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1. Introduction 

The problem of the interaction of moving objects is one of the main issues in physics. 

Despite its long history, it still does not have a final, or better, more or less acceptable solution. 

The currently known gravitational, electromagnetic, strong and weak interactions are described by 

various theories, attempts to combine which are carried out in numerous theoretical schemes. In 

our opinion, all these interactions have a unified nature, with what most physicists agree, and one 

law, which accordingly manifests itself at different scales of distances, should describe them.  

Since, from the generally accepted point of view, all matter consists of positively charged, 

negatively charged, and neutral particles, then, above all, this law should be established for the 

interaction of stable elementary particles such as an electron and a proton. In classical mechanics 

and electrodynamics, the interaction is considered to be known, if we know the forces acting on 

the physical objects and determining the change of the dynamic momentum with time. Therefore, 

the interaction between two moving stable particles should be determined by the force acting from 

one particle to another. If such a system is in equilibrium, then, apparently, Newton’s third law 

should be satisfied, which may be violated for a nonequilibrium system. 

In electrodynamics of Maxwell, who considered a magnetic field as a collection of vortices 

in an incompressible ethereal fluid, the force acting on a moving charged particle consists of the 

electric and magnetic Lorentz forces 

 [ ]e eF E v B , (1.1) 

determined by the electric field strength, 

 
t

 A
E

R
, (1.2) 

and magnetic induction, 

 rotB A , (1.3) 

where   and A are scalar and vector potentials, depending only on the coordinates and time. The 

values of fields (1.2) and (1.3) should be taken at the point where the charge e is located. Thus, 

expression (1.1) is essentially applicable only for point charges.1) 

Four Maxwell equations, including the electric field (1.2) created by the distribution of 

charges, and the magnetic field (1.3) created by the distribution of currents, are usually used in 

well-known classical electron theories. The first two equations are actually equations for electric 

and magnetic forces, and the next two ones, expressed by the Gauss theorem, are the conditions 

that these forces should satisfy, and, in essence, they hold for stationary distributions of charges 

and currents. Spin of charge carriers does not take into account in any way. Taking account of 

                                                 
1) More precisely, Maxwell is talking about the density of force acting on an object in which a charge is distributed 

with a certain density. 
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spin, as well as possible dependence of electric and magnetic forces on the state of motion of 

charge carriers, should inevitably lead to equations that may differ from the standard Maxwell 

equations. These new equations must take into account not only the nature of motion, but also the 

structure of charge carriers. In order to construct such equations, it is necessary to redefine the 

concepts of electric and magnetic field strengths within Maxwell equations, and set the ratio be-

tween them. 

It was shown in [1]-[4] that electric charge should not be considered as a physical quantity 

characterizing the electromagnetic interaction, but as a consequence of the presence of a spin of a 

particle. Then the electromagnetic interaction can be interpreted as the interaction of the spin with 

an external field. If we abandon the concept of charge and use instead the spin polarization (helic-

ity) of the particle, then in (1.1) we should put either 1e    for positively charged particles, and 

1e    for negatively charged particles, or 1e    for any particles. If in the first case the helicity 

e (or charge) is strictly fixed (the tangential component of the spin 
τ
s es  for free particles, [6]; 

the binormal component of the spin bs es  for particles in a constant uniform magnetic field, 

b b
BB e , where b

e  is the binormal vector, [7]), then the second case admits the existence of 

solutions in which the spin polarization is different from 1  (for example, in the case of particles 

in a constant uniform electric field, [8]). It follows that the classical concept of charge is strictly 

defined only in the case of freely moving particles. 

It was shown in [6] that free spinning particle moves along a helical trajectory, which can 

be interpreted as Zitterbewegung. If such a particle creates an electromagnetic field, then at each 

point in surrounding space the values of components of this field will periodically change in ac-

cordance with particle motion, which can be considered as passing through this point of electro-

magnetic wave. Thus, the quantum concepts of Zitterbewegung and the wave-particle dualism get 

interpretation from the classical point of view. 

In classical electrodynamics, the law of interaction between moving charges is usually ob-

tained from the interaction force of two current elements (rheophores in Ampère terminology), 

considered as a flux of charge carriers. Dividing this force by the number of charge carriers in both 

current elements, we obtain an expression for the interaction force between moving charges. How-

ever, the force thus obtained will in fact be the average force per pair of interacting charged 

particles. 

