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Abstract This book is an exposition of "Singular Semi-Riemannian Geometry"- the study
of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary
signature. This book also dealing with Colombeau extension of the Einstein field
equations using apparatus of the Colombeau generalized function and contemporary
generalization of the classical Lorentzian geometry named in literature Colombeau
distributional geometry.The regularizations of singularities present in some Colombeau
solutions of the Einstein equations is an important part of this approach. Any singularities
present in some solutions of the Einstein equations recognized only in the sense of
Colombeau generalized functions and not classically.In this paper essentially new class
Colombeau solutions to Einstein fild equations is obtained. We leave the neighborhood
of the singularity at the origin and turn to the singularity at the horizon.Using nonlinear
distributional geometry and Colombeau generalized functions it seems possible to show
that the horizon singularity is not only a coordinate singularity without leaving
Schwarzschild coordinates.However the Tolman formula for the total energy ET of a
static and asymptotically flat spacetime,gives ET  m, as it should be. The vacuum

energy density of free scalar quantum field  with a distributional background spacetime
also is considered.It has been widely believed that, except in very extreme situations, the
influence of gravity on quantum fields should amount to just small, sub-dominant
contributions. Here we argue that this belief is false by showing that there exist
well-behaved spacetime evolutions where the vacuum energy density of free quantum
fields is forced, by the very same background distributional spacetime such distributional
BHs, to become dominant over any classical energy density component. This
semiclassical gravity effect finds its roots in the singular behavior of quantum fields on
curved distributional spacetimes. In particular we obtain that the vacuum fluctuations
2  has a singular behavior on BHs horizon r: 2r~|r  r |2.A CHALLENGE TO
THE BRIGHTNESS TEMPERATURE LIMIT OF THE QUASAR 3C273 explained
successfully.
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This paper is divided into six sections.

Shapter 1 contains a brief introduction in contemporary theory of the degenerate and

singular semi Riemannian manifolds using the linear distributionel geometry based on
L.Schwartz distributions M on smooth manifold M and Colombeau distributional
geometry based on full algebra M of the Colombeau generalized functions on

smooth
manifold M.
Subsection 1.1 contains a brief review the results in General Relativity obtained by

using
the linear and nonlinear distributional approuch in order to resolve problems with
canonical Schwarzschild geometry.
Subsection 1.2 contains the elementary explanation of the basic notions of

Colombeau
generalized functions and Colombeau generalized numbers.
Subsection1.3 contains a brief introduction in point free classical Colombeau

geometry.
Subsection1.4 contains a brief introduction in point-free loop quantum gravity.

Subsection1.5 contains description of the classical point-like phase space variables

corresponding to the classical Schwarzschild metric.
Subsection1.6 contains explanation why classical point-like Loop Quantum Gravity

contradict with a well established the linear Colombeau geometry.
Subsection1.6.1-1.6.2 contains a brief introduction in point free quantum

Schwarzschild
geometry.
Subsection1.7 contains Generalized Stokes’ theorem corresponding to nonlinear

Colombeau geometry.
Subsection1.8 contains derivation of the Colombeau Generalized Curvature Tensor.

Subsection1.9 contains derivation of the Generalized Einstein’s field equations

obtained
in [37].
Subsection1.10 contains explanation why the canonical

densitized Einstein field equations from contemporary literature wrong and revision is

needed,etc.
Subsection1.10.1 contains some importent remarks on the A. Einstein and N. Rosen

paper from 1935.
Subsection1.10.2 contains some importent remarks on Mӧller abnormal famous paper

from 1943
Subsection1.10.3 contains derivation of the revisited densitized Einstein field

equations
by using the special kind of the linear distributional geometry.

Subsection1.11 contains the nonlinear distributional Möller geometry using the

full algebra of the Colombeau generalized functions originally derived in [5] in order to



avoid the Polchinski’s paradox.

Subsection1.12 contains a brief reviev of the distributional Schwarzschild geometry by

using the linear L.Schwartz distributions and by using the full algebra of the
Colombeau
generalized functions.
Subsection1.12.1 contains a brief reviev of the distributional Schwarzschild geometry

at
the origin by using the smooth regularization of the singularity at the origin.
Subsection1.12.2 contains a brief reviev of the nonsmooth regularization of the

singularity
at the origin.
Subsection1.12.3 contains a brief reviev of the smooth regularization via Horizon in

Schwarzschild coordinates and the smooth regularization at horizon in isotropic
coordinates.
Subsection1.12.4 contains a brief reviev of the nonsmooth regularization via Gorizon.

Subsection1.12.5 Distributional Eddington-Finkelstein Space-time is considered.

Shapter 2 contains a brief introduction in contemporary generalized Colombeau

calculus
Subsection 2.1-2.2 contains basic notions of the canonical Colombeau theory [1],[2]

Subsection 2.3 contains the full derivation of the nonlinear distributional Schwarzschild

geometry. The truncated distributional Schwarzschild geometry and Gravitational
singularity is considered.
Subsection 2.4 contains the full derivation of the nonlinear distributional Schwarzschild

geometry in isotropic coordinates.
Subsection 2.5 contains a brief introduction in generalized Colombeau calculus.

