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Abstract 

It is generally accepted that stellar annual or secular aberration is attributed to 
the changes in velocity of the detector. We can say it in a slightly different 
way. By means of the all known experiments, stellar aberration is directly or 
indirectly detectable and measurable, only if a detector changes its velocity. 
Our presumption is that stellar aberration is not caused by the changes in the 
velocity of the detector. It exists due to the movement of the detector regard-
ing to an absolute inertial frame. Therefore it is just the question of how to 
choose such a frame. In this paper it is proposed a method to detect and 
measure instantaneous stellar aberration due to absolute velocity. We can call 
it an “absolute” stellar aberration. Combining an “annual” and an “absolute” 
we can define a “total” stellar aberration. 
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1. Introduction 

It is commonly assumed that due to the aberration the observed position of a 
star is displaced of about 150” toward the direction of the instantaneous velocity 
of the observer with respect to an inertial reference frame at rest. But, for an ob-
server located at the barycenter of the solar system, the instantaneous effect of 
the relativistic aberration due to the galactic motion of the solar system (220 
km/s) is not directly observable because the velocity-induced aberration pattern 
is constant [1] [2] [3]. 

Our hypothesis is in contradiction to the relativistic view on stellar aberration, 
because according to this theory an absolute frame does not exist nor a mea-
surement of the absolute aberration is possible. 

We will start a discussion by the classical explanation of the annual stellar ab-
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erration. 
A star (Z) is stationary, and the light travels from the star at velocity c con-

stant speed of light in the stationary frame. A telescope is in motion at velocity v 
regarding to the heliocentric-ecliptic coordinate system. 

Suppose that AB represents a median line of the telescope at the instant 0t  
and A'B' represents a median line of the telescope at the instant 1t . In the ref-
erence frame of the telescope AB is identical to A'B'. But in the sun’s reference 
frame median lines AB and A'B' are represented by two different positions. 

In referring to Figure 1, the following definitions apply 
Δt—a time required for light to traverse the length of the telescope 
θ—an angle between the earth velocity about the sun and light ray from the 

star 
Δθ—an angle at which a telescope should be tilted in the direction of motion 

in order for the photons move along the median line of the telescope. Actually 
this angle is obtained by the two measurements at six months intervals.  

1 0t t t∆ = −                            (1.1) 

( ) ( )ABA B A Bθ ′ ′ ′∆ = ∠ = ∠                    (1.2) 

( )SA Bθ ′= ∠                           (1.3) 

( )A B Bθ θ ′ ′− ∆ = ∠                        (1.4) 

BB t v′ = ∆ ∗                            (1.5) 

BA t c′ = ∆ ∗                           (1.6) 

( ) ( )sin sin
v t c t

θ θ θ
∗∆ ∗∆

=
∆ − ∆

                       (1.7) 

( ) ( ) ( ) ( ) ( )sin sin cos cos sinc v vθ θ θ θ θ∗ ∆ = ∗ ∗ ∆ − ∗ ∗ ∆        (1.8) 

( )
( )

( )

sin
tan

1 cos

v
c

v
c

θ
θ

θ

∗
∆ =

+ ∗
                    (1.9) 

for 2θ = Π , Equation (1.9) is being reduced to the equation 
 

 
Figure 1. Stellar aberration according to Bradley. 
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( )tan v
c

θ∆ =                        (1.10) 

assuming that 1θ∆   and after neglecting terms higher than the second or-
der with the respect to θ∆  we have that 

( )
3 52tan

3 15
x xx x= + + +                   (1.11) 

3 52
3 15

v
c

θ θ
θ

∆ ∗∆
= ∆ + + +                   (1.12) 

we can say that an approximate value for the stellar aberration θ∆  is equal to 

v
c

θ∆ ≈                             (1.13) 

Its maximal value is approximately the same for all stars. The accepted value is 
20.49552 arc seconds. 

The problems related to the stellar aberration that are being treated in this 
paper, had been already defined and mentioned in the numerous works for ex-
ample [4]. 

2. Description and Role of the “Telescope” 

In this paper we will use a term “telescope”, although a standard telescope is not 
suitable for this experiment. In other to perform this experiment instead of using 
a such telescope one have to design and build a new apparatus. Because of that it 
will be given its description, but just in few words. 

Point S represents a center of the top “plane” while S' represents a center of 
the bottom “plane” of the telescope. Photons enter the telescope at the point S 
and their direction is perpendicular to the top plane. This means that there is a 
some part of the telescope who has a role to point the “telescope” in such direc-
tion that median line SS ′  becomes parallel to the starlight. 

At the bottom plane of the telescope it should be installed a camera in order to 
take an image of the star (Z) at the point A. 

It will be assumed that a star (Z) is extremely far away, so that a parallax may 
be ignored. For now we can assume that extra-galactic stars are being observed 
only. Starlight moves in straight line and will remain in the same direction re-
garding to the ecliptic plane. Photons enter in a perpendicular direction to the 
top plane of the telescope. 

The starlight represents an inertial frame of reference marked by (L) and the 
telescope represents a moving frame of reference that is marked by (T). We will 
assume that 

1P —speed of light c is constant and equal in all inertial frames (L) 

2P —there is a one common time for the all frames (L) and the moving frame 
(T) 

3P —frame (T) is moving uniformly in a straight line regarding the frame (L) 
Now we will discuss the three cases that are depicted on the Figure 2.  
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(a)                       (b)                         (c) 

Figure 2. (a) A frame of the telescope is stationary regarding to the starlight; (b) A frame 
of the telescope is moving perpendicular regarding to the starlight; (c) A frame of the 
telescope is moving by some arbitrary velocity regarding to the starlight. The effect of the 
velocity v on the position of the telescope is not depicted on the last two figures. 
 

-In the first case Figure 2(a), the relative velocity of the telescope v regarding 
to the frame of the starlight is equal to the 0. At some instant 0t  photon hits the 
top “plane” at the point S and at some instant 1t  hits the bottom “plane” at the 
point S'. 