There exist several variants of deriving this force. The first variant, as is known, was pro-

posed by Ampère in 1820, who proceeded from four experimentally established cases of equilib-

rium 2) and the assumption that this force acts along the line connecting the rheophores ([9]; [10], 

pp. 323, 374). Let hereinafter 1R , 2R  denote the coordinates of the elements 1R , 2R , along 

which currents with intensities 1i i  and 2i i '  flow, respectively, 
21 2 1

r r R R  is the radius 

vector drawn from the first rheophore to the second one, 21 2 1| | | |r r R R  is the distance 

between them. Then, if we represent an infinitesimal force acting on the second element by the 

first element in the form 

 
2 2

21 1 2 21
F fd i i d , (1.4) 

where 
21

f  is a dimensionless vector function, then the formula obtained by Ampère will look as 

follows 

                                                 
2) 1) The effect of a current is reversed when the direction of the current is reversed. 2) The effect of a current flowing 

in a circuit twisted into small sinuosities is the same as if the circuit were smoothed out. 3) The force exerted by a 

closed circuit on an element of another circuit is at right angles to the latter. 4) The force between two elements of 

circuits is unaffected when all linear dimensions are increased proportionately, the current-strengths remaining un-

altered ([11], p. 85). 
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2 Ampère 2 Ampère

21 1 2 1 2 123 2

1 3

2
( ) ( )( )d d

r r
   f R R r R r R r f , (1.5) 

which means that the second element repels from the first, if 
1 2

0i i . 

In 1833, Gauss derived a different expression, but it became known only in 1867 after his 

death. Instead of currents 1i i  and 2i ' i  flowing in rheophores 1R  and 2R , Gauss used ele-

ments of electricity 
1

e e  and 
2

e e , located in them and moving with velocities 1 1 /dtV R  

and 2 2 /dtV R , respectively, so that relations 1,2 1,2 1,2 1,2i eR V , 1,2 1,2 /i e dt  are valid. An action 

of the first element on the second one is expressed by a dimensionless vector function 

 
2 Gauss

21 2 13

1
[ [ ]]d

r
 f R R r . (1.6) 

Apparently, Gauss was not sure of this expression, possibly due to the failure of Newton’s third 

law, i. e. 
2 Gauss 2 Gauss

21 12
d df f , and believed that “the effect of two galvanic elements on each other 

has yet to be further studied” ([12], S. 604). 

If we are talking about the interaction of electrical elements 1e  and 2e , rather than current 

elements, then laws (1.5) and (1.6) can describe only part of this interaction associated with the 

absolute motion of these elements. Meanwhile, the total force of interaction in the case of relative 

rest of the elements should be reduced to the Coulomb law. In July 1835, Gauss found another 

expression for the basic law for all interactions of galvanic currents in the form of a repulsive 

force that satisfies Newton’s third law and takes into account the Coulomb interaction,3) which 

can be represented as 

 

22 G
G 221 1 2
21 1 2 2 3

2 2 2 2
1 2 1 2
3 2 2 2 3 2 2 2

3
1

2
2 3( ) 3[ ]

1 1 ,

d e e dr
e e k v

dtdt r
e e e e

r c c r r c c r

f
F r

v r v v r v
r r

  (1.7) 

where 1/ k  is some velocity, which after the experiments of Weber-Kohlrausch was associated 

with the velocity of light (
22 /k c ), 

 21 2 1

d

dt
   

r
v v V V  (1.8) 

is the velocity of the second charge relative to first one. Gauss decided not to publish his research 

until he found a mechanism for the transmission of electrical action ([11], p. 240). 

Later, expressions for the interaction force between moving charges were obtained in 1845 

by H. Grassmann, [16], and F. Neumann, [17], who independently came to the law (1.6), obtained 

earlier by Gauss ([18], [19]; [20], pp. 215-220). Grassmann noted in several points of his article 

that the validity of the Ampère law (1.5) or the Gauss-Grassmann-Neumann law (1.6) can be es-

tablished only by doing experiments with open circuits. Neumann proposed to use the potential of 

ponderomotive forces acting according to Ampère’s theory between the circuit and the magnet to 

construct the theory of induction currents. 

To explain the nature of electric current, G. T. Fechner in 1845 proposed the hypothesis 

that electric current consists of equal flows of positive (vitrious) and negative (resinous) electricity 

moving in opposite directions. In addition, charges of the same nature moving in one direction are 

attracted to each other, while moving in opposite directions are repelled ([21], p. 338). In 1846, 

W. Weber, based on the Fechner hypothesis and Ampère’s law (1.5), obtained the fundamental 

law of electrical action, [22], in which the interaction force depends on both the relative position 

                                                 
3) [13]. Grundgesetz für alle Wechselwirkungen galvanischer Ströme. (Gefunden im Juli 1835). – [12], S. 616-617; 

[13], Ch. 6; [14], p. 183; [15], p. 508.} 
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and the state of the relative motion of charge carriers, and acts along the line connecting the elec-

trical elements.4) He “proved that the formula of Newton’s forces is completely insufficient to 

characterize electrical actions, that attractive and repulsive forces of electric fluids are not inde-

pendent on movements, as Newton’s ideas require, and that they depend not only on speed, but 

also on acceleration of motion” ([28], S. 330-331). 