Subsections 2.5.1-2.5.3 contains basic definitions of the super generalized functions.

Subsection 2.5.4 contains the full derivation of the super distributional geometry of the

Schwarzschild space-time.
Shapter 3 contains the full derivation of the linear distributional Schwarzschild

geometry from nonsmooth regularization via horizon
Subsection 3.1 contains the full calculation of the Stress-tensor by using nonsmooth

regularization via horizon.
Subsection 3.2 contains examples of distributional geometries.

Shapter 4 contains quantum field theory of the scalar field in curved distributional

space-time.
Subsection 4.1 contains a brief introduction in canonical quantization in curved

distributional Space-time.
Subsection 4.2 contains example of the distributional outgoing modes.

Subsection 4.2.1 contains a boundary conditions at the horizon of the distributional

SAdS BH geometry.
Shapter 5 contains the full calculation of th energy-momentum tensor by using

Colombeau Distributional Modes.
Shapter 6 contains the main theoretical result of this paper: Distributional SAdS



BH Space-time-induced Vacuum Dominance.
Subsection 6.1 contains the full derivation of the adiabatic expansion of Green

functions in curved distributional space-time.
Subsection 6.2 contains effective action for the scalar quantum matter fields in

curved distributional space-time.
Subsection 6.3 contains stress-tensor renormalization.

Shapter 7 contains novel explanation of the active galactic nuclei.

Subsection 7.1 contains a brief introduction in the current paradigm for active galactic

nuclei and resalts of the observations of the high energy emission from galactic jets.
Subsection 7.1 contains Novel Explanation of the Active Galactic Nuclei based on the

Colombeau distributional Kerr Space-time in Boyer - Lindquist form.

1.Introduction. Classical, semiclassical and nonclassical
semi-Riemannian manifolds M,g.
The classical Cartan’s structural equations show in a compact way the relation

between a connection and its curvature, and reveals their geometric interpretation in
terms of moving frames. In order to study the mathematical properties of singularities,
we need to study the geometry of manifolds endowed on the tangent bundle with a
symmetric bilinear form which is allowed to become degenerate or singular (or both

degenerate and singular ) on semi Riemannian manifold M,g or on submanifolds of

semi Riemannian manifold M,g. But if the fundamental tensor is allowed to be
degenerate or singular, there are some obstructions in constructing the geometric
objects normally associated to the fundamental tensor. Also, local orthonormal frames
and coframes no longer exist, as well as the metric connection and its curvature
operator.
Definition 1.1. (i) Semi Riemannian manifold M,g is nonclassical if the fundamental
tensor g is allowed to be degenerate or singular, (ii) semi Riemannian manifold M,g

is
internally nonclassical if the fundamental tensor g is not allowed to be degenerate or
singular but there exists semi Riemannian submanifold M,g,M  M,g  g|M such
that the fundamental tensor g is allowed to be degenerate or singular,(iii) otherwise

we
will be say that M,g is classical.
Remark 1.1. In the nonclassical case the main problem arises from the degeneracy of
the detgijx  on some isolated points: detgijx 0  0,x 0  M or some submanifold
detgijx   0 for all x  M  M and consequantly the corresponding Christoffel

symbols
bicome infinity.
In mathematical literature more than 50 yers accepted that a nonclassical semi

Riemannian manifold mentioned above impossible treated classically, i.e. by using

canonical apparatus of the Riemannian geometry. However in the contemporary
mathematical literature, manifolds with degenerate metric tensors have been studied
only fore some special case called a Reinhart manifold (see for example [3] Refferences
B).



Remark 1.1. In this paper we studied nonclassical semi Riemannian manifold M,g
extrinsically,i.e. as degenerate submanifolds of Colombeau generalized semi

Riemannian
manifolds furnished with non degenerate Colombeau generalized or super generalized
fundamental tensor gij,  0

2M,,see subsect.2.5,Definition 2.5.8.

Definition 1.2.We shall say that Colombeau generalized semi Riemannian manifold
M, gi,j,x  is the Colombeau extension of the nonclassical semi Riemannian

manifold
M,gi,j,0x  if there exists the canonical imbedding M,gi,j,0x   M, gi,j,x ,see

subsect.1.1,where such imbedding is obtained for Schwarzschild space-time with
metric
(1.6) in canonical Schwarzschild coordinates t, r,,ϕ.
Remark 1.2. The canonical imbedding M,gi,j,0x   M, gi,j,x  easily obtained by

aproporiate -regularization of the tensor gi,j,0x ,see subsections 1.11.1-1.11.5.
Remark 1.3. (i) Note that the notion of the classical Rimannian curvature comes from

the
study of parallel transport on a classical Rimannian manifold,see Fig.1.1. For instance,

if
a vector A ix  is moved around closed contour (or a loop) on the surface of a sphere
keeping parallel throughout the motion,then the final position of the vector may not be

the
same as the initial position of the vector. This phenomenon is known as holonomy.