-In the second case Figure 2(b), under the same circumstances except that 
≠v 0  contrary to our expectations photon does not hit the bottom plane at the 

point S' but rather at a some point A. Referring to the Figure 2(b) it follows 
d SS ′=                           (2.1) 

1 0
dt t t
c

∆ = − =                       (2.2) 

dt
c

′ = −∆ ∗ = ∗S A v v                    (2.3) 

( )
2 2

T
SAc v c

t
= = +
∆

 speed of light in the frame (T)      (2.4) 

( )tan S A d v v
d c d c

θ
′ ∗

∆ = = − = −
∗

                  (2.5) 

( )v v c
c

θ∆ ≈ −                         (2.6) 

-In the third case Figure 2(c), velocity at which a telescope moves relative to 
the starlight is decomposed to the two components. The first component noted 
by v is perpendicular to the starlight and the second one noted by u is parallel to 
starlight. Referring to the Figure 2(c), it follows 

d SS ′=                          (2.7) 

d x x d x x ux d
c u c u c c u
+

= ⇒ = − ⇒ = ∗
−

             (2.8) 
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u cx d d d d
c u c u

+ = + ∗ = ∗
− −

                  (2.9) 

1 0
dt t t

c u
∆ = − =

−
                     (2.10) 

dt
c u

′ = −∆ ∗ = − ∗
−

S A v v                 (2.11) 

( )2 22
2 2 2 d c u vdSA S A d v d

c u c u
∗ − + ′= + = ∗ + = − − 

       (2.12) 

( ) ( )2 2
T

SAc c u v
t

= = − +
∆

 speed of light in the frame (T)     (2.13) 

( ) ( )
tan SA d v v

d d c u c u
θ

′ ∗
∆ = = =

∗ − −
             (2.14) 

( ),v u c v c
c u

θ∆ ≈
−

                 (2.15) 

An additional explanation will be given for the third case. 
-From the point view of a spectator at the frame (L) a photon hits top plane at 

the point S (this point is identical to the fixed point SL at the frame (L)). The 
telescope is moving parallel with the starlight by velocity u, therefore a distance 
between the point SL and the bottom plane changes. A total distance that photon 
travels from the instant 0t  to the instant 1t  is equal to ( ) ( )d c c u∗ − . Time 
that it takes for the photon to travel from the top to the bottom plane of the 
telescope is equal to ( )d c u− . 

-From the point view of a spectator at the frame (T) photon traveled a dis-
tance equal to the SA. Time is common for the both frames therefore the speed 
of the photon in the frame (T) is given by Equation (2.13). An Equation (2.15) 
represents modified equation for the stellar aberration. 

On the basis of these observations the point S' will be used as a referential ori-
gin for measuring the drift caused by the movement of the frame (T) relative to 
the frame (L). 

Contrary to the classical experiments when the telescope must be tilted, thus 
the detection and measuring of displacement is possible, in this experiment the 
“telescope” will be pointed to the star at the beginning and fixed at the same po-
sition until the end of the experiment. 

3. Coordinate Systems 

We have already defined starlight as a referential inertial frame. In this section 
are given the descriptions of the three coordinate systems that will be used in a 
further discussion. 

Let the ( ), ,S x y z′′ ′′ ′′  represents “The Heliocentric-Ecliptic Coordinate Sys-
tem” Figure 3(a). Its origin S is at the center of the sun and the fundamental 
plane ( ),S x y′′ ′′  coincides with the “ecliptic”, plane of the Earth’s revolution 
about the sun. The line of intersection of the ecliptic plane and the earth’s 
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(a) 

 
(b) 

Figure 3. (a) The heliocentric-ecliptic coordinate system; (b) 
Geocentric equatorial coordinate system. 

 
equatorial plane defines the x”-axis. On the first day of Spring a line joining the 
center of the Earth and the center of the sun points in the direction of positive 
x”-axis. This is called a vernal equinox direction [5]. 

Let 23.43693 180ϕ = ∗Π  denotes Earth’s axial tilt (Figure 3(b)).  
Let a ( )O x y z′ ′ ′  represents “The Geocentric-Equatorial Coordinate System” 

(Figure 3 and Figure 4). Its origin O is at the center of the Earth, the funda-
mental plane is the equator and the positive x'-axis points in the vernal equinox 
direction. The z'-axis points in the direction of the north pole. By the definition 
the coordinate system ( )O x y z′ ′ ′  is non-rotating with the respect to the stars 
[5]. 

The position of the star is described by two angles called right ascension and 
declination (Figure 4). The right ascension α is measured eastward in the plane 
of equator from the vernal equinox direction. The declination δ is measured 
northward from the equator to the line of sight, we would say that is an angle 
between the plane of equator and the direction of the starlight [5]. Unlike longi-
tude, right ascension is usually measured in hours, minutes, and seconds with 24 
hours being a full circle, but in this experiment it will be assumed that it  
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Figure 4. The geocentric-equatorial coordinate system and the frame 
of the “telescope”.  

 
is measured in radians. 

Referring to the Figure 4 we have 

( )x OSα ′ ′′= ∠                        (3.1) 

( )S OZδ ′′= ∠                        (3.2) 

( ) ( )plane ,Oz SSγ ′ ′=                    (3.3) 

Now we will define a coordinate system ( )S xyz′  that is attached to the tele-
scope in the following way (Figure 4). 