Weber’s law can be written as ([22], S. 316, where 1/a c ) 

 

22 W 2
W 21 1 2
21 1 2 2 3 2 2 2

2 2
1 2
3 2 2 2 2

1 2
1

3[ ] 2( )
1 ,

d e e dr r d r
e e

dtdt r c c dt
e e

r c c r c

f
F r

v r v r w
r

 (1.9) 

wherefrom it can be seen that it reduces to the Gauss law (1.7) at a constant relative velocity of 

charges (w 0).5) Weber showed that the force (1.9) can be obtained from the potential ([27], 

S. 229-230) 

 
e

U R
R

W 2(1 [ ] ) , (1.10) 

where R[ ]  denotes the derivative /dR dt , depending on both R, and time t (in this formula, We-

ber’s R should be replaced by our r). 

Another version of the interaction law of charges was proposed in 1858 by Riemann, who 

“established that electrodynamic effects of galvanic currents can be explained on the basis of the 

assumption that the action of electric mass on others is not instantaneous, but propagates towards 

them at a constant velocity (within the limits of possible observation errors equal to the velocity 

of light). With this assumption, the differential equation for the propagation of electric force is the 

same as the equation for the propagation of light and radiant heat” ([32], S. 237). Riemann showed 

that the interaction potential of two current elements 

 

dd
ee r rU
C dt

2

2 2

1

,  (1.11) 

established from observations, can be obtained as a solution of the equation 

 
2

2

2
( 4 ) 0

U
U

t
  ,  (1.12) 

where 2C c  is Weber-Kohlrausch constant, ( , , )x y z   is electrical mass density, 

C c2 2 2/ 2 , 

 
d ds d

dt dt ds
, 
d ds d

dt dt ds
,  (1.13) 

 
2 2 2 2

1 1 1 1 1 1
| |ds ds X Y Z dt   R V , 

 
2 2 2 2

2 2 2 2 2 2
| |ds ds X Y Z dt   R V .  (1.14) 

If we express the function (1.11) in terms of the vectors 1
R , 2
R  and their derivatives with respect 

to time, we obtain 

                                                 
4) Weber’s electrodynamic studies are most fully described by Reiff and Sommerfeld, [23], and Whittaker, [11], and 

in recent time in the papers of Assis, [24], [25]. See also [13], Ch. 6; [26]. 
5) We do not consider here various objections (mainly Helmholtz, [29], and Maxwell, [31], ch. XXIII) against the 

Weber’s law related to energy conservation. In the end, these objections turned out to be erroneous. 
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2 2
R

2 2 3

2 2 2 2 2 2 2 2

2 3 2 3

1 ( )

3( ) ( ) 3[ ] 2 ( ) .

ee r ds d ds d ee r d
U

C dt ds dt ds r C dt r

ee ee
r r r r

C r C r

r v

r v v r w r v v r w

 (1.15) 

As can be seen, this function depends not only on the relative radius vector, r, but also on relative 

velocity, v, and relative acceleration, w. Therefore, the force acting on the second element from 

the side of the first one will be described by 

 

R R 2 R
R 2 2 2 2

21 2 2 5

2 2 2

2 2

1 2

3 2 2 2 2

2
2 3( ) 2 ( )

3[ ] 2( )
.

U d U d U ee

dt dt C r

ee

r c c r c

F r v r v r r w r
R V W

v r v r w
r

  (1.16) 

To obtain the action of two current elements, Riemann sums the force (1.16) over all electric 

masses e e
1  and e e

2
 of both current conductors. 

Comparison of the Riemann formula (1.16) with the Weber formula (1.9) shows their com-

plete identity with the only difference that the Coulomb force C 1 2
21 3

e e

r
F r  is not taken into account 

in the Riemann formula.6) Thus, the Riemann law (1.16) is the magnetic part of Weber’s law, 

 W C R

21 21 21F F F . (1.17) 

In the course of lectures on the mathematical theory of gravitation, electricity and mag-

netism, which Riemann gave in Göttingen in 1861, recorded by E. Schulze and published by 

K. Hattendorf in 1876, [33], he proposed for the electrokinetic energy of two electric particles   

and  , located at points with coordinates x y z( , , )R  and x y z( , , )R , the expression 

 

2 2 2

2

2 2

( ) ( ) ( )x x y y z z
D
c r t t t c r

 
v ,  (1.18) 

where r R R  ([33], S. 326, formula (II)),7) that he deduced from the assumption that all 

elementary work arising from the interaction of two galvanic currents is the total differential of 

the interaction potential ([33], S. 315) 

 
1 ( )

dS dS
D

r
i i .  (1.19) 

The associated law of interaction in vector form looks like ([33], S. 327, formulæ (4)-(6)) 

 

2 Riem 2
Riem 21

21 1 2 2 3 2 2

2 2

3 2 2 2

2 2
Riem

123 2 2 2

2

1

2 2
1

2 2
1

( )

[ [ ]]
.

dd re e
dtdt r c c

r c c c

r c c c

 





v
f v

F r

v r v r
r v w

v v r v r
r w F

   (1.20) 

In contrast to the law (1.16), (1.17) the force (1.20) is not collinear to the radius vector r. 

