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Abstract 

A long-standing challenge of the Standard Model (SM) is to convincingly explain the physical mechanism 

behind the (1)U  axial anomaly of Quantum Chromodynamics (QCD). While instantons are routinely 

invoked as solution to this anomaly, they create new puzzles – the strong CP problem and the postulated 

existence of axions. Here we suggest that fractional field theory offers an alternative resolution of the axial 

anomaly, shedding new light on the strong CP problem and bypassing the axion hypothesis.  
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1. The axial anomaly and the axion hypothesis 

The (1)U  symmetry of QCD has two components. The vectorial component (1)VU  

represents the symmetry generated by the global quark transformation [1-3] 

 (1) : exp( )V i iU q i q→   (1) 

in which   is an arbitrary real number. Considering only the first two quark flavors and 

by the Noether theorem, (1) gives rise to the current 

 BJ u u d d   = +   (2) 
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where   are Dirac’s gamma matrices. (2) is called the baryon-number current and the 

(1)VU  symmetry reflects the observed baryon-number conservation 

 0BJ  =   (3) 

The second component of the (1)U  symmetry is generated by the axial transformation 

 5(1) : exp( )A i iU q i q→   (4) 

where   is an arbitrary real number and 5  is the fifth gamma matrix (otherwise called  

the chirality operator). The axial current generated by (4) is given by 

 5

5 5J u u d d     = +   (5) 

Conservation of (5) requires vanishing of the its divergence, that is,  

 5 0J  =   (6) 

However, there is no observed symmetry in the hadron spectra demanded by (6). 

Specifically, if (4) were a real symmetry of Nature, the number of baryon states would 

double (effect known as parity doubling). For example, the   meson would have a scalar 

partner, which is missing from experimental observations. Likewise, there is no evidence 

for additional Goldstone bosons that would arise if the axial symmetry were 

spontaneously broken. The absence of either parity doubling or of Goldstone bosons 

demanded by (6) represents the axial anomaly [1-3].  
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A deceivingly simple way to avoid the axial anomaly is to account for the coupling of 

gluons and quarks, which naturally leads to the violation of (6). Yet this scenario turns 

out to be wrong. To see why this is the case, consider the limit of nearly vanishing quark 

masses ( , 0u dm m → ), where the divergence of the axial current assumes the form [1-3] 
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in which sg  is the strong coupling, G the gluon tensor matrix and G


its dual. However, 

the trace of GG  may be cast as a divergence of a current K  
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If 
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=  stands for the gluon field and , (1,2,...,8)a a =  for the generators of the 

(3)SU  group, the current K is explicitly given by 
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Hence, a new axial vector current can be introduced as 

 
5

5J J K  = −   (10) 

whose conservation is guaranteed in the limit , 0u dm m → , e. g., 
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5

5 52 2 0u dJ im u u im d d
   = + →     (11) 

Moreover, there is a conserved charge arising from (11), namely, 

 

5

035 0
d Q J

d x
dt t


= →

   (12) 

Both (11) and (12) show that the axial anomaly persists even in the presence of quark-

gluon coupling. 

Historically, it was ‘t Hooft who first realized that the nonperturbative dynamics of gauge 

theory has the potential of violating the condition (12) [1-3, 12]. Specifically, topological 

solutions of gauge theory called instantons bring a nonvanishing contribution to the 

charge 
5

Q  and prevent its conservation. In turn, violation of charge conservation required 

by (12) explains the absence of any Goldstone bosons associated with the axial anomaly. 

While instantons offer an attractive way of circumventing the axial anomaly, they create 

two other challenges for the QCD theory, namely the strong charge-parity (CP) problem 

and its proposed resolution in terms of axions. 

In particular, instantons bring an extra parameter to the QCD sector (the so-called   

parameter) which quantifies the magnitude of CP  violation in strong interactions. Axions 

are hypothetical scalar particles that cancel the contribution of the   parameter and 

restore the CP  symmetry of QCD [1-3]. Despite a vast array of thorough searches for their 

signature, as of today, axions are still eluding observations.   
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2. Resolving the axial anomaly using fractional field theory 

The goal of this section is to explore the axial anomaly from the vantage point of fractional 

field theory, introduced and developed in our previous publications [4-6].   