Let suppose that a telescope is positioned in such way that points S and S' lie 
in the same meridian plane (a plane that passes through the Earth’s axis of rota-
tion) (γ). The plane (γ) is rotating about z'-axis but at a fixed sidereal time that 
will be marked as s0 (~α) this plane is parallel to the photons who are coming 
from a distant star. Just to mention that sidereal time has the same value as the 
right ascension of any celestial body that is crossing the local meridian at that 
same moment. At that same moment the telescope has to be tilted so starlight is 
perpendicular to the top plane of the telescope. That means that at that instant 
the starlight is perpendicular to the bottom plane as well. Let the point S' 
represents origin of the ( )S xyz′  coordinate system and direction S S′



 
represents positive z-axis. A x-axis is determined by a intersection between the 
plane (γ) and the bottom plane of the telescope. Positive y-axis is perpendicular 
to the plane (γ) and eastward directed. Positive x-axis is chosen so as to form a 
right-handed coordinate system. 

The meridian plane (γ) is perpendicular to the earth equatorial plane ( )O x y′ ′ , 
and y-axis is perpendicular to the plane (γ), therefore y-axis is parallel to the 
earth equatorial plane ( )O x y′ ′ . 

Plane (e) represents “ecliptic” plane and a line (n) represents an intersection 
between “ecliptic” and S xy′  plane. The measurements will be taken daily dur-
ing the year at the fixed sidereal time s0, when the top plane of the telescope is 
perpendicular to the starlight. 
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4. Coordinate Transformations 

To each of these coordinate systems we are going to join an orthonormal basis. 
It means that they are all unit vectors and orthogonal to each other. 

The triplet ( )2 2 2
ˆ ˆ ˆ, ,i j k  represents an orthonormal basis for the coordinate 

system ( ), ,S x y z′′ ′′ ′′  ( )1 1 1
ˆ ˆ ˆ, ,i j k  represents the orthonormal basis for the coor-

dinate system ( ), ,O x y z′ ′ ′  ( )ˆ ˆ ˆ, ,i j k  represent the orthonormal basis for the 
coordinate system ( ), ,S x y z′ . 

Now we will derive a matrix of the transformation B, from the basis 

( )2 2 2
ˆ ˆ ˆ, ,i j k  to the basis ( )1 1 1

ˆ ˆ ˆ, ,i j k  and a matrix of the transformation A from 
the basis ( )1 1 1

ˆ ˆ ˆ, ,i j k  to the basis ( )ˆ ˆ ˆ, , .i j k  
Referring to Figure 3 it follows that we have to rotate the coordinate system 
( )S x y z′′ ′′ ′′  about the positive x”-axis through an angle-φ, to transform it to the 

coordinate system ( ), ,O x y z′ ′ ′ . 
The corresponding transformation matrix B is equal to 

[ ] ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 0 0 1 0 0
, 0 cos sin 0 cos sin

0 sin cos 0 sin cos
B x ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

   
   ′′ − = − − = −   
   − − −   

 

Now we are going to derive a transformation matrix A. As shown in Figure 4, 
it follows that 

( ),Ox S x α′ ′∠ =                        (4.1) 

( ), 2Oz S z δ′ ′∠ = Π −                     (4.2) 

First we are going to rotate the coordinate system ( )O x y z′ ′ ′  about the posi-
tive z'-axis through an angle α, to a some temporary coordinate system K. The 
corresponding transformation matrix 1A  is equal to 

[ ]
( ) ( )
( ) ( )1

cos sin 0
, sin cos 0

0 0 1
A z

α α
α α α

 
 ′ = − 
 
 

 

After that we are going to rotate the coordinate system K about its positive 
y-axis through an angle 2 δΠ − , to the coordinate system K’. The corres-
ponding transformation matrix 2A  is equal to 

[ ]
( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

cos 2 0 sin 2
, 2 0 1 0

sin 2 0 cos 2

sin 0 cos
0 1 0

cos 0 sin

A y
δ δ

δ
δ δ

δ δ

δ δ

Π − − Π − 
 Π − =  
 Π − Π − 

− 
 =  
 
 

 

In that way the coordinate frame ( )O x y z′ ′ ′  is transformed to the coordinate 
frame ( )S xyz′ . The corresponding transformation matrix A is equal to the 
product of the matrices 2 1,A A  
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11 12 13

21 22 23 2 1

31 32 33

a a a
A a a a A A

a a a

 
 = = ∗
 
 

               (4.3) 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

cos sin 0sin 0 cos
0 1 0 sin cos 0

cos 0 sin 0 0 1

sin cos sin sin cos
sin cos 0

cos cos cos sin sin

A
α αδ δ
α α

δ δ

δ α δ α δ
α α

δ α δ α δ

 − 
  = −  

    
− 

 = − 
 
 

       (4.4) 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1

ˆ ˆsin cos sin sin cos
ˆ ˆsin cos 0
ˆ ˆcos cos cos sin sin

δ α δ α δ
α α

δ α δ α δ

   −        = −            

i i

j j

k k

     (4.5) 

In a different form we can write that 

111 12 13

21 22 23 1

31 32 33 1

ˆ ˆ
ˆ ˆ
ˆ ˆ

a a a
a a a
a a a

        =           

i i
j j
k k

                (4.6) 

A corresponding matrix of the transformation from the basis ( )ˆ ˆ ˆ, ,i j k  to the 
basis ( )1 1 1

ˆ ˆ ˆ, ,i j k  is the matrix AT obtained by exchanging rows and columns of 
the matrix A. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

11 12 13 11 21 31
T

21 22 23 12 22 32

31 32 33 13 23 33

sin cos sin cos cos
sin sin cos cos sin

cos 0 sin

a a a a a a
A a a a a a a

a a a a a a

δ α α δ α
δ α α δ α

δ δ

′ ′ ′   
   ′ ′ ′= =
   
′ ′ ′   

− 
 =  
 − 

         (4.7) 

The proof is simple. 