                                                 
6 Gauss, Weber and Riemann, based on Fechner’s assumption, believed that two particles of electric fluids of opposite 

signs moving in opposite directions through point 1, both act on a particle located in point 2, what led to a doubling 

of the force. 

7) According to Whittaker, the coefficient in front of braces for some reason is equal to 
2

ee

r
 ([10], p. 231). This 

seems to be a mistake. 
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In 1863-1864, Enrico Betti proposed a theory, [34]-[36] in which “supposes the closed 

circuits in which the electric currents flow to consist of elements each of which is polarized peri-

odically, that is, at equidistant intervals of time. These polarized elements act on one another as if 

they were little magnets whose axes are in the direction of the tangent to the circuits. The periodic 

time of this polarization is the same in all electric circuits. Betti supposes the action of one polar-

ized element on another at a distance to take place, not instantaneously, but after a time propor-

tional to the distance between the elements. In this way he obtains expressions for the action of 

one electric circuit on another, which coincide with those which are known to be true. Clausius, 

however, has, in this case also, criticized some parts of the mathematical calculations into which 

we shall not here enter” ([31], pp. 436-437). 

Rudolf Clausius, having “criticized some parts of mathematical calculations”, also sug-

gested that the electrodynamic forces depend on the state of motion, but he believed that the elec-

tric current is caused by the flow of only one electric fluid. Weber’s law turned out to be incom-

patible with this idea, and therefore in 1875 Clausius tried to derive a new law for the interaction 

of moving electric particles, [37]-[41]. As a result, the interaction potential of electric masses is as 

follows ([39], S. 127; [40], p. 270; [41], S. 277) 

 Claus

1 2[1 ( )]
ee

U k
r

V V , (1.21) 

where 1V  and 2V  are absolute velocities under which Clausius meant the velocities of electric 

particles relative to the stationary medium in which they move. Accordingly, in our notation the 

forces acting on particles are equal 

 

Claus Claus
Claus 1

21 1 1 1 23

2 2

( ) [ ( )]
U d U ee

k k
dt r

F W r v V V V r
R V

, (1.22) 

 

Claus Claus
Claus 1 Claus

12 2 2 1 2 21

1 1

( ) [ ( )]
U d U ee

k k
dt r

F W r v V V V r F
R V

. (1.23) 

The laws of interaction between current elements or moving charges, presented above, 

were analyzed by Maxwell in Ch. XXIII of his “A Treatise on Electricity and Magnetism“, [30]-

[31]. According to the words of L. Boltzmann, “fruitless debates about the various elementary 

laws of electrodynamics”,8) were overcome by Maxwell’s theory, which instead of description of 

the interaction of electric corpuscles (that is, long-range theory), preferred a hydrodynamic anal-

ogy of the electromagnetic field, the force lines of which were represented by current tubes of an 

ideal incompressible ethereal fluid, the speed and the direction of motion of which is determined 

by the forces acting on the particles. In particular, magnetic induction B can be represented as the 

velocity of this fluid. 

Another formula was obtained in 1910 by Edmund Whittaker, who noted that “The weak-

ness of Ampère’s work evidently lies in the assumption that the force is directed along the line 

joining the two elements; for in the analogous case of the action between two magnetic molecules, 

we know that the force is not directed along the line joining the molecules. It is therefore of interest 

to find the form of F when this restriction is removed” ([11], pp. 86-87). As a result, in our notation, 

the Whittaker formula takes the form 

 
2 Whit

21 2 1 1 2 1 23

1
( ) ( ) ( )d

r
     f r R R r R R R R r , (1.24) 

                                                 
8) [42], S. 99. Studies of the fundamental law of electric long-range action continued in works of physicists par excel-

lence of the German school: Wilhelm Gottlieb Hankel (Leipzig, [43]-[45]), Hermann von Helmholtz (Heidelberg, 

[29], [46], [47]), his student Isidore Fröhlich (Budapest, [48]), Eric Edlund (Stockholm, [49]-[50]), Carl Neumann 

(Leipzig, [51]-[54]), Peter Guthry Tait (Edinburgh, [55]), Johann Karl Friedrich Zöllner (Leipzig, [56], [57]), Al-

brecht Ludolf Hermann Lorberg (Strasbourgh, [58]-[60]), Eduard Rikke (Göttingen, [61]), Emil Arnold Budde 

(Berlin, [62], [63]), Diderik Johannes Korteweg (Breda, [64]). British school physicists abandoned long-range 

theory and began to develop theory of Maxwell. 
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leading to the Biot-Savart-Laplace law and the Ampère law for the ponderomotive force acting on 

a current element placed in a magnetic field. 