The classical holonomy presented by the classical formula (1.1) for the change Ak

in a smooth vector A ix  after parallel displacement around infinitesimal closed contour
.
The classical formula for the change in a smooth vector A ix  after parallel

displacement
around infinitesimal closed contour  or integral measure of the classical holonomy of

the
surface  spanning by  reads [4]:

Ak  


Ak  


kl
i x Akdx l. 1.1

Now applying classical Stokes’ theorem (see Theorem 1.10.1) to the integral (1.1) and

considering that the area enclosed by the contour has the infinitesimal value
f im,one
obtains, (see subsection 1.10.3) [4]:

Ak  1
2
Rklm
i xA ixf im, 1.2

where Rklm
i x is a tensor field of the fourth rank:

Rklm
i x 

km
i x
x l


kl

i x
xm  ni

i xkm
n x  nm

i xkl
n x. 1.3

The tensor field Rkim
l x is called the classical curvature tensor or the

classical Riemann tensor.
The classical Riemann tensor that is a tensorial measure of holonomy



(ii) Various generalizations capture in an abstract form this idea of curvature as a

measure of holonomy.

Fig.1.1.Parallel transporting a vector from

A  N  B  A yields a different vector.

This failure to return to the initial vector

is measured by the change in asmooth

vector A ix  after parallel displacement around

infinitesimal closed contour  or

by the classical integral measure Ak of the

holonomy of the surface  spanning by contour .

(iv) Note that in classical case the change Ak always finite,i.e. Ak  
(v) If semi Riemannian manifold M,g is nonclassical the condition Ak   is not
always holds and we shall say that contour  is regular if Ak  ,see Fig.1.2

if Ak   we shall say that contour  is a singular contour or singular loop,see

Fig.1.3.

Fig.1.2.Regular contour 

beyond BH horizon.



Definition 1.3.We shall say that a point x 0   is a singular point of the surface
  M
if the Levi-Civitá connection is not available at point x 0, i.e. some of the Christoffel
symbols become infinity at point x 0.

Fig.1.3. Singular point x 0 at BH horizon

and corresponding singular countur sing.

Remark 1.4. Note that any singular countur sing contains at least one singular point
x 0  sing,see Fig.1.3 and we shall abbreviate sing

x 0 if x 0  sing
x 0 .

Remark 1.5.(i) Note that the classical formula (1.1) holds only for regular loops but
obviously breaks down on singular loops sing, since Aksing  .
(ii) Note that Eqs.(1.2)-(1.3) again no longer hold for singular loops sing (see sect.1.8).
and therefore the classical Ricci scalar and the classical Kretschman scalar is not

holds
at BH horizon. However in classical literature (see [3],[4]) it was just pulled to the BH
horizon by the ears.
Remark 1.6.(i) Note that for trunketed singular contour sing

#  sing
x 0 \x 0 see Fig.1.4,

the
Levi-Civit‘a connection is available at whole contour sing

# and classical formula (1.1)

reads:

Aksing
#   

sing
x0 \x 0

Ak  
sing
x0 \x 0

kl
i x Akdx l.

Obviously for trunketed singular contour sing
#  sing

x 0 \x 0 again we get

Akx 0 \x 0   and therefore the Eqs.(1.2)-(1.3) again no longer hold for trunketed
singular loops sing

# .

(ii) The semi Riemannian manifold M,g which contain trunketed singular loops
sing
x 0 such that sing

x 0  M,x 0  M,seems as classical since the

Levi-Civit‘a connection is available at whole



Fig.1.4.Trunketed singular contour

(loop) sing
#  x 0 \x 0 with deleted

singular point x 0.

(iii) Note that in order to obtain the full geometrical properties of BH horizon one needs

non classical definition of the integral measure Aksing of the holonomy of the

surface

sing spanning by singular loop sing such that Aksing is well defined quantity.
(iv) By using contemporary Colombeau approach [1] one obtains appropriate definition

of

the non classical integral measure Aksing of the holonomy as direct generalization

in
natural way of the Eq.(1.1) (see subsection 1.8 Remark 1.8.8,Eq.(1.8.10))

Aksing  Ak,  
sing
x0

Ak,



 
sing
x0

kl,
i x Ak,dx l



. 1.4

where point x 0 belongs to BH horizon and x 0  sing
x 0 ,Aksing  ,

Definition 1.4.We shall say that a surface 
sing  M is a singular surface if 

sing it has
at least one singular point point x 0  

sing, see Fig.1.5.



Fig.1.5.Singular surface 
sing with singular

point r  0,

spanning by regular contour .

Remark 1.7.Note that for the case of the surface 
sing again problem arises,

(see sect.1.8.Remark 1.8.3) even if it spanned by regular contour ,see Fig.1.5. In this

case the non classical integral measure Ak ,
sing of the holonomy reads:

Ak ,
sing  Ak,  


Ak,


 



kl,
i x,x 0Ak,dx l



. 1.5

Definition 1.5.Let M be a differentiable manifold equipped with it canonical topology
.
Let M# be a submanifold M#  M.The closure M

# of a submanifold M#  M of points
in
a topological space M, consists of all points in M# together with all limit points of

M#.
The closure of M

# may equivalently be defined as the union of M# and its boundary
M#,
and also as the intersection of all closed sets containing M#. Intuitively, the closure can

be
thought of as all the points that are either in M# or "near" M#. A point which is in the
closure of M# is a point of closure of M#.
Definition 1.6. Let M,g and M#,g# semi Riemannian manifolds such that (i)

M#  M,
(ii) M

#  M and (iii) g#  g|M# .Assume that: (1) the Levi-Civit‘a connection

kj
#l  1

2
g#lm gmk,j

#  gmj,k
#  gkj,m#  corresponding to metric tensor g# is available at

whole semi Riemannian manifold M#,g# and (2) the Levi-Civit‘a connection

kj
l  1

2
glm gmk,j  gmj,k  gkj,m corresponding to metric tensor g is not available at its

boundary M#, i.e. M,g is a nonclassical semi Riemannian manifold.Then we shall
say
that M#,g# is a semiclassical semi Riemannian manifold.