( ) ( )11 1 11 1 1 1 11 11
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,a a a a′ ′= ∗ = ∗ ∗ = ∗ ⇒ =i i i i i i i i        (4.8) 

( ) ( )12 1 21 1 1 1 12 21
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,a a a a′ ′= ∗ = ∗ ∗ = ∗ ⇒ =i j j i i j j i        (4.9) 

                               ...etc. 
we can write it in a different form 

1 11 12 13

1 21 22 23

31 32 331

ˆ ˆ
ˆ ˆ
ˆ ˆ

a a a
a a a
a a a

   ′ ′ ′     ′ ′ ′=       ′ ′ ′    

i i
j j
k k

                (4.10) 

A corresponding matrix of the transformation marked by C, from the basis 

( )2 2 2
ˆ ˆ ˆ, ,i j k  to the basis ( )ˆ ˆ ˆ, ,i j k  is equal to the product of the matrices A and B 

11 12 13

21 22 23

31 32 33

c c c
C c c c A B

c c c

 
 = = ∗  
 

              (4.11) 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

sin cos sin sin cos 1 0 0
sin cos 0 0 cos sin

cos cos cos sin sin 0 sin cos

sin cos sin sin cos cos sin sin sin sin cos cos
sin cos cos cos sin

cos cos cos sin sin sin sin co

C
δ α δ α δ

α α ϕ ϕ
δ α δ α δ ϕ ϕ

δ α δ α ϕ δ ϕ δ α ϕ δ ϕ
α α ϕ α ϕ

δ α δ α ϕ δ ϕ

−  
  = − −  

  
  

− − −
= − −

+ ( ) ( ) ( ) ( ) ( )s sin sin sin cosδ α ϕ δ ϕ

 
 
 
 + 

 (4.12) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

2

ˆ ˆsin cos sin sin cos cos sin sin sin sin cos cos
ˆ ˆsin cos cos cos sin
ˆ ˆcos cos cos sin sin sin sin cos sin sin sin cos

δ α δ α ϕ δ ϕ δ α ϕ δ ϕ
α α ϕ α ϕ

δ α δ α ϕ δ ϕ δ α ϕ δ ϕ

   − − −        = − −     + +       

i i

j j

k k

 (4.13) 

The latest equation can be written in following way 

211 12 13

21 22 23 2

31 32 33 2

ˆ ˆ

ˆ ˆ

ˆ ˆ

c c c
c c c
c c c

           =             

i i

j j

k k

                 (4.12) 

5. Experiment 

The absolute motion of the Earth may be presumed to be resultant of the three 
components. One of these v is the Earth’s orbital motion about the sun, the 
second component is the motion of the sun about the center of the Milky Way 
and the third one is the motion of our Galaxy regarding to other galaxies in the 
Universe. The sum of the second and third component will be marked by 0v . 

An absolute earth velocity vector ( )tV  is given by equation: 

( ) ( ) 0t t= +V v v                       (5.1) 

During the period of one year we can assume that ( )tv  changes continuous-
ly in direction and magnitude, whereby vector 0v  remains invariable. The 
coordinate system ( )S xyz′  is moving relatively to the starlight by the velocity 

( )tW . Here we assume a starlight as a straight line that is not moving along 
S'z-axis in contrast to the photons who are moving along a starlight by constant 
velocity c. Plane ( )S xy′  is rotating about Earth’s axis so this relation is consi-
dered at the instant when plane ( )S xy′  is perpendicular to the beams of pho-
tons, only. Similarly it may be presumed that velocity ( )tW  was resultant of 
the two components, the first one that is changing in direction and magnitude 
and second one that is invariable. 

( ) ( ) 0t t= +W w w                     (5.2) 

Our task is to find out a relation between the Equations (5.2) and (5.1) in oth-
er words to find out relation between the absolute velocity ( )tV  of the frame 
of the telescope and relative velocity ( )tW  of the frame of the telescope re-
garding to the starlight. 

For now instead of the coordinate system ( )S xyz′ , plane ( )S xy′  will be 
taken into the consideration, only. 

( ) ( )xy xyt proj t=W W                   (5.3) 
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( ) ( )xy xyt proj t=w w                  (5.4) 

1 0xyproj=w w                       (5.5) 

In that way Equation (5.2) is being reduced to the form 

( ) ( ) 1xy xyt t= +W w w                   (5.6) 

where ( )xy tw  represents a normal projection of the velocity ( )tw  on the 
plane xy and 1w  represent normal projection of the velocity 0w  on the plane 
xy. One component of the vector ( )xy tw  is a normal projection of the vector 
( )tv  on the plane xy. A second component of the vector ( )xy tw  eventually 

could be some vector ( )z tv  that starlight has inherited from the orbital motion 
of the star (Z), if as a such exist. 

( ) ( ) ( )xy xy xy zt proj t proj t= +w v v               (5.7) 

Let the (Z') and (Z'') represents a pair of binary stars. For the simplicity, we 
can assume that they circle about a center of the mass by velocities ( )z t′v  and 

( )z t′′v  respectively, with the same magnitude but opposite directions. At the 
same time the center of the mass is moving by some constant uniform velocity 
marked by 0u  regarding to the absolute frame of reference. 

( ) ( ) ( )xy xy xy zt proj t proj t′ ′= +w v v                   (5.8) 

( ) ( ) ( )xy xy xy zt proj t proj t′′ ′′= +w v v                   (5.9) 

( ) ( ) 1xy xyt t′ ′ ′= +W w w                      (5.10) 

( ) ( ) 1xy xyt t′′ ′′ ′′= +W w w                      (5.11) 

1 1 0 0′ ′′= = −w w v u                       (5.12) 

( ) ( )z zt t′ ′′= −v v                        (5.13) 

Let the Z' and Z'' represent their images at the some instant T on the plane 
( )S xy′ . Replacing A' by Z' and A' by Z'' we have got a situation similar to the 

that one shown in Figure 5. 
 