In 1888, Heaviside noted that, in practice, not the law of force between two current ele-

ments (having in mind the Ampère’s law (1.5), which is considered the basic formula of electro-

dynamics) is applying, but the law “expressing the mechanical force on an element of a conductor 

supporting current in any magnetic field; the vector product of current and induction” ([65], p. 502; 

[11], p. 88). If in macroscopic electrodynamics, such as Maxwell’s theory, the fundamental law of 

electrical action does not really matter much due to the statistical nature of this theory, then its 

correct formulation is absolutely necessary when considering the interaction of elementary parti-

cles. The choice between the various formulas given above cannot be solved by macroscopic ex-

periments. In this connection, we note that the laws of Ampère (1.5), Gauss-Grassmann-Neumann 

(1.6) and Whittaker (1.24) represent the interaction laws of elements of currents flowing in con-

ductors that are at rest relative to each other, while the laws of Gauss (1.7), Weber (1.9), Riemann 

(1.16), (1.20) and Clausius (1.22)-(1.23) are the laws of interaction of moving electric particles. 

Accordingly, we obtain the problem of obtaining the correct interaction law of current elements 

and the problem of obtaining the correct interaction law of moving charged particles. Below we 

will give the derivation of the first law from the point of view of the theory developed in [1]-[8]. 

2. The interaction of currents and charges as a problem of two bodies 

Let us consider the interaction of two elementary objects with spins 
1

s  and 
2

s , which we 

call particles. Let 
1
R , 

2
R  be the coordinates of centers of mass of particles in the absolute refer-

ence frame (r. f.), 
1
V , 

2
V  the corresponding velocities, 

1
W , 

2
W  the accelerations, 

1
r , 

2
r , 

1
v , 

2
v  , 

1
w , 

2
w  the coordinates, velocities and accelerations of the centers of mass of the particles relative 

to the center of mass of the system. The general equations of motion for a system of two particles 

located in an external field, according to [5] have the form 

 1
1

d

dt

P
F , 2

2

d

dt

P
F , (2.1) 

where 

 
ext int

ext int1
1 1 1 01 1 1 1 1 12 1

1

( )
[( ) ]

U U
m m P V V s S S W

V
, (2.2) 

 
ext int

ext int2
2 2 2 02 2 2 2 2 21 2

2

( )
[( ) ]

U U
m m P V V s S S W

V
 (2.3) 

are the dynamic momenta, 
01
m  and 

02
m  are bare masses of particles without of taking into account 

interactions and internal structure, 
1
m  and 

2
m  are effective masses determined from dynamic mo-

menta, 

 
ext int

2 ext int1
1 1 01 1 1 12 1

1

( )
[( ) ]

U U
F s C C V

R
, (2.4) 

 
ext int

2 ext int2
2 2 02 2 2 21 2

2

( )
[( ) ]

U U
F s C C V

R
 (2.5) 

are forces acting on the first and second particles, respectively. 

Potential functions 
ext ext

1 1 1 1
( ; , ,...)U U t R V , 

ext ext

2 2 2 2
( ; , ,...)U U t R V  and pseudovectors 

ext ext

1 1 1 1
( ; , ,...)tS S R V , 

ext ext

2 2 2 2
( ; , ,...)tS S R V , 

ext ext

1 1 1 1
( ; , ,...)tC C R V  and 

ext ext

2 2 2 2
( ; , ,...)tC C R V  determine an interaction of particles with external fields and objects, 
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whereas the interaction between particles is determined by the function 
int

0
( , , ,...) ( , ,...)U U ur v w v w  and pseudovectors 

 
int 1 2
12 12 1 2 1 1 12

1
( ) [ ]

2 2

mm

m
  S s s s r v , (2.6) 

 
int 1 2
21 21 1 2 2 2 21

1
( ) [ ]

2 2

mm

m
  S s s s r v , (2.7) 

 
2

int 2 2 1 2 0
12 12 0 1 2 1 01 1 12

1
( ) [ ]

2 2

mm

m
  C s s s r v , (2.8) 

 

2
int 2 2 1 2 0
21 21 0 1 2 2 02 2 21

1
( ) [ ]

2 2

mm

m
  C s s s r v , (2.9) 

where constants 
1
  and 

2
  are related to polarizations of the particles, while 

12
  and 

21
  belong 

to the particle system, 
01

, 
02

 and 
0
 are some functions of relative variables, which in the case 

of free non-interacting particles are constant frequencies of Zitterbewegung of particles, deter-

mined from the equations of spin motion 

 1
1 1 1
[ ] ( )

d
t

dt

s
s m , 

1 10 1
N , (2.10) 

 2
2 2 2
[ ] ( )

d
t

dt

s
s m , 

2 20 2
N , (2.11) 

1
N , 

2
N  are unit vectors of directions along which Zitterbewegung occurs, 

1
( )tm , 

2
( )tm  are pseu-

dovectors depending on external fields and determining the behavior of the spin orientation. Spin 

constancy modulo means 
1 1

( ) 0m s , 
2 2

( ) 0m s . 

