the 

representative speed of particles at this mass level. However, from the perspective of 

general relativity, photons of different frequencies have different energies and cause 

different degrees of space-time distortion. Therefore, photons of higher frequency or 

energy will move more slowly due to the influence of their own energy fields. By 

following the logic of this article, we can obtain the same conclusion. However, because 

a photon's own energy is so low, the impact of this phenomenon is negligible. 

1
π
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Understanding of the cosmic microwave background radiation: The background 

radiation in the universe is the measurable agglomeration produced by the tiny particles 

in the gravitational background field. According to the perspective presented in this 

article, this gravitational background is everywhere, but in different interstellar spaces, 

its sparsity is different. 

This article holds that it is necessary to return to the concept of the "ether", but it 

should have different connotations. If the ether is regarded as "absolute space-time", it 

can be understood as follows: The ether is a gravitational background field composed 

of tiny particles moving randomly. The ether in the broadest space is the purest absolute 

space-time. The ether near different types of celestial bodies can be approximated as 

absolute space-time to varying degrees. For example, the ether near the earth can be 

approximated as absolute space-time; the ether near the sun can be approximated as 

absolute space-time to different extent. However, the approximation of the ether near 

the earth is not as close to absolute space-time as that near the sun because it is also 

affected by the ether near the sun. 

To analyze the natural exponential term in the equation (Equ. 40) presented in this 

article, when the momentum density reaches infinity (that is, the velocity density or the 

mass density or both are infinite), the diffusion rate is infinitesimal. If the speed v is 

infinite and the energy density has a certain value at a particular location, then the mass 

density  at that location must be infinitesimal, and it is an infinitesimal of higher 

order than . In this case, the momentum density  would also be infinitesimal, 

and there would be no concept of momentum aggregation; therefore, this situation is 

meaningless. However, if the mass density is relatively large, even if the mass 

distribution does not satisfy the condition in Equ. 43, the diffusion will be extremely 

slow, and the distribution will be relatively stable on the time scale that is perceptible 

to humans. This conclusion, together with the situation described by Equ. 43, explains 

the mechanism of the formation of "stable particles" in the universe. With such a 

formation mechanism, particles of different mass levels will appear and will be 

effectively equivalent. In view of the above considerations, there is no interaction 

between particles of different mass levels, and particles of different mass levels are 

equivalent. Therefore, it is understandable that the universe is subject to fractal laws 

and that the universe is a "large organism" that also has a theoretical basis. 
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The plane wave function given in Equ. 40 and Equ. 65 in this article has certain 

requirements in terms of direction. This plane wave function is a simplification of a 

three-dimensional vector wave function. For this reason, the uniqueness of the three-

dimensional function determines the uniqueness of the plane wave function described 

in this article. Therefore, this article does not support the idea that the wave function 

M should be equivalent in all directions in the plane. As mentioned above, the wave 

function presented in this article also requires a suitable norm of the wave function in 

the initial condition. 

Understanding of the wave nature of solid particles (such as protons and electrons): 

The solid particle's matrix (background field) consists of particle waves of a low mass 

level, which diffuse in accordance with the corresponding laws. Solid particles are 

produced by this matrix and thus follow the dense regime of matrix diffusion. The 

diffusion rate of solid particles can be thought of as the apparent diffusion rate 

corresponding to the mass assignment under the diffusion law of the matrix wave 

function. 

Understanding of the process of electrons escaping from atoms: Since electrons 

have a fixed mass aggregation degree, when they escape by forming fixed-mass-level 

particles (at this time, the electron wave function collapses, where the so-called process 

of wave function collapse refers to the disturbed aggregation of the tiny particles 

forming the abovementioned matrix), the remaining mass (atomic nucleus, etc.) will 

immediately follow the aggregation law described by Equ. 43 to a different extent. For 

the effect of direction aggregation generated by the spin in atomic nucleus, this (the 

state of electrons escaping from atom) is an unstable state. Due to the lack of a 

corresponding spin request (for the energy released by the nuclear spin) in electron, the 

energy released by the nuclear spin can only be spread out, thus resulting in the 

manifestation of an electric field of a certain magnitude. 

Speculations on electronic structure: As described above, the electron is not a 

particle with a mass of 9.109 389 7(54) ´ 10–31 kg, as it is traditionally considered, but 

rather consists of a matrix (consisting of particles of a lower mass level than the electron) 

dispersed in space. Now, we analyze the structure of the particles forming the electron 

matrix (we assume that they are th-order particles). There is a strong interaction 

between the electron matrix and the nucleus, which has a positive charge, and the 

th-order particles forming the matrix must also be negative monopoles. For negative 
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monopoles with such a small mass to produce such a large force, each of them must 

have a spin acceleration structure, as described in Section 3.5. A single spin acceleration 

structure cannot achieve such a function (omnidirectional attraction); therefore, a 

complex of multiple spin structures must be formed. One possible structure of a 

spherical 3-dimensional composite is illustrated in Fig. 12, simplified to the form of a 

plane. 

 

Figure 12 | Speculative schematic of the structure of a th-order particle forming 

the electron matrix. Here, we use a plane diagram to illustrate the 3-dimensional 

spherical structure, where each blue line with arrows represents a track of th-order 

particles and each orange elliptical ring with arrows represents an S-structure. 