 
Figure 5. Two measurements that have been taken at the in-
stants T0 and T1 six months apart. 
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( )xyt T′ ′ ′= −∆ ∗S Z W                   (5.14) 

( )xyt T′ ′′ ′′= −∆ ∗S Z W                   (5.15) 

( ) ( )( )xy xyt T T′ ′′ ′′ ′= −∆ ∗ −Z Z W W              (5.16) 

( )2* * xy zt proj T′ ′′ ′= − ∆Z Z v                  (5.17) 

( )
( )2

tan xy zproj T t

SS c t
θ

′∗ ∗∆′ ′′
∆ = =

′ ∗∆

vZ Z
          (5.18) 

( )2 xy zproj T

c
θ

′∗
∆ ≈

v
                (5.19) 

What is not true. Because it has never been observed any major aberration 
between the two binary stars. That means that variable component of the vector 

( )xy tw  depends on the ( )tv  earth velocity about the sun only. The Equation 
(5.7) has to be reduced to the following form 

( ) ( )xy xyt proj t=w v                     (5.20) 

In that way it has been proved that the first component of the vectors ( )tV  
and ( )tW  are identical and equal to the ( )tv . Still it is has been left out to find 
out a relation between the second invariant components 0v  and 0w  of the 
vectors ( )tV  and ( )tW  respectively. 

Suppose that we are taking measurements during one year period. For any 
two observations that have been taken at the instant 0T  and 1T  six months 
apart we will have situation shown in the Figure 5. The point A' corresponds to 
the first and the point A'' to the second measurement. 

Referring to Figure 5 it follows 

dt
c

∆ ≈                        (5.21) 

( ) ( )( )1 1 1xy xyt T t T′ ′′ = −∆ ∗ = −∆ ∗ +S A W w w          (5.22) 

( ) ( )( )0 0 1xy xyt T t T′ ′ = −∆ ∗ = −∆ ∗ +S A W w w          (5.23) 

( ) ( )( )1 0xy xyt T T′ ′′ = −∆ ∗ −A A w w             (5.24) 

( ) ( )( )1 0xy xyt proj T proj T′ ′′ = −∆ ∗ −A A v v                (5.25) 

Times 0T  and 1T  are chosen in a such way that ( )0Tv  and ( )1Tv  have 
approximately the same magnitude but opposite directions. Equation (5.25) can 
be written in the form 

( )12 xyt proj T′ ′′ ≈ − ∗∆ ∗A A v                   (5.26) 

In that way it has been proved that ′ ′′A A  depends on the earth velocity 
about the sun, only. 

( ) ( )0 1
12 2

xy xyT T
t t

+′ ′ ′ ′′+′ = = −∆ ∗ − ∆ ∗
w wS A S AS A w        (5.27) 

( ) ( )( )1 0
12

xy xyt proj T proj T
t

∆ ∗ +
′ = − − ∆ ∗

v v
S A w         (5.28) 
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1
c

t d
′ ′ ∗

= − = −
∆
S A S Aw                    (5.29) 

6. Transformation of the Vector v(t) from the Ecliptic Plane 
to the Frame of Telescope 

Vector ( )tw  the variable component of the vector ( )tW  is equal to the vec-
tor ( )tv  Earth’s orbital velocity about the sun. 

( ) ( )t t=w v                           (6.1) 

With the respect to the basis ( )2 2 2
ˆ ˆ ˆ, ,i j k  vector ( )tv  is given by the equa-

tion: 

( ) ( ) ( )2 2
ˆ ˆ

x yt v t v t= ∗ + ∗v i j                      (6.2) 

Magnitude of the vector ( )tv  would hereafter be marked by ( )v t . 
Using the matrix of transformation C we will transform vector ( )tv  from the 

basis ( )2 2 2
ˆ ˆ ˆ, ,i j k  to the basis ( )2 2 2

ˆ ˆ ˆ, ,i j k . That transformed vector is noted by 
( )tV . 

( ) ( )
2 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , ,t t   

   
=i j k i j kV v                   (6.3) 

( ) ( ) ( ) ( )ˆ ˆ ˆ
x y zt V t V t V t= ∗ + ∗ + ∗V i j k               (6.4) 

( )
( )
( )
( )

( )
( )

( ) ( )
( ) ( )
( ) ( )

11 12 13 11 12

21 22 23 21 22

31 22 33 31 320

x x x y

y y x y

z x y

V t c c c v t c v t c v t
t V t c c c v t c v t c v t

V t c c c c v t c v t

 ∗ + ∗    
     = = ∗ = ∗ + ∗     

      ∗ + ∗      

V  (6.5) 

( ) ( ) ( )11 12x x yV t v t c v t c= ∗ + ∗                (6.6) 

( ) ( ) ( )21 22y x yV t v t c v t c= ∗ + ∗                (6.7) 

( ) ( ) ( )31 32z x yV t v t c v t c= ∗ + ∗                (6.8) 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
x y zV t v t V t V t V t= = + +             (6.9) 

( ) ( ) ( ) ( ) ( )ˆ ˆ
xy x y x yt t t V t V t= + = ∗ + ∗V V V i j          (6.10) 

( ) ( ) ( ) ( ) ( )2 22 2
xy x y zV t V t V t v t V t= + = −          (6.11) 

In the special case when ( ) 0zV t = , in other words when the vector ( )tV  
(Earth velocity about the sun)is perpendicular to the S'z-axis (direction of the 
starlight) it follows that 

( ) ( ) ( )31 32 0z x yV t v t c v t c= ∗ + ∗ =              (6.12) 

( )
( )

31

32

y

x

v t c
v t c

= −                      (6.13) 

( ) ( )
( ) ( ) ( ) ( ) ( )

cos cos
arctan

cos sin sin sin sin
δ α

β
δ α ϕ δ ϕ

 
= −  + 

      (6.14) 

where β represents an angle between Ox”-axis (vernal equinox direction) and 
vector ( )tv . Obviously there are two instants during the year when this happens. 
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Let these instants are marked by 0t  and 2t . Beside these two we can define 
new times 1t  and 3t  in that way that a difference between 1t  and 0t  and 
difference between 3t  and 2t  are approximately equal to three months. We 
must keep in mind that corresponding sidereal times for the instants 0 1 2 3, , ,t t t t  
are the same and equal to the s0. In this way we can make sure that at least two of 
these four instants fall in the nighttime. 

