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Abstract 

We perform a brief analysis of Maxwell’s equations in this writing to bring out a bewildering aspect that 

an infinitude of boundary conditions are possible for any given global source distribution of charges and 

currents. This concept is distinct from an infinitude of boundary conditions resulting from different 

source distributions. For a given source distribution inside a finite [or semi infinite] region an infinite 

number of boundary conditions might be possible for several distributions outside the enclosure. But for 

any global source distribution we do not expect an infinitude of boundary conditions. The analysis to 

follow lead us to certain contradictory features. 

Introduction 

For a specified source distribution inside a finite [or a semi-infinite] region an infinite number of 

boundary conditions[1] might be possible for several distributions outside the enclosure. But for any 

global source distribution we do not expect an infinitude of boundary conditions. Nevertheless in our 

analysis we derive the abnormal possibility of having an infinite number of boundary conditions for any 

global distribution of charges and currents. The analysis to follow lead us to certain contradictory 

features. 

 

Maxwell’s Equations and some Mathematical Consequences 

 We first write  the traditional Maxwell’s equations[2] in the SI system using conventional notations: 

∇𝐸⃗ =
𝜌

𝜀0
                              (1.1) 

∇𝐵⃗ = 0                                   (1.2) 

∇ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
                 (1.3) 

∇ × 𝐵⃗ = 𝜇0𝑗 + 𝜀0𝜇0
𝜕𝐸⃗ 

𝜕𝑡
         (1.4) 
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We may replace 𝐸⃗  by 𝐸⃗ +∇λand 𝐵⃗  by 𝐵⃗ + ∇𝜒 with the condition that 𝜆 and 𝜒 are time independent 

scalars and that they satisfy Laplace’s  

equation: 

1) ∇2𝜆 = 0                         (2.1) 

2) ∇2𝜒 = 0                              (2.2) 

 

[Prime below does not denote differentiation but transformation] 

Using (1.1) and (2.1) we have:       

∇E′⃗⃗  ⃗ = ∇(E⃗⃗ + ∇λ) = ∇ E⃗⃗ + ∇2𝜆 = ∇𝐸⃗ =
𝜌

𝜀0
since∇2𝜆 = 0 

Using (1.2) and (2.2) we have 

∇B′⃗⃗  ⃗ = ∇(B⃗⃗ + ∇𝜒) = ∇𝐵⃗ + ∇2𝜒 = 0since∇2𝜒 = 0 

Using ∇ × ∇λ = 0 and ∇χ independent of time we have 

∇ × E′⃗⃗  ⃗ = ∇ × (𝐸⃗ + ∇λ) = −
𝜕(𝐵⃗ +∇𝜒)

𝜕𝑡
= −

𝜕𝐵⃗ ′

𝜕𝑡
since𝜆 is  

independent of time 

 

∇ × B⃗⃗ ′ = ∇ × (B⃗⃗ + ∇𝜒) = ∇ × 𝐵⃗ + ∇2𝜒 = ∇ × 𝐵⃗  

[Since ∇2𝜒 = 0 ] 

Or, 

Using ∇ × ∇χ = 0 and ∇λ independent of time we have 

 

∇ × B⃗⃗ ′ = ∇ × (𝐵⃗ + ∇χ) = 𝜇0𝑗 + 𝜀0𝜇0

𝜕(𝐸⃗ + ∇𝜆)

𝜕𝑡
= 𝜇0𝑗 + 𝜀0𝜇0

𝜕𝐸⃗ 

𝜕𝑡
 

[since𝜆is independent of time] 

We have : 

If 𝐸⃗  , 𝐵⃗   are solutions to Maxwell’s equations for configuration inside a region, 

𝐸⃗ ′ = 𝐸⃗ + ∇𝜆and𝐵⃗ ′ = 𝐵⃗ + ∇𝜒 will also be solutions for the same source configuration 

        Provided  

1) ∇2𝜆 = 0 

2) ∇2𝜒 = 0 

3) And  𝜆 and 𝜒 are time independent quantities. 

 

It is an inherent fact in our transformations that charge density and current densities remain 

unaltered by these transformations that is by 𝐸⃗ ′ = 𝐸⃗ + ∇𝜆and𝐵⃗ ′ = 𝐵⃗ + ∇𝜒, 𝜆 and 𝜒 being time 

independent.  