We start by recalling the chiral representation of gamma matrices ( ' s ) [7] 
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  (13) 

 5 0 1 2 3i    =   (14) 

where I  is the identity matrix and , ( 1,2,3)i i =  the three Pauli matrices. Since ( ' s ) 

contain constant entries, they cannot describe a regime that is out of equilibrium, where 

all dynamic variables and parameters of the theory evolve with time. Working in the spirit 

of fractional field theory, it makes sense to extend the mathematics of gamma matrices to 

the minimal fractal manifold (MFM), a spacetime continuum characterized by arbitrarily 

small and scale-dependent deviations from four dimensions ( 4 1D = −  ). As shown in 

[4], MFM reflects an evolving setting that starts outside equilibrium and asymptotically 

approaches the conditions mandated by QFT in the limit of four-dimensional spacetime 

( 0 = ).  

Developing on fractional Dirac equation [see e.g., 8], as well as on topics related to non-

equilibrium dynamics [see e.g., 13], we conjecture below that the gamma matrices are 

explicitly dependent on both time and energy scale. Specifically, we assume that: 
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1) Each entry in the gamma matrices represents the density of a well-behaved 

distribution function ( )f t . The most straightforward hypothesis is that ( )f t t= ,  a 

linear scaling function reflecting the transition to critical behavior in the strong 

coupling regime of QCD [10, 11]. 

 
2) This density is characterized by long-range (memory) properties, which means 

that it is best described by using  fractional derivatives.  

Based on these two premises, each entry “1” and each entry “ i ” in the composition of 

gamma matrices is replaced with, respectively, 

     11 ( )CD f t  ≈ t                                                           

(15) 

1 ( )Ci D f t −  ≈ t −  

Here, 1 ( )CD t  is the Caputo differential operator [9] and t  the dimensionless time variable 

defined as 

 
1

1
( ) ( )Pl

UV Pl

Mt
t O O

t M





−

−
 = =     (16) 

where   is the running energy scale, UVt  a high-energy normalization “time” and PlM  the 

Planck scale. The time corresponding to the infrared regime of QCD takes the form 

 ( ) 1Pl
QCD

QCD

M
t O= 


  (17) 
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in which QCD =   is the strong interaction scale (≈ 250 MeV ).  

The far ultraviolet (UV) limit ( )PlO M =  and (1) QCDt O t=   defines the “asymptotic 

freedom” sector of QCD in which (15) recovers the standard numerical entries of the 

gamma matrices. Consider now the scenario where the change rate of   is far slower than 

unity, that is,  

 1
d dt

dt dt


 =   (18) 

In this case, the infrared (IR) limit of large timescales expressed by (17) 

( ) , 0QCDt O t = → → , defines the transition to the strong coupling regime of QCD. It 

yields an undetermined expression (15) with two diametrically opposite outcomes, 

namely t + →  and 0t − →  . This transition can be conveniently parameterized using a 

generic power law relationship of the form 

 
QCDt t = ~ ,  0 , 0 →    (19) 

What remains to be explained is which one of the two “modes” of (19) is the dominant 

one. The 1QCDt  + −=   mode is bound to produce a large amplification in the numbers 

entering the gamma matrices, an effect likely to carry over to the laboratory timescale due 

to the long-range attributes of fractional derivatives. By the same token, the same 

numbers collapse to zero in the opposite mode ( 1QCDt  − +=  ), which renders the gamma 

matrices unobservable at the laboratory timescale. It is for this reason that this mode fails 

to survive.  
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An important observation is now in order. There is a key difference between the baryon 

number current (2) and the axial current (5) in that the latter includes the product of   

matrices with the 5  matrix. By (14), either one of the two terms entering (5) contains the 

product 

 5 0 1 2 3( )i       = ,   0,1,2,3 =     (20) 

On account of (20), since each entry of either   or  5  vary with   according to (19), 

there is a significant amplification effect in (5) that scales as 5  versus the same effect 

in (2), which only scales as  .  As a result, a cursory comparison of (3) to (6) reveals 

that the axial current violation is far more likely than the baryon number violation, in 

agreement with observations.        

In conclusion, our analysis points out that (19) leads to the violation of (6), (11) and (12) 

and removes the axial anomaly via a mechanism that bypasses the instanton and axion 

paradigms.  
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