Note that vectors ( )0tv  and ( )1tv  are parallel to the line (n) as shown in 
Figure 4. 

7. Analysis 

Now we will analyze the vector 1w  normal projection of the vector 0w  on the 
plane xy. 

Depending on the vector ′S A  (5.29) there are two possibilities: 
1) ( ′ ≠S A 0 ) 
In this case we assume that measurements have been taken for the different 

stars and at least in one case ′ ≠S A 0 . 
We can claim that the outcome of the experiment is positive, because some 

stellar aberration different from the Bradley’s stellar aberration has been de-
tected. 

Let, with the respect to the basis ( )ˆ ˆ ˆ, ,i j k  an invariable component 0w  of 
the vector ( )tW  is given by the equation: 

0
ˆ ˆ ˆ

x y zU U U= ∗ + ∗ + ∗w i j k                 (7.1) 

Referring to Figure 6 we obtain 

( )z z

dt
c U V

∆ =
− +

                      (7.2) 

( )x x x x x xt′ ′ ′ ′= + = ∆ ∗ +S A S A A A U V                (7.3) 

 

 
Figure 6. Bottom plane of the telescope, where A' represents 
image of the star at the instant ( )0 1T T . 
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( )x x xU V t S A′ ′+ ∗∆ =                      (7.4) 

xa S A′ ′=                            (7.5) 

yb S A′ ′=                            (7.6) 

( )z z
x x

c U V
U V a

d
− +

+ = ∗                   (7.7) 

( ) z
x z x

VaU c U a V
d d

− ∗ − = − ∗ −                 (7.8) 

Analogously we can get following expression 

( ) z
y z y x

VbU c U b V
d d

− ∗ − = − ∗ −                (7.9) 

Let suppose that the two measurements have been made at the times 0T  and 

1T . A difference between the times 0T  and 1T  is equal to the six (or the three) 
months. 

( ) ( ) ( ) ( ) ( )1 1
1 1

z
x z x

a T V T
U c U a T V T

d d
− ∗ − = − ∗ −         (7.10) 

( ) ( ) ( ) ( ) ( )0 0
0 0

z
x z x

a T V T
U c U a T V T

d d
− ∗ − = − ∗ −         (7.11) 

We get the linear system of two equations in two unknowns xU  and 
( ).zc U−  The solution is given by expression 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1 0 0 1 0 1 1 0

1 0

1 0

z z x x
x

a T a T V T V T d a T V T a T V T
U

d a T a T

a T a T

∗ ∗ − + ∗ ∗ − ∗
=

∗ −

≠

 

(7.12) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

0 0 1 1 1 0

1 0

z z x x
z

a T V T a T V T d V T V T
c U

a T a T
∗ − ∗ + ∗ −

− =
−

  (7.13) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

0 0 1 1 1 0

1 0

z z x x
z

a T V T a T V T d V T V T
U c

a T a T
∗ − ∗ + ∗ −

= −
−

  (7.14) 

Analogously to the Equation (7.12) we can get value for the component yU . 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1 0 0 1 0 1 1 0

1 0

1 0

* *z z y y
y

b T b T V T V T d b T V T b T V T
U

d b T b T

b T b T

∗ ∗ − + ∗ −
=

∗ −

≠

 

(7.15) 

The vector 0w  is given by the following equation 

( ) ( ) ( ) ( ) ( )0
ˆ ˆ ˆ, , , , ,x y zU U Uα δ α δ α δ α δ α δ= = ∗ + ∗ + ∗w U i j k   (7.16) 

Using the transformation matrix TA  vector ( ),α δU  will be transformed 
from the basis ( )ˆ ˆ ˆ, ,i j k  to the basis ( )1 1 1

ˆ ˆ ˆ, ,i j k . The transformed vector is noted 
by ( ),α δu . 
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( ) ( )
1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, , , ,, ,α δ α δ   

   
=i j k i j ku U                 (7.17) 

( ) ( ) ( ) ( )1 1 1
ˆ ˆ ˆ, , , ,x y zu u uα δ α δ α δ α δ= ∗ + ∗ + ∗u i j k        (7.18) 

11 12 13 11 12 13

21 22 23 21 22 23

31 22 33 31 32 33

x x x y z

y y x y z

z z x y z

u a a a U a U a U a U
u a a a U a U a U a U
u a a a U a U a U a U

′ ′ ′ ′ ′ ′ ∗ + ∗ + ∗    
     ′ ′ ′ ′ ′ ′= ∗ = ∗ + ∗ + ∗     

      ′ ′ ′ ′ ′ ′∗ + ∗ + ∗      

 (7.19) 

In that way a vector ( ) ( ) ( )( )0 , , , , ,x y zU U Uα δ α δ α δ=w  from the coordi-
nate system S xyz′  (the frame of telescope) has been transformed to the vector 
( ),α δu  at the coordinate system Ox y z′ ′ ′  (frame of the Earth).  
Suppose that the measurements have been made for n stars. 
There are two possibilities: 
a) Vector ( ),α δu  has a constant value. 
By this we mean that ( ) ( ), ,i i j jα δ α δ=u u , for each ( ), 1 .i j n< +  
The velocity 0w  given by (5.2) is equal to the velocity 0v  given by the Equa-

tion (5.1). We can make conclusion that the starlight represents absolute statio-
nary frame and the velocity at which the Earth moves relative to starlight de-
pends on Earth absolute velocity and an angle between the ecliptic and starlight. 

By the time, because of the star movement through the space an angle be-
tween the ecliptic plane and the starlight will change. In long run it will affect 
stellar aberration but the velocity of the star is irrelevant for stellar aberration 
instant measuring. 