Indeed  
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∇𝐸⃗ =
𝜌

𝜀0
⇒ 𝜌 = 𝜀0∇𝐸⃗   (3) 

On transformation 

𝜌′ = 𝜀0∇𝐸⃗ ′ = 𝜀0∇⃗⃗ (E⃗⃗ + ∇⃗⃗ λ) = 𝜀0∇⃗⃗ E⃗⃗ + ∇2λ 

Since ∇2λ = 0 by our choice 

𝜌′ = 𝜀0 ∇⃗⃗ E⃗⃗ = ρ ⇒ 𝜌′ = 𝜌  (4) 

Again 

∇ × 𝐵⃗ = 𝜇0𝑗 + 𝜀0𝜇0

𝜕𝐸⃗ 

𝜕𝑡
  (5) 

𝑗 =
1

𝜇0
[∇ × 𝐵⃗ − 𝜀0𝜇0

𝜕𝐸⃗ 

𝜕𝑡
]  (6) 

On transformation we have  

𝑗 ′ =
1

𝜇0
[∇ × (𝐵⃗ + ∇⃗⃗ 𝜒) + 𝜀0𝜇0

𝜕(𝐸⃗ + ∇⃗⃗ λ)

𝜕𝑡
] 

𝑗 ′ =
1

𝜇0
[∇ × 𝐵⃗ + ∇⃗⃗ × ∇⃗⃗ 𝜒(+∇⃗⃗ 𝜒) + 𝜀0𝜇0

𝜕𝐸⃗ 

𝜕𝑡
+ 𝜀0𝜇0

𝜕(∇⃗⃗ λ)

𝜕𝑡
] 

Now ∇⃗⃗ × ∇⃗⃗ 𝜒 = 0  and 
𝜕(∇⃗⃗ λ)

𝜕𝑡
= 0 since λ is time independent 

𝑗 ′ =
1

𝜇0
[∇ × 𝐵⃗ + 𝜀0𝜇0

𝜕𝐸⃗ 

𝜕𝑡
]  (7) 

From (6) and (7) we have, 

𝑗 ′ = 𝑗   (21) 

Our transformations do not change the distribution of the sources asides maintaining Maxwell’s 

equations[preserving their form].The functions representing charge and current densities do not 

change. We must keep in mind that our transformations are not the Lorentz transformations [the 

Lorentz transformations , incidentally, treat (𝜌, 𝑗 ) as a four vector] 

With that in mind we calculate 

Qextra

ϵ0
= ∯[∇λ −

∂A⃗⃗ 

∂t
] . 𝑑𝑆  

But 
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 Qextra = 0 

Therefore for any time independent 𝜆 satisfying ∇2λ = 0 

∯[∇⃗⃗ λ −
∂A⃗⃗ 

∂t
] . 𝑑𝑆 = 0 

A⃗⃗  is the extra vector potential introduced by the transformation. Since both 𝜆 and 𝜒 are time 

independent the extra A⃗⃗  should be time independent: 
∂A⃗⃗ 

∂t
= 0 .Therefore for any time independent 

λ(x , y, z) with ∇2λ = 0 

∯∇⃗⃗ λ . 𝑑𝑆 = 0 

irrespective of boundary conditions.If λ = 0 or a non zero constant on the boundary then  λ = 0 or 

the  same non zero constant everywhere inside by the effect of the  uniqueness theorem. We 

maintain λ ≠ 0 [or not non zero  constant]on the boundary which could be at a finite distance or at 

an infinite distance. Therefore λ is a variable inside the boundary. It should not be zero or a non zero 

constant everywhere inside. Therefore, in general,   ∇⃗⃗ λ ≠ 0 inside the boundary. We have sources 

inside or outside (for the finite case) the boundary that create the non zero extra field ∇⃗⃗ λ . We are 

not supposed to have any extra source even globally, as discussed earlier, by our transformation 

[𝐸⃗ 𝑒𝑥𝑡𝑟𝑎 = ∇⃗⃗ λ −  
∂A⃗⃗ 

∂t
;but 

∂A⃗⃗ 

∂t
= 0since both λ and χ are time independent⇒ 𝐸⃗ 𝑒𝑥𝑡𝑟𝑎 = ∇⃗⃗ λ] 

 

Integral Laws and Sources on Transformation 

With our substitutions[transformations]the macroscopic charge values and the currents remain 

unaltered. We may come to this conclusion in an equivalent manner[for the macroscopic case] by 

considering the Integral form of the laws: Gauss law and Ampere’s circuital law. 