The transformation to the center-of-mass and relative coordinates is given by 

 1 1 2 2
m m

m

R R
R , 

12 2 1 2 1
r r r r R R ; (2.12) 

 2

1 1

m

m
R R r R r , 1

2 2

m

m
R R r R r ; (2.13) 

 
int int int

1 2

U U U

R R r
, 

int int int

1 2

U U U

V V v
. (2.14) 

Equations (2.2)-(2.5) in variables (2.12) in view of (2.6)-(2.9) take the form 

 
ext int

ext1
1 1 1 01 1 1 1 12 1

1

1
[ ] [ ]

2

U U
m m P V V S W s W

V v
, (2.15) 

 
ext int

ext2
2 2 2 02 2 2 2 21 2

2

1
[ ] [ ]

2

U U
m m P V V S W s W

V v
; (2.16) 

 
ext int

ext 21
1 1 1 12 0 1

1

1
[ ] [ ]

2

U U
F C V s V

R r
, (2.17) 

 
ext int

ext 22
2 2 2 21 0 2

2

1
[ ] [ ]

2

U U
F C V s V

R r
, (2.18) 

where velocities
1
V , 

2
V  and accelerations 

1
W , 

2
W  are calculated from (2.13) taking account of 

possible dependence of effective masses 
1
m , 

2
m  on time, 

 
1 2 1 2

s j j s s l  (2.19) 



 9 

is the total angular momentum of the particle system relative to the center of mass, actually rep-

resenting the spin of the system, 

 1 2

1 2
[ ]

mm

m
l l l r v , (2.20) 

is the total orbital momentum of the particle system relative to the center of mass, 

 
1 1 1 1
ml r v[ ], 

2 2 2 2
ml r v[ ]  (2.21) 

are orbital momenta of particles relative to the center of mass, 

 
1 1 1
j l s , 

2 2 2
j l s  (2.22) 

are total momenta of particles relative to the center of mass. 

When a system of particles forms a bound state, it has a spin (2.19), satisfying the equation 

of motion 

 0
[ ( ) ] ( ) [ ] ( )

d
t t t

dt

s
s m N s m , (2.23) 

where N is the unit vector tangent to the instantaneous direction along which the Zitterbewegung 

of the system occurs. The pseudovector ( )tm  according to (2.10), (2.11), (2.19) and (2.23) should 

satisfy the relation 

 1 2 1 1 2 2
[( ) ] [( ) ] [ ]

d

dt

l
m m m s s l . (2.24) 

Assuming that pseudovectors 
1
( )tm , 

2
( )tm , ( )tm  have a similar structure in the form 

 1,2 1,2

d

dt

l
m A , 

d

dt

l
m A , (2.25) 

where 
1
A , 

2
A  and A should contain only terms related to the first particle, second particle, and 

system of particles, respectively, and substituting (2.25) into (2.24), we obtain 

 
1 2 1 1 2 2

[ ] [ ] [ ]A A A s s s , (2.26) 

i. e. 

 
1 1 1

[ ]A s , 
2 2 2

[ ]A s , [ ]A s . (2.27) 

Then 

 1 1 1
[ ]

d

dt

l
m s , 2 2 2

[ ]
d

dt

l
m s , [ ]

d

dt

l
m s , (2.28) 

and equations of motion (2.10), (2.11) и (2.23) become 

 1
d d

dt dt

s l
, 2
d d

dt dt

s l
, 
d d

dt dt

s l
, (2.29) 

which implies the conservation of spin directions relative to each other, 

 2 1
( )

0
dd

dt dt

s ss
, (2.30) 

and the absence of precession, i. e. we can put 
1 2

0 , while the third equation (2.29) 

is a consequence of the first two. 

In addition to (2.27), a representation is also admissible of 
1
A , 

2
A  and A in the form 

 1 1 1
[( ) ]A s , 2 2 2

[( ) ]A s , [ ]A l . (2.31) 

Then 

 1 1 1
[( ) ]

d

dt

l
m s , 2 2 2

[( ) ]
d

dt

l
m s , [ ]

d

dt

l
m l , (2.32) 

and equations of motion (2.10), (2.11) and (2.23) take the form 
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 1
1

[ ]
d d

dt dt

s l
s , 2

2
[ ]

d d

dt dt

s l
s , (2.33) 

 [ ] [ ]
d d

dt dt

s l
s l . (2.34) 

It follows from (2.33) 

 [ ]
d

dt

s
s , (2.35) 

i. e. s  precesses with an angular velocity Ω, so that | | consts . 