Remark 1.8.It follows from consideration above that semiclassical semi Riemannian
manifolds obviously impossible treated classically as nonclassical semi Riemannian



manifolds mentioned above.
Example 1.1. Obviously the Levi-Civita connection is available at whole Schwarzschild
spacetime (see Remark 1.10.1) Sch,gijScht, r,,ϕ,

Sch S2  r  2m  0  r  2m  ,

but spacetime Sch contains truncated singular loops sing
#  x 0 \x 0  Sch,see

Fig.1.4,
and in particular the Levi-Civita connectionis is not available at whole its topological
closure Sch,gijScht, r,,ϕ,where

x 0  SchS2  r  2m  0  r  2m  .

Thus Schwarzschild spacetime is not classical but exactly is a semiclassical semi
Riemannian manifold. Similarly the Levi-Civita connection is available at the open

semi
Riemannian manifold Sch,gijSch


t, r,,ϕ above Schwarzschild horizon: Sh

S2  r  2m   but is not available at whole its topological closure

Sch,gijSch

t, r,,ϕ ,SchS2  r  2m  .

Thus semi Riemannian manifold Sh is not classical but exactly is a semiclassical
semi
Riemannian manifold.
Remark 1.9. Note that in physical literature the spacetime Sch S2  r  2m  

mistakenly considered as classical semi Riemannian manifold. Note that only

spacetimes Sch
,gij

Sch


, Sch
S2  r  2m    ,  0 is a classical semi

Riemannian
manifolds.

Fig.1.6.Region of the classical semi Riemannian

geometry above Schwarzschild horizon

Sh
S2  r  2m    ,  0.

Remark 1.10. Note that in physical literature



Fig.1.7.The classical semi Riemannian Geometry

presented by Eddington-Finkelstein spacetime

Remark 1.10. There exist examples of the nonclassical semi Riemannian manifolds.
However in physical literature these nonclassical semi Riemannian manifolds

mistakenly
were considered as classical semi Riemannian manifolds.
1.The Schwarzschild metric represented by Schwarzschild coordinates t, r,,ϕ reads

ds2   1  rs
r dt2  1  rs

r
1
dr2  r2d2  sin2d2 . 1.6

The Christoffel symbols in Schwarzschild coordinates t, r,,ϕ reads

Γ tt
r 

c2rsr  rs
2r3

,Γ tr
t  rs

2rr  rs
,Γrr

r   rs
2rr  rs

,

r
  1

r ,Γrϕ
ϕ  1

r ,Γ
r  r  rs,Γϕ

ϕ  cot,

Γϕϕ
r  r  rs sin2,Γϕϕ

   sincos.

1.7

Remark 1.3. Note that:(i) the Schwarzschild metric is allowed to become degenerate

and singular at Schwarzschild horizon r  rs, (ii) the Schwarzschild metric is

allowed to
become degenerate and singular at Schwarzschild singularity r  0, (iii) the

Christoffel
symbols Γ tr

t and Γrr
r become infinity at Schwarzschild horizon r  rs.

Thus the Schwarzschild space-time is nonclassical semi Riemannian manifold. The
full nonlinear distributional Schwarzschild geometry at horizon is obtained in subsect.

2.3.
2.The singular transformation of the Schwarzschild metric (1.6) from the usual

Schwarzschild time coordinate t to the advanced null coordinate v with

cv  ct  r  rs lnr  rs 1.8

leads to the ingoing Eddington-Finkelstein metric (1.9) with coordinates v, r,ϑ,ϕ.The
Schwarzschild metric (1.6) in Eddington-Finkelstein coordinates v, r,,ϕ, reads

ds2   1  rs
r c2dv2  2cdvdr  r2dΩ2. 1.9

The Christoffel symbols in Eddington-Finkelstein coordinates v, r,,ϕ, reads



Γvv
v  crs

2r2
,Γvv

r 
c2rsr  rs

2r3
,Γvr

r   crs
2r2

,Γr
  1

r ,

Γrϕ
  1

r ,Γ
v   r

c ,Γ
r  r  rs,Γϕ

ϕ  cot,

Γϕϕ
v  r sin2

c ,Γϕϕ
r  r  rs sin2,Γϕϕ

   sincos.