If we choose any two different stars Z and Z' we will get 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2
0 x y z x y zU Z U Z U Z U Z U Z U Z′ ′ ′= + + = + +w    (7.20) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )22 2 2 2 2 2
0 x y x yU Z U Z c R Z U Z U Z c R Z′ ′ ′= + + − = + + −w  

(7.21) 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

2 2 2 2 2 2

2
x y x yU Z U Z R Z U Z U Z R Z

c
R Z R Z

R Z R Z

′ ′ ′+ + − + +
=

′∗ −

′ ≠

  (7.22) 

In this case for the each pair of stars ( ),i jZ Z  we are able to determine speed 
of light ,i jc  and compare it to the already known speed of light c. Beside that 
the constancy of the one way speed of light can be tested. 

b) Vector ( ),α δu  does not have a constant value. 
By this we mean that ( ) ( ), ,i i j jα δ α δ≠u u , for some ( ), 1 .i j n< +  
In this case we are not able to determine the absolute velocity nor the speed of 

light. Instead of that one can derive relative velocity at which the telescope (the 
Earth) moves regarding to the starlight only. 

2) ( ′ =S A 0 ) 
We assume that measurements have been taken for the different stars and in 

each case ′ = 0S A . 
This means that vector ( )xy tW  does not depend on the vector 1w , in other 
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words we can say that the sun is stationary regarding to starlight and the only 
movement that can be detected is Earth’s revolution about the Sun. In this case 
we can say that the instantaneous effect of the aberration due to solar movement 
through the space is not directly measurable. 

The Equation (5.6) could be rewritten in the following form 

( ) ( ) ( )xy xy xyt t proj t= =W w v                    (7.23) 

xy
z

dS A V
c V

′ ′ = ∗
−

 [Equation (2.14)]             (7.24) 

( )tan xy

z

VS A
SS c V

θ
′ ′

∆ = =
′ −

                    (7.25) 

xy

z

V
c V

θ∆ ≈
−

                            (7.26) 

xy
z

d V
c V

S A
∗

= +
′ ′

                           (7.27) 

Equation (7.26) represents modified Bradley’s equation for stellar aberration. 
This equation can be written in a different form. First let us define: 

- Φ  an angle between the plane S('xy) and vector ( )tV  

( )
( )

( ) ( )
( )

31 32arccos arccos x yz v t c v t cV t
V t v t

   ∗ + ∗
′Φ = =      

   
          (7.28) 

2 ′Φ = Π −Φ                      (7.29) 

Referring to (6.9) we obtain that 

( ) ( ) ( ) ( ) ( )cos cosxyV t V t v t= ∗ Φ = ∗ Φ              (7.30) 

( ) ( ) ( ) ( ) ( )sin sinzV t V t v t= ∗ Φ = ∗ Φ              (7.31) 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 2

cos cos
tan

sin sin
1

cos sin sin
* 1

xy

z

V v t v t
c V c v t v t

c
c

v t v t v t
c c c

θ
∗ Φ ∗ Φ

∆ = = =
− − ∗ Φ ∗ Φ 

∗ − 
 

 ∗ Φ ∗ Φ ∗ Φ 
 = + + +    



 (7.32) 

( ) ( ) ( ) ( ) ( ) ( )2

2

cos cos sin
tan

v t v t
c c

θ
∗ Φ ∗ Φ Φ

∆ ≈ +       (7.33) 

And finally the annual aberration θ∆  as a function of time is given by the 
equation 

( )
( ) ( )( ) ( ) ( )( )2

2

cos sin 2
2

v t t v t t
t

c c
θ

∗ Φ ∗ Φ
∆ ≈ +

∗
        (7.34) 

We must declare the experiment failed, and the definition of the “absolute” 
stellar aberration must be discarded, because aberration as such doesn’t exist. 

3) Stellar aberration in case when ′ ≠S A 0 . 
In this section we will find formulas for Bradley’s, “absolute” and “total” stel-
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lar aberration. 

z z

dt
c U V

∆ =
− −

                     (7.36) 

xyS A t U′ = ∆ ∗                       (7.37) 

xyAA t v′ = ∆ ∗                       (7.38) 

SS d′ =                           (7.39) 

( ),SA SAθ ′∆ = ∠                    (7.40) 

( ),AA ABβ ′= ∠                     (7.41) 

( ),AA ASγ ′= ∠                     (7.42) 

( ),SS SAε ′∆ = ∠                     (7.43) 

( ),SS SAτ ′ ′∆ = ∠                     (7.44) 

( )cosAB A A β′= ∗                    (7.45) 

( )sinA B A A β′ ′= ∗                    (7.46) 

First we will derive a formula for the classical Bradley’s aberration. In other 
words our task is to find an angle θ∆  as shown in Figure 7. 

2 2 2 2A S S S S B A B′ ′ ′ ′= + +                 (7.47) 

( )22 2 2 2 2 2 2 2AS S S S A S S S B BA d S B AB S B AB′ ′ ′ ′ ′ ′= + = + + = + + + ∗ ∗    (7.48) 

2 2 2A A AB A B′ ′= +                       (7.49) 

( )2 2 2 2 cosA S A A AS AS A A γ′ ′ ′= + − ∗ ∗ ∗                (7.50) 

( )
2 2 2

2 2 2 2 2 2 2

cos
2

2
2

A A AS A S
AS A A

A A d S B AB S B AB d S B A B
AS A A

γ
′ ′+ −

=
′∗ ∗

′ ′ ′ ′ ′+ + + + ∗ ∗ − − −
=

′∗ ∗

  (7.51) 

 

 

Figure 7. An angle ( ),SS SA′ ′∠  represents a “total” 

aberration. 
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( ) ( )
2

cos cosAB S B AB AB AB BS S A
A A A S A A AS AS

γ β
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= = ∗ = ∗
′ ′ ′∗

       (7.52) 