If the system of particles does not form a bound state, as can be assumed for free electrons 

scattered on each other or electrons moving along different conductors under the influence of ex-

ternal forces, then the concept of spin of the system loses meaning. Furthermore, as it is clear from 

(2.15)-(2.18), the spins of particles are not included in the equation of motion, regardless of 

whether they are free or not. In accordance with the foregoing, the interaction forces of two current 

elements, the current and charge element and two moving charges should be described by different 

formulas. 

3. The interaction of two current elements 

In the case of two current elements, to determine the interaction forces, one should use 

equations (2.17)-(2.18). Assuming that electric current caused by an orderly motion of electrons 

under the action of an external field strength, it should be assumed that electron spins 
1

s  and 
2

s   

are directed antiparallel to their velocities 
1
V  and 

2
V . We note here that these velocities (as well 

as accelerations 
1

W  and 
2

W ) are the velocities (accelerations) of electrons through conductors 

only when they are in rest relative to each other. In the case of moving conductors, 
1
V  and 

2
V  

consist of conduction electron velocities, 
1 1

/
e

dtv R , 
2 2

/
e

dtv R , and current element 

velocities, 
1 1

/d dtu x , 
2 2

/d dtu x . Therefore, in general, we should put 

 
1 1 1

d dR R x , 
2 2 2

d dR R x , (3.1) 

 
1 1 1 1

/
e

d dtV R v u , 
2 2 2 2

/
e

d dtV R v u , (3.2) 

where 
1

dx  and 
2

dx  are absolute displacements of elements 
1

R  and 
2

R . Then the condition of 

collinearity (antiparallelism) of spins and current elements may be expressed by 

 
2 1 2 1 1 2

[ ] [ ] [ ]
e e e
v s s v v s , 

1 1 2 2
[ ] [ ]
e e
v s v s 0 . (3.3) 

If the current elements are not in an external field, then ext ext

1 2
0U U , 

ext ext

1 2
S S 0  , 

ext ext

1 2
C C 0 . Then the forces (2.17)-(2.18) with (2.13), (2.19), (2.20) can be considered as the 

sum of electric and magnetic forces 

 
1 12 12 12

e mF F F F , 
2 21 21 21

e mF F F F , (3.4) 

where 

 
int

21 2 1 12

e e U
F E E F

r
 (3.5) 

is electric force (electric field strength) acting on the second charge from the first charge, 

 2 2 1
12 12 0 1 12 0 1 2

1 1 1 1 1
[ ] [ [ ] ]

2 2 2
m

e

e e

d
m
dt m m

 
R

F s V s s r v , (3.6) 

 2 2 2
21 21 0 2 21 0 1 2

1 1 1 1 1
[ ] [ [ ] ]

2 2 2
m

e

e e

d
m
dt m m

 
R

F s V s s r v  (3.7) 
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are magnetic forces acting on the first and second charges, respectively, 
1 2 e
m m m  is effec-

tive electron mass in the conductor, determined from equations (2.15)-(2.16). 

Addition of 
12
F  and 

21
F  in view of (3.3) gives 

 

2

12 21 0 12 21 1 2 12 1 2 21 2 1

2

0 12 1 21 2

1
( )[ ] [ ] [ ]

2
1

[( ) [ ]] ,
4

e

e
m

   

 

F F v s u s u s

V V r v
. (3.8) 

whence it follows that for conductors being in mutual rest, 
1 2
u u 0 , Newton’s third law 

21 12
F F 0  is satisfied in the center-of-mass reference frame at 

21 12
   . Then equations 

(2.15)-(2.16) reduce to 

 
0

1
[ ]

2e e
m m V V s W , (3.9) 

 
int

0

1
2 [ ]

2e e

U
m m v v s w

v
, (3.10) 

and lead to the dependence of effective mass on the state of relative motion of electrons. It follows 

from (3.8) that in absolute reference frame the total orbital angular momentum l of the particle 

system relative to the center of mass is collinear to the velocity V of the center of mass. 

Expressions (3.6)-(3.7) are actually a generalization of the Ampère’s law, which Heaviside 

spoke of ([65], p. 502), determining the force acting on the current element in magnetic field. In 

our case, the force acting on the element 2 2
i R  by the element 1 1

i R  will be equal to 

 
2 2

21 1 2 21 2 2 1
[ ]m md i i d i dF f R B . (3.11) 

where 
1

dB  is usually determined from the Biot-Savart-Laplace law 

 
BSL 1 0 1

1 1 1 13 3
[ ] [ ]

4

i I
d d

r r


 


B B R r R r , (3.12) 

if 
1
I  is measured in amperes. In this article 

1
dB  can be determined from (3.7). Taking into account 

relations (2.12) and the condition (3.3), or 

 1

1

1

2

d

dt

R
V V v , 2

2

1

2

d

dt

R
V V v , (3.13) 