1.10

Remark 1.9. The Eddington-Finkelstein space-time is classical semi Riemannian
manifold except any finite neighborhood of singularity r  0.
Remark 1.10.Note that Eddington-Finkelstein space-time is not equivalent with
Schwarzschild space-time, since the transform (1.8) is singular at Schwarzschild
horizon r  rs.
3.The Schwarzschild metric (1.6) in isotropic coordinates t,ρ,,ϕ reads,

ds2   1  rs/4ρ
1  rs/4ρ

2

c2dt2  1  rs
4ρ

4

dρ2  ρ2d2  sin2dϕ2, 1.11

where

r  ρ 1  rs
4ρ

2

1.12

is the coordinate transformation between the Schwarzschild radial coordinate r and the
isotropic radial coordinate ρ.The Christoffel symbols reads

Γ tt
ρ  2048ρ4rsc2

4ρ  rs
4ρ  rs7

,Γ tρ
t  8rs

16ρ2  rs2
,Γρρ

ρ   2rs
4ρ  rsρ

,

Γρ
 

4ρ  rs
4ρ  rsρ

,Γρϕ
ϕ 

4ρ  rs
4ρ  rsρ

,Γ
ρ  ρ 4ρ  rs

4ρ  rs
,

Γϕ
ϕ  cot,Γϕϕ

ρ   4ρ  rsρ sin
2

4ρ  rs
,Γϕϕ

   sincos.

1.13

Remark 1.11. (i) Note that "Schwarzschild space-time in isotropic coordinates" is
nonclassical semi Riemannian manifold, since the metric (1.6) is allowed to become
degenerate at horizon   rs/4, (ii) note that "Schwarzschild space-time in isotropic

coordinates" is not equivalent with Schwarzschild space-time in Schwarzschild
coordinates t, r,,ϕ.The full nonlinear distributional "Schwarzschild geometry in

isotropic
coordinates" at horizon is obtained in subsect. 2.4.
Remark 1.10.Note that the space-times mentioned above in physical literature

mistakenly
were considered as the same geometrical object in different coordinates only.

1.1.Remarks on linear and nonlinear distributional
geometry in general relativity.Why
A degenerate (singular) semi-Riemannian manifold M;g is a differentiable manifold

M endowed with a symmetric bilinear form g  T2
0M named metric. Note that the metric g

is not required to be non-degenerate. In particular, if the metric is non-degenerate, M;g
is a semi-Riemannian manifold. If in addition g is positive definite, M;g is a Riemannian
manifold.



This paper dealing with Colombeau extension of the Einstein field equations using
apparatus of the Colombeau generalized function [1]-[2] and contemporary
generalization of the classical Lorentzian geometry named in literature Colombeau
distributional geometry. The regularizations of singularities present in some solutions of

the Einstein equations is an important part of this approach. Any singularities present in
some solutions such that Schwarzschild solution etc. of the Einstein equations
recognized only in the sense of Colombeau generalized functions [1]-[2] and not
classically. Note that in physical literature these singular solutions many years were
mistakenly considered as vacuum solutions of the Einstein field equations, see for
example [26],[30].
During last 30 years the applications classical linear distributional geometry in general

relativity was many developed [5]-[31].
Remark 1.1.1. Let Rbcd,

a   4 be Colombeau generalized function obtained

using
the standard definition of the Riemann curvature in a coordinate basis,i.e.

Rbcd,
a   db,c,

a   cb,d,
a   cf,

a ab,
f


 df,

a cb,
f


, 1.1. 1

where bc,
a   n and bc,

a ,  0,,  1 is the regularized Levi-Civita

connection
coefficients in terms of the regularized metric gab,,  0,1 such that gab,, g

ab
 4, detgab,  0


It has been shown by many authors (see for example [22])

that under apropriate regularization using the Eq.(1.1.1) one can defines the curvature
scalar as a classical Schwartz distribution in n, [18],[19].
Remark 1.1.2.This is the case even for the well-known Schwarzschild spacetime,

which
is given in the Schwarzschild coordinates x 0, r,,, by the metric

ds2   1  a
r

dx 02  1  a
r

1
dr2  r2d2  sin2d2 . 1.1. 2

Here, a is the Schwarzschild radius a  2GM/c2 with G,M and c being the Newton
gravitational constant, mass of the source, and the light velocity in vacuum Minkowski
space-time, respectively. Obviously the fundamental tensor corresponding to ds2 has
the components which is degenerate or singular: (i) at r  0 and (ii) at r  a.
Remark 1.1.3.Note that in classical papers [5]-[31],etc. (i) the Colombeau

distributional metric tensor gab,  4 related to Rbcd,
a   4 by Eq.(1.1.1)

never is not considered as the Colombeau solution of the Einstein field equations, (ii)
Colombeau nonlinear distributional geometry never is not considered as the rigorous
mathematical model related to really physical spacetime but only as useful purely
mathematical tools in order to obtain related to Rbcd,

a   4 classical Schwartz

distributions in n, (iii) there is no any important physical applications of the classical
linear distributional geometry were obtained.