∯𝐸⃗ . 𝑑𝑆 =
𝑞

𝜖0
  (8) 

Since Maxwell’s equations are preserved for our  transformations, we have, 

∯𝐸⃗ 
′

. 𝑑𝑆 =
𝑞′

𝜖0
 (9) 

 

 

𝑞′

𝜖0
= ∯𝐸⃗ ′ . 𝑑𝑆 = ∯(𝐸⃗ + ∇⃗⃗ 𝜆) . 𝑑𝑆 = ∰∇⃗⃗ (𝐸⃗ + ∇⃗⃗ 𝜆). 𝑑𝑆 = ∰(∇⃗⃗ . 𝐸⃗⃗⃗⃗ + ∇2𝜆) . 𝑑𝑆  
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∯𝐸⃗ ′ . 𝑑𝑆 = ∰∇⃗⃗ . 𝐸⃗⃗⃗⃗ . 𝑑𝑆 = ∯𝐸⃗ . 𝑑𝑆 =
𝑞

𝜖0
 (10) 

For our transformations, for any arbitrary  volume,  

𝑞 = 𝑞′ (11) 

We come to Ampere’s circuital law 

∮𝐵⃗ . 𝑑𝑙 = 𝜇0𝑖   (12) 

Since Maxwell’s equations are preserved on transformations we have 

∮ 𝐵⃗ ′. 𝑑𝑙 = 𝜇0𝑖
′(13) 

 

𝜇0𝑖
′ = ∮𝐵′⃗⃗  ⃗. 𝑑𝑙 = ∮(𝐵⃗ + ∇⃗⃗ 𝜆). 𝑑𝑙 = ∮𝐵⃗ . 𝑑𝑙 + ∮ ∇⃗⃗ 𝜆 . 𝑑𝑙 = ∬ ∇⃗⃗ × 𝐵⃗ . 𝑑𝑆 + ∬ ∇⃗⃗ ∇⃗⃗ 𝜆 ×. 𝑑𝑆 

= ∬ ∇⃗⃗ × 𝐵⃗ . 𝑑𝑆  

𝜇0𝑖
′ = ∮𝐵′⃗⃗  ⃗. 𝑑𝑙 = ∬ ∇⃗⃗ × 𝐵⃗ . 𝑑𝑆 = ∮ 𝐵⃗ . 𝑑𝑙 = 𝜇0𝑖 

For any arbitrary surface if we consider currents passing through it, we have, 

𝑖′ = 𝑖     (14) 

Our transformations change the values of 𝐸⃗  and 𝐵⃗  without disturbing the sources. 

For a given source distribution we have an infinitude of  (𝐸⃗ + ∇⃗⃗ 𝜆, 𝐵⃗ + ∇⃗⃗ 𝜒) where ∇⃗⃗ 𝜆 and ∇⃗⃗ 𝜒are 

time independent and also ∇2𝜆 = 0 and ∇2𝜒 = 0. The bewildering aspect is that an infinitude of 

boundary conditions are possible for a given source distribution [distribution of charges and 

currents. We may consider as a particular instance the sources to be confined primarily to a finite 

region of space so that the fields 𝐸⃗  and 𝐵⃗  tending to zero at infinity but not becoming zero. In this 

situation an infinitude of values of 𝐸⃗  and 𝐵⃗  will exist at each point. If a part of the stated source 

distribution is enclosed by a surface we shall have an infinitude of boundary conditions on this 

surface the fields falling off to zero at an infinite distance. 

Helmholtz Theorem 

With reference to Helmholtz theorem[3] let us consider following the surface integral of the 

reference 
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∯
𝐶(𝑟 ′)

|𝑟 − 𝑟 ′|
𝑑𝑆 

Sources at an infinite distance are not zero. For such points we do not have the approximation 

|𝑟 − 𝑟 ′| ≈ |𝑟 |. But these points are material to the context when we consider points on a surface of 

infinite radius. No matter how far the boundary is from the origin  we may consider non zero 

sources[very small but non zero] sufficiently close to the boundary so that the approximation  

|𝑟 − 𝑟 ′| ≈ |𝑟 | breaks down in a serious manner. Right on the surface |𝑟 − 𝑟 ′| = 0 for any non zero 

source density present. No matter how small this source density is, so long as it is non zero, we have 

an infinitely large values of the  integrand at points where sources are present. There is  a possibility 

of the integrand blowing up. The integral will either blowup or it will become a finite quantity. The 

‘strong’ charges in the excluded regions might save the situation. We will not be able to write the 

equations we wrote to derive Helmholtz’s theorem. There would be drastic modifications .We will 

not have the delta function in the integrands . 