 
1 1 1

1 1
2e e

e e

s

v v
s v v , 

2 2 2

2 2
2e e

e e

s

v v
s v v , (3.14) 

where / 2s  is electron spin, expressions (3.6)-(3.7) will look like 

 2 2 1
12 0 1 0 1 2

1 2

1 1
[ ] [ [ ] ]

2 4
m

e e e

e e e e

d
m
dt m v m v

 
R

F s V v v v r , (3.15) 

 2 2 2
21 0 2 0 1 2

1 2

1 1
[ ] [ [ ] ]

2 4
m

e e e

e e e e

d
m
dt m v m v

 
R

F s V v v v r , (3.16) 

or 

 

2 2
2 2 20 0
12 1 2 0 2 0 1 1

2 1

1 1
[ [ ] [ ]

4 4 4 4
m

e e
e e

d d m d m d d
v v

 
  F R R R r R r x , (3.17) 

 

2 2
2 2 20 0
21 2 1 0 1 0 2 2

1 2

1 1
[ [ ] [ ] ]

4 4 4 4
m

e e
e e

d d m d m d d
v v

 
  F R R R r R r x . (3.18) 
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The magnetic field at the point where the moving current element 2 2
i R  is located is de-

termined by expression 

 

2

0
1 1 2

2 1 2
2

0
1 1 2

2 1 2

[ ] ]
4

[ ] [ ] ,
2 2 2

e

e e e e

e

e e e e

m
d d d

i m v m v

m
d d d

i m v m v







B R r r x

R r R x R r

 (3.19) 

which contains  four terms. The first of them is the Biot-Savart-Laplace law 

 
2

BSL 0
1 1

2

[ ]
4
e
m

d d
i


B R r , (3.20) 

corresponding to the Gauss-Grassmann-Neumann interaction law (1.6). Comparing (3.20) with 

(3.12) and taking into account that 
1 1

d R R  for a conductor at rest, we obtain that 
0
 should 

depend on r according to 

 3/2 3/21 2 0 1 2
0

2 2

4
e e

i i I I
r r

m m



  
, (3.21) 

where the sign of the constant ς coincides with the sign of the product 
1 2
i i  of the current intensi-

ties when the currents are collinear. 

The second term in (3.19) is the magnetic induction of spinning electron of the first current 

element, 

 1

2 2

0 1 0 1
1 1 1 1 13 3

2 1 21
4 22e e e e

i i
d dt dt

i v im v r m r

 
 

sB R R s s . (3.22) 

Assuming that the current of the first element is created by one electron, i. e. 
1
i dt e , we find 

from here the magnetic field of spinning electron 9) 

 
3

e

e

m r
sB s . (3.23) 

The third term in (3.19) is determined by the displacement 
2

dx  of the second current ele-

ment 

 2

2

0 1
1 2 23

2 2 2
4 2e e e

i
d d d

i v m v r

sB x x . (3.24) 

Finally, the fourth contribution, 

 

2

0 1
1 3

2

[ ] [ ]
2

e
m i

d d d
i r

RB R r R r , (3.25) 

is due to the absolute motion of the center of mass of the elements 1 1
i R  and 2 2

i R , which always 

belong to the currents flowing through closed conductors 
1
L  and 

2
L , respectively. 

Obviously, the action of the first element on the second one is determined only by the first 

two terms, (3.20) and (3.22), whereas the terms (3.24) and (3.25) are associated only with the 

second element. Therefore, if we talk about the magnetic field created by the first current at some 

point, we should integrate the expression (3.19) along the contour 
1
L  without last two terms, i. e. 

                                                 
9) In the SI system, where 

1
I dt e , this expression should be multiplied by 

0
/ 4  . 
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1

2

1 0 1 1

2 1

[ ]
2 2
e

e eL

m
d

i m v


B R r R . (3.26) 

Consider examples with long straight conductors. In the case of parallel conductors, the 

spin part of the magnetic field does not affect the interaction forces of current elements, since the 

first term in parentheses in formulas (3.17)-(3.18) makes no contribution and for magnetic induc-

tion we obtain the Biot-Savart-Laplace law (3.20) with condition (3.21). If the conductors are per-

pendicular, then the usual magnetic forces defined by law (3.20) are supplemented by spin forces 

determined by addition (3.22) and additionally by additions (3.25) if the conductors move. If rela-

tions (3.17)-(3.18) are valid, then the influence of these spin forces can be detected using simple 

but precision experiments. In this regard, one should pay attention to the Graneau effect, which 

can be explained by the action of the longitudinal Ampère force, [66]. 

The problem which remains is the dependence of 
0
( )r , obtained not using independent 

inference, but only by comparing (3.20) with (3.12). Moreover, taking into account the retardation 

associated with the finite propagation velocity of the interaction should lead to a dependence of 

0
 also on the relative velocity and to subsequent modification of the law (3.12). 
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