Remark 1.1.4.Originally fundamental physical applications of the Colombeau
nonlinear distributional geometry has been obtained in author paper [33]-[37].
By using now the Cartesian coordinates x 0,x 1,x 2,x 3, which are related to x 0, r,,

through the canonical relations: x 1  r cos sin , x 2  r sin sin , x 3  r cos , the
metric (1.1.2) reads ds2  ĝdx

dx ,where at points r  0, r  a the metric ĝ is given by



[29]:

ĝ00  1  h , ĝ0  0 ,

ĝ    h1  h1 x
x

r2
, ,  1,2, 3

1.1. 3

with h  a/r. Well known that at points r  0, r  a :

 

T0

0
  h

r
 h

r2
,

 

T0


 0 ,  


T

0
 0 ,

 

T


 

  h
2

 h
r

 x x

r2
h
2

 h
r2

,

1.1. 4

where the hatted symbols T


represent the quantity


T


in the coordinate system

x ;  0,1, 2,3. Also, we have defined h  dh/dr and h  d2h/dr2.
Remark 1.1.5. We extend now the quantity (1.1.3)-(1.1.4) in point r  0 as Colombeau
generalized functions from Colombeau algebra 3.Regularizing now the function

h  a/r as h  a/ r2  2

and the function x x

r2
as x x

r2  2
with   0,1,

we
replace now the the singular metric (1.1.3) by the Colombeau generalized metric

ds2  ĝ,dx
dx 


, 1.1. 5

where

ĝ00, 
 1  h , ĝ0, 

 0

,

ĝ, 
   h1  h1

x x

r2  2 
, ,  1,2, 3

1.1. 6

and therefore

 T0,

0
x


  a2

r2  25/2 

, T0


x;


 0


,  T

0
x;


 0


,

 T


x;


 

 3a2

2r2  25/2 



x x

r2  2 

a2

r2  25/2 

5
2
 2

r2  2 
.

1.1. 7

Note that from Eq. (1.1.7) one obtains
T


x  w- lim0

T,


x  Mc2

00
3x. 1.1. 8

Remark 1.1.6.Note that T0

0
x;


, T


x;


 4.Thus the generalized

Einstein
equation [37] related to Eq.(1.1.6)-Eq.(1.1.7) in Colombeau notations reads:

Ĝ,



 R ,




 1

2
  R  

 

T,



, 1.1. 9

where



R r 
 R ,r 



 3a2

r2  25/2 

 2a2

r2  25/2 

  a2

r2  25/2 

1.1. 10

Remark 1.1.7.Note that the regularized scalar curvature R  has the well-defined weak
limit R w in n

R w  w- lim0R    4
3
a3x . 1.1. 11

Remark 1.1.8.Note that: (i) for any r   such that str  r fin  0, (see
Definition
1.2.5) where r fin   from Eq.(1.1.10) it follows that

st R r 
 st a2

r2  25/2 

 st a2

r fin
2  25/2



 0, 1.1. 12

(ii) for any r   such that r   (see Definition 1.2.4) from Eq.(1.1.10) it

follows that

R r 


 , 1.1. 13

(iii) at origin rO  0

(see Definition 1.2.4) one obtains

R rO 


 a2

25/2 



 a
3

, 1.1. 14

where   0,.
Remark 1.1.9.Note that the Eq.(1.1.12) in accordance with Eq.(1.1.11) and by
Eqs.(1.1.12)-(1.1.14) we have recovered the intuitive meaning about -function.
For the regularized quadratic scalars one obtains [29]:

R rR ,r  1
2

3a2

r2  25/2

2

 2 a2

r2  25/2

2



13
2

a2

r2  25/2

2

R rR ,r  4a2

r2  2
3

r2  22


12a22

r2  24
 9a24

r2  25
.

1.1. 15

Remark 1.1.10.Note that in contrast with the regularized scalar curvature R  the
regularized quadratic scalars do not have the weak limits, which can be symbolically

written as

R xR x  lim0R x;R x;  402a23x2 ,

R xR x  lim0R x;R x;

 12a2

r6
 16a2

3
1
r3

3x  162a23x2.

1.1. 16

Remark 1.1.11.However Colombeau quadratic scalars R rR ,r 
and



R rR ,r 
well defined as Colombeau generalized functions in  

3
.

R rR ,r 
 1

2
3a2

r2  25/2 

2

 2 a2

r2  25/2 

2

,

R rR ,r 
 12a2

r2  23
 12a22

r2  24 



 9a24

r2  25 

.

1.1. 17

Remark 1.1.12.Note that Colombeau quadratic scalars R rR ,r 
and

R rR ,r 
can be triating only nonclassically as Colombeau generalized

functions extended on 
3
     , since at origin rO  0


we get

R rOR ,rO 
 1

2
3a2

25/2 

2

 2 a2

25/2 

2

,

R rOR ,rO 
 12a2

6
 12a22

8 



 9a24

10 

.