From  reference [3] 

∇𝐹 = 𝐷(𝑟 ) 

∇ × 𝐹 = 𝐶 (𝑟 ) 

𝐹 = −∇U + ∇ × W⃗⃗⃗  

If 𝐹 ≡ 𝐸⃗  

∇𝐸⃗ =
𝜌

𝜖0
= 𝐷(𝑟 ) 

∇ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
= 𝐶 (𝑟 ) 

𝐸⃗ = −∇ϕ −
∂A⃗⃗ 

∂t
= −∇U + ∇ × W⃗⃗⃗  

∇(U − ϕ) =
∂A⃗⃗ 

∂t
+ ∇ × W⃗⃗⃗  

∇2(U − ϕ) =
∂∇A⃗⃗ 

∂t
+ ∇. ∇ × W⃗⃗⃗  

∇A⃗⃗ = 0[Coulomb gauge: ∇𝐹 = −∇2𝑈 in the reference assumes Coulomb gauge if we consider𝐹 ≡ 𝐸⃗  

‘] 

∇2(U − ϕ) = 0 
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If both U and ϕ tend to zero st a large distance then U − ϕ = 0 ⇒ U = ϕ 

We recall 

𝐸⃗ = −∇ϕ −
∂A⃗⃗ 

∂t
= −∇U + ∇ × W⃗⃗⃗  

∇ × W⃗⃗⃗ = −
∂A⃗⃗ 

∂t
 

1

4π
∇ × ∫

C(r ′)

|r − r ′|
dr ′ = −

∂A⃗⃗ 

∂t
 

1

4π
∇ × ∫

1

|r − r ′|

𝜕𝐵⃗ 

𝜕𝑡
dr ′ = −

∂A⃗⃗ 

∂t
 

∇ ×
1

|r − r ′|

𝜕𝐵⃗ 

𝜕𝑡
= ∇ (

1

|r − r ′|
) ×

𝜕𝐵⃗ 

𝜕𝑡
+

1

|r − r ′|
∇ ×

𝜕𝐵⃗ 

𝜕𝑡
 

=
r − r ′

|r − r ′|3
×

𝜕𝐵⃗ 

𝜕𝑡
+

1

|r − r ′|

𝜕(∇ × 𝐵⃗ )

𝜕𝑡
 

1

4π
∫ [

r − r ′

|r − r ′|3
×

𝜕𝐵⃗ 

𝜕𝑡
+

1

|r − r ′|

𝜕(∇ × 𝐵⃗ )

𝜕𝑡
] dr ′ = −

∂A⃗⃗ 

∂t
 

Subject to Coulomb gauge∇A⃗⃗ = 0 we may have various functions representing A⃗⃗ : 
∂A⃗⃗ 

∂t
 is not unique. 

But the left side is unique, 𝐵⃗  being a physical quantity which can be measured. 

 

Having said all that  one must appreciate the fact that it is possible to have charges and currents 

spreading up to infinity, the fields being arbitrarily finite at any arbitrary distance from the reckoned 

origin. 

                                                             More on Vanishing Divergences 

Let us consider the PDE 

∇⃗⃗ . 𝑉⃗ = 0 

For an arbitrary volume which does not include a source 

∭∇⃗⃗ . 𝑉⃗ = 0 

∯𝑉⃗ . 𝑑𝑆 = ∭∇⃗⃗ . 𝑉⃗ = 0 
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For any arbitrary surface inside the mentioned volume  

∯𝑉⃗ . 𝑑𝑆 = 0 

That does not necessarily mean 𝑉⃗ = 0. One may consider asource free region in the vicinity of a point 

charge 

We may consider  

∇⃗⃗ . 𝑉⃗ = 0 

in the vicinity of a point charge. We do have a finite continuous region where 

∯ 𝑉⃗ . 𝑑𝑆 = 0 

for any arbitrary closed surface lying inside it. But we cannot claim that 𝑉⃗ = 0 for all points in this 

region. 

Conclusion 

An infinitude of boundary conditions are possible for any global distribution of currents and charges. 

As claimed we arrive at contradictions. 
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