There is a black-hole-like structure (the blue diffusion point  in Fig. 12) with a great 

mass density in the center of the th-order particle (composite structure), of which 

the outer sphere accumulates at least one layer of spin acceleration structures S, the 

orange structures shown in Fig. 12. On the one hand, these S structures are attracted by 

; on the other hand, because of the escape of the smaller particles ( th-order 

particles) in the radial direction, these S structures will repel each other. The jets formed 

in the axial direction are exactly suctioned into . All of the constraining mechanisms 

above make the th-order particle a stable composite structure. Such a composite 

structure can continuously and rapidly pull in th-order particles from the outside, 

thus forming a strong attractive force. Because of relativistic effects, the th-order 

particles pulled in by the th-order particle from the outside will gather together in a 
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highly concentrated form (similar to a black hole), temporarily forming a stable suction 

structure (  and th-order particles). However, in the long term, the continuous 

suction of materials from the outside will inevitably lead to instability of the th-order 

particle structure. As a result, such structures will continue to be generated and collapse 

on a longer time scale, but the total number of these structures in a specific region will 

remain unchanged. 

Based on the electronic matrix model, we can deduce the principles of action of 

the four known fundamental forces in the following way: The strong interaction force 

is a statistical effect between a few energy aggregations very close to each other, which 

has the same form as gravitation. This is a type of energy-level force (for example, it is 

quite difficult to merge or separate two peaks in Fig. 4b). Such a force is strong and 

-like. The action principle of the electromagnetic force is that both sides of the 
interaction are composed of electron matrix structures. The action principle of the weak 

interaction force is that only one side of the interaction is composed of an electron 

matrix structure. The action principle of gravitation is that neither side of the interaction 

is composed of an electron matrix structure, or the electronic matrix structure exerts no 

effect; instead, gravitation is a statistical effect between particle aggregations at a long 

distance. 

Understanding of antimatter: As mentioned above, space is infinitesimal relative 

to infinitesimal moving particles in it, and particles exist in space as if nothing were 

present in that space. Accordingly, we can also suppose that infinitely many spaces exist 

for one particle, such spaces move among a particle, and this particle can be divided 

into entities with the same number of spaces. If the empty boxes in space are instead 

taken as the research objects, then in a way analogous to that described above, 

antiparticles, white holes and negative energy will arise. Since our world consists of 

agglomerations of matter, the proportion of antimatter is relatively small. In this way, 

the understanding of antimatter is complete and self-consistent. 

Understanding of quantum entanglement: If two particle states are entangled with 

each other, then information must be transmitted between them. In this article, the way 

in which different particles are classified according to their mass can well explain this 

kind of action at a distance. Similarly, there is also the strange phenomenon of 

Wheeler's delayed-choice experiment. However, if we understand it in accordance with 

the logic of this article, it is no longer mysterious. 
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4. Conclusions 

In this article, a physical model of the whole universe has been constructed from 

the most basic philosophical paradoxes. Based on this model, a mathematical equation 

has been established to describe the generalized diffusion behavior of moving particles, 

for which the corresponding form without an external field has been simply verified. 

For the first time, relativistic effects have been interpreted as statistical effects of 

moving particles, based on the understanding that the higher the degree of aggregation 

of particles is (in terms of either position or movement direction), the more of their 

average velocity in other directions is consumed. Thus, the gravitational force and 

(special) relativistic effects can be actually integrated into the derived equation 

(achieved by selecting an initial wave function with a specific norm when solving it), 

thus avoiding the problem of nonrenormalizability when gravitation is introduced into 

quantum mechanics. Further analysis has shown that the gravitation between objects is 

also caused by a statistical effect of randomly moving particles. These particles can also 

form stable nondispersive particle swarms, which, as larger-mass-level particles, can 

further unite into stable nondispersive particle swarms, and so on. No matter the mass 

level of the particles that are regarded as infinitesimal particles, and no matter how slow 

the speed that is regarded as an infinite speed, the equations derived in this article are 

equivalent at the scale of human understanding. On the one hand, based on the 

hypotheses stated in HYPO 1–3, this article has deduced the form of the Schrödinger 

equation and the conclusions of special relativity, thus further confirming the rationality 

of these hypotheses concerning the universe. On the other hand, based on these 

assumptions, the derived equation contains the conditions for the generation of stable 

particles, which, in turn, form a logical self-consistency with the previous assumptions. 

Therefore, the basic physical model of the universe established in this article is a 

relatively reliable and complete logical model, and the universe is likely to be a product 

of the movement of noninteracting random particles and to obey the mathematical 

equation given in Equ. 40. 

Based on this physical model, we can answer the questions raised at the beginning 

of this article. The universe is both large and small, and its size is only a relative logical 

concept. From this relative point of view, the universe is boundless (for human beings). 

The current appearance of the universe is only one stage of its evolution, and this 

evolution is a process without beginning or end. The constant random motion or 
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generalized diffusion of particle swarms is the mechanism by which it operates, and 

there is no beginning or end point of this diffusive movement (although there may be a 

beginning and end in local space). The energy in the universe cannot be designated as 

existing or not; it is merely a relative concept arising from the movement of 

infinitesimal particles. If we observe the group behavior of these particles, their average 

speed will decrease, giving rise to the concepts of time, space, speed and energy. 

Therefore, these concepts (including force) are all statistical effects that arise when 

observing these moving particles from different angles. Energy will never be exhausted, 

nor will it increase or decrease. According to this view, the total entropy in the whole 

universe also will not increase or decrease. 

However, due to various conditions, the viewpoints advanced in some paragraphs 

of this article have not been supported by rigorous derivations and proofs. The 

equations have not been tested on rigorous cases, and some conjectures presented at the 

end of this article were not based on rigorous theories. In view of the above problems, 

additional efforts will be needed in the future to develop the ideas proposed here into a 

more mature theory. 
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