( ) ( ) ( ) ( )( )
2

2 cos
sin 1 cos 1 cos 1

2
γ

γ γ γ= − ≈ −         (7.53) 

using the law sines for the ( )AA S′∆  it follows that 

( ) ( )sin sin
A A A S

θ γ
′ ′

=
∆

                      (7.54) 

( ) ( ) ( ) ( )2 22

2

sin cos cos
sin 1

2 2
A A A A A A A A S A

A S A S A S A S AS
γ γ β

θ
 ′ ∗ ′ ′ ′ ′

∆ = ≈ ∗ − = − ∗ ∗  ′ ′ ′ ′ 
(7.55) 

( ) ( ) ( )
( )( ) ( )

2
22 2 2

2 2 3 3

cos
2

xy xy

z zz z

v t U tA A S A A A S A v U
A S S SAS S S c U Vc U V t

β ∗∆ ∗ ∗∆′ ′ ′ ′ ∗
∗ ∗ < ∗ ≤ ≤

′ ′ ′ − −− − ∗∆

(7.56) 

( )sin A A
A S

θ
′

∆ ≈
′

                   (7.57) 

( )
( ) ( )( ) ( )( )

2 2 22
2 cos sinz z xy xy xy

A S c U V U V V
t

β β
′

= − − + − ∗ + ∗
∆

   (7.58) 

( )
( )

2
2 2 2

2 2 2 2 2 cosz z z z xy xy
A S c U v c U c V U V U V

t
β

′
= + + − ∗ ∗ − ∗ ∗ + ∗ ∗ − ∗ ∗ ∗

∆

(7.59) 

( )2 2 2

2 2 2

1
cos

1 2

xy

z z z z xy xy

VA A
A S c U c V U V U Vc U v

c U v
β

′
= ∗

′ ∗ + ∗ − ∗ + ∗ ∗+ +
− ∗

+ +

 (7.60) 

( )
2 2 22 2 2

cos
1xy z z z z xy xyV c U c V U V U VA A

A S c U vc U v

β∗ + ∗ − ∗ + ∗ ∗ ′
≈ ∗ +  ′ + ++ +  

 (7.61) 

( )2 2 2 32 2 2

xy z xy z xyV c U V c V VA A
A S c U v c U v

∗ ∗ + ∗ ∗′
≈ +

′ + + + +
              (7.62) 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )2 2 2 32 2 2

,

, ,

xy z xy z xyV t c U V t c V t V t
t

c U v t c U v t

α δ
θ

α δ α δ

∗ ∗ + ∗ ∗
∆ ≈ +

+ + + +
 (7.63) 

in the special case for ( ) 0zV T =  we obtain 

( ) ( )
( ) ( )

( ) ( )

( ) ( )( )2 2 2 32 2 2

,

, ,

zv T c U v T
T

c U v T c U v T

α δ
θ

α δ α δ

∗ ∗
∆ ≈ +

+ + + +
   (7.64) 

Now we will derive a formula for “absolute” stellar aberration that will be 
noted by ε∆  

( ) ( )
tan xy xy xy

z z z z

U t U d US A
SS d d c U V c U V

ε
∗∆ ∗′

∆ = = = =
′ ∗ − − − −

     (7.65) 
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( ) ( )

,
, ,

,
xy

z z

U
t

c U V t
α δ

ε α δ
α δ

∆ ≈
− −

               (7.66) 

for ( ) 0zV T =  we obtain that 

( ) ( )
( )

,
,

,
xy

z

U
c U

α δ
ε α δ

α δ
∆ ≈

−
                  (7.67) 

and finally we can get a formula for “total” stellar aberration that will be noted 
by τ∆  

( )tan S A
SS

τ
′ ′

∆ =
′

                        (7.68) 

( )( ) ( )( )
( )

2
2 2

2 2

sin cos

2 cos

xy xy xy

xy xy xy xy

S A V U V
t

U V U V

β β

β

′ ′  = ∗ + − ∗ ∆ 
= + − ∗ ∗ ∗

        (7.69) 

( )2 2 2 cosxy xy xy xyS A U V U V tβ′ ′ = + − ∗ ∗ ∗ ∗∆          (7.70) 

( )2 2 2 cosxy xy xy xy

z z

U V U VS A
SS c U V

β+ − ∗ ∗ ∗′ ′
=

′ − −
          (7.71) 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2, 2 , cos
, ,

,
xy xy xy xy

z z

U V t U V t
t

c U V t

α δ α δ β
τ α δ

α δ

+ − ∗ ∗ ∗
∆ ≈

− −
  (7.72) 

Obviously in these formulas have not been taken into account Earth’s rotation 
on its axis nor the changes in axial precession. 

8. Discussion 

An annual stellar aberration is related to the orbital revolution of the Earth 
about the sun. It is already known that a secular or galactic aberration is related 
to the changes in the movement of the solar system inside the Galaxy [3]. Our 
assumption is that there exists stellar aberration due to the Galaxy’s movement 
through the space. 

By means of Bradley’s experiment it is possible to measure stellar aberration 
only if the velocity of the telescope frame is changing. The goal of the experi-
ment presented in this paper is to overcome these limitations and measure a 
“total” stellar aberration caused by the uniform velocity of the solar system re-
garding the frame (L). 

It has been experimentally proved that a circular motion of a star about some 
other star does not affect stellar aberration; consequently we can make assump-
tion that all other kinds of the movements that are attributed to the star do not 
affect stellar aberration. 

In that way we can finally predict that outcome of the experiment should be 
with the accordance to the case (1.a) from the precedent section. If it is not so 
then at least one of the propositions P1 or P2 is not valid or our methodology is 
wrong. 
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This experiment can be repeated, but instead of extra-galactic stars this time 
we can observe the stars in the Milky Way Galaxy and make comparison be-
tween the results that are obtained from the two experiments. 
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