1.1. 18

Remark 1.1.13.In the usual Schwarzschild coordinates t, r,,, r  a the
Schwarzschild metric (1.1.2) takes the form above horizon r  a and below horizon

r  a
correspondingly

above horizon r  2m : ds2  hrdt2  hr1dr2  r2d2,

hr  1  a
r   r  a

r
below horizon r  2m : ds2  hrdt2  hr1dr2  r2d2,

hr  1  a
r  a  r

r

1.1. 19

Following the above discussion we consider the metric coefficients hr, hr1

hr,and hr1 as an element of 3 and embed it into 3 by replacements
above horizon r  2m and below horizon r  2m correspondingly

r  2m : r  2m  r  2m2  2 ; r  2m : 2m  r  2m  r2  2 . 1.1. 20

Inserting (1.1.20) into (1.1.2) we obtain Colombeau generalized object modeling the
singular Schwarzschild metric above (below) gorizon, i.e.,

ds2  hrdt2  hr
1dr2


 r2d2 ,

ds2  hrdt2  hr
1dr2


 r2d2

1.1. 21

The generalized Ricci tensor above horizon R
 



may now be calculated

componentwise using the classical formulae



R
r0

0

 R

r1
1


 1

2
h 

2
r h



R
r2

2

 R

r3
3




h
r 

1  h
r2

,
1.1. 22

where

hr   r  2m
r r  2m2  2

1/2




r  2m2  2

1/2



r2
,

hr   1
r r  2m2  2

1/2




r  2m2

r r  2m2  2
3/2





 r  2m
r2 r  2m2  2

1/2



 r  2m
r2 r  2m2  2

1/2






2 r  2m2  2

1/2



r3
.

1.1. 23

From Eq.(1.1.22)- Eq.(1.1.23) we obtain (see sect.3)

w -
0
lim R

r1
1  w -

0
lim R

r0
0  2mr  2m. 1.1. 24

Remark 1.1.14.Note that the -regularization of degenerate and singular metric fields
originally has been proposed in A. Einstein and N. Rosen paper [32].
Remark 1.1.15.The full non-linear theory of Colombeau distributional geometry based

on
Colombeau algebras in general relativity and its various applications to fundamental
problems of the quantum gravity in curved Colombeau distributional spacetime

originally
has been obtained in authors papers [33]-[37].

1.2.Basic notions of Colombeau generalized functions and
Colombeau generalized numbers.Point values of
Colombeau generalized functions.

1.2.1.Basic notions of Colombeau generalized functions
In contemporary mathematics, a Colombeau algebra of Colombeau generalized

functions is an algebra of a certain kind containing the space of Schwartz distributions.
While in classical distribution theory a general multiplication of distributions is not
possible, Colombeau algebras provide a rigorous framework for this.
Remark 1.2.1.Such a multiplication of distributions has been a long time mistakenly

believed to be impossible because of Schwartz’ impossibility result, which basically
states that there cannot be a differential algebra containing the space of distributions
and preserving the product of continuous functions. However, if one only wants to
preserve the product of smooth functions instead such a construction becomes possible,
as demonstrated first by J.F.Colombeau [1],[2].



As a mathematical tool, Colombeau algebras can be said to combine a treatment of
singularities, differentiation and nonlinear operations in one framework, lifting the
limitations of distribution theory. These algebras have found numerous applications in
the fields of partial differential equations, geophysics, microlocal analysis and general
relativity so far.
Basic idea.

Definition 1.2.1. The algebra moderate functions CM
 n on n is the algebra of

families of smooth functions fx  fx,x  
n,  0,,  1 (smooth

-regularisations, where  is the regularization parameter), such that: (i) for all compact
subsets K of n and all multiindices α, there is an N  0 such that

xK

sup
 | |fx

x11   xnn
 ON,  0, 1.2. 1

with addition and multiplication defined by natural way:

fx  gx  fx  gx 1.2. 2

and

fx  gx  fx  gx. 1.2. 3

Definition 1.2.2.The ideal n of negligible functions is defined in the same way
but with the partial derivatives instead bounded by OεN for all N  0, i.e.

xK

sup
 | |fx

x11   xnn
 ON,  0. 1.2. 4

Definition 1.2.3.The Colombeau Algebra n [1],[2] is defined as the quotient
algebra

n  CM
 n/ n. 1.2. 5

Elements of n are denoted by:

u  clu  u  n. 1.2. 6

Embedding of distributions

The space of Schwartz distributions n can be embedded into the Colombeau

algebra n by (component-wise) convolution with any element φε of the algebra

n having as representative a δ-net, i.e. a family of smooth functions φε such that φε

 δ in n as ε  0.
Remark 1.2.2.Note that the embedding  : n  n is non-canonical,

because it
depends on the choice of the δ-net.
Example 1.2.1. Delta function δx   for example has the following different
representatives in Colombeau algebra  :

1
2

1


exp  x2
4



 , 1
1
x sin x  

 ,

1



x2  2 

 , 1
1
x2

sin2 x 

 ,

1.2. 7

since



1
2

1


exp  x2
4

 δx, 1
1
x sin x   δx,

1



x2  2

 δx, 1
1
x2

sin2 x   δx
1.2. 8

in  as ε  0.
Remark 1.2.2.However note that embedding n  n does not meant the full
equivalence of the Schwartz distributions and corresponding by embedding

Colombeau
generalized functions. In contrast with the Schwartz distributions Colombeau

generalized
functions has well defined walue at any point x  n these point values of the
Colombeau generalized functions is the Colombeau generalized numbers.
Example 1.2.2. Delta function δx ill defined at point x  0 since δ0  .However
any Colombeau generalized function defined by Eq.(1.2.7) has well defined point value

at
point x  0.For example

1
2

1


exp  x2
4

 x0

 1
2 

1




 ,

1



x2  2  x0

 1


1
 

 .

1.2. 9

Here  is the ring of real Colombeau generalized numbers [34].

1.2.2.The ring of Colombeau generalized numbers

.Point values of Colombeau generalized functions.
Designation 1.2.1. (I) We denote by ,  1 the ring of real Colombeau generalized

numbers. Recall that by definition   E,/N where [34],[36],[37]:

E,  x  0, |a  0  0,1  0|x |  a ,

N  x  0, |a  0  0,1  0|x |  a .
1.2. 10

(II) In this subsection we will be write for short  instead .

Notice that the ring  arises naturally as the ring of constants of the Colombeau

algebras .Recall that there exists natural embedding r :    such that for all
r  ,r  r where r  r for all   0,1.We say that r is standard number and

abbreviate r   for short. The ring  can be endowed with the structure of a partially

ordered ring: for r, s     ,   we abbreviate r 
,

s or simply r 

s if and only if

there are representatives r and s with r  s for all   0,.Colombeau

generalized number r   with
representative r we abbreviate clr .

Definition 1.2.4. (i) Let   cl   . We say that  is infinite small Colombeau

generalized number and abbreviate  



0 if there exists representative  and some

q   such that | |  Oq as   0. (ii) Let   . We say that  is infinite large



Colombeau generalized number and abbreviate  

 if 


1 




0. (iii) Let  be

   We say that    is infinite Colombeau generalized number and abbreviate
 


 


if there exists representative  where | |   for all   0,1.Here we

abbreviate M  M  ,      and   M/ 

Definition 1.2.5. (Standard Part Mapping). (i) The standard part mapping st :    is
defined by the formula:

stx  sup r  |r 

x . 1.2. 11

If x  , then stx is called the standard part of x.

(ii) The mapping st :      is defined by (i) and by stx   for x   and for

x  , respectively.

Definition 1.2.6.[37]. Let fx   and x  , then clfx    .We will say
that Colombeau generalized number clfx   is a point values of Colombeau
generalized function fx at point x  .

Definition 1.2.7.(Principal value mapping) The principal value mapping p.v. :  
of Colombeau generalized function fx at point x   is defined by the formula:

p.v.clfx   
0,1
sup |fx |. 1.2. 12

We will be write for short p.v. fx  .

Example 1.2.3. The principal value of the curvature scalar R r,a 
(1.1.10) at point

r   reads

p.v. R r,a 

0,1
sup a2

r2  25/2
. 1.2. 13
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Fig.1.Plot of the function

Ra, r,  a2

r2  25/2
,

a  1, r  103, z    0,0. 01.

R103, 7  104  1.808  108.

p.v. R r,a 
 1.808  108.



1.3.The point free classical Colombeau geometry.
The first definition (prior to the well-known five postulates) of Euclides describes the

point as “that of which there is no part” [40].

A huge portion of our mathematics of the physical world is based on the amazingly
simple Euclidean geometry. Indeed, starting from very straightforward assumptions and
theorems such as those found in Euclid’s geometry, it is feasible to build also
non-Euclidean geometries and complex manifolds able to explain issues such as those
in quantum mechanics. One of the main components of Euclidean geometry is the point,
that stands for the most fundamental object. The first definition of a point (prior to Euclid)
is given by the Pythagoreans: a point is a monad having position. Euclid begins his
geometry with the definition of a point [that of which there is no part] (Def.1, Euclid, 300
BCE) and the extremities of a line are points (Def.2). Euclid’s Def.1 is interpreted by T.L.
Heath to mean that a point is that which is indivisible in parts. Therefore, we are
confronted with a primitive notion defined only by axioms that it must satisfy, i.e., the
point upon which the whole apparatus is built, meaning that geometry cannot be
described in terms of previously defined real objects or structures. Here we ask whether
the zero-substance point holds true in our physical world and extend our analysis also to
other Euclidean objects, such as lines, surfaces, volumes and so on [41].

Definition 1.3.1. Let fx   and clx    .Assum that clfx    .
We will say that Colombeau generalized number clfx   is a point values of

Colombeau generalized function fx at point x   .

Example 1.3.1. For any r  ,  0, the point values R r 
of Colombeau

generalized function R r 
(see Eq.(1.1.10) reads

R r 
 R ,r 

  a2

r2  25/2 

 a
2

r2  
2 

5/2


a
21

21

r2  
21

21
5/2

,

1.3. 1

where 1  0,1.
Remark 1.3.2.We choose now r  r    11and from Eq.(1.3.1) we

get

R r 
 a

21
21

r2  
21

21
5/2

 a
21

21

1
21  

21
21

5/2


a
21

21

221
21  

21
21

5/2
 a

21
21

51
51

2  15/2


a
31

31
2  15/2

.

1.3. 2

Thus in "point limit"   0 the curvature scalar R r 
diverges as 31

31 .

Remark 1.3.2.In order prevent the divergence mentioned above, we assume now that
there exist fundamental generalized length l  cl l1

 1  cl 11 , 1  0,1,



  ,     1 , such that: r1 1  l,see [36] sec.2.Thus from Eq.(1.3.1) we get

now instead Eq.(1.3.2)

R r 
 a2

l1
2  25/2 

 a
a2

l1
2  

2 
5/2



a
21

21

21
21  

21
21

1/2
1

21
21  

21
21

1/2
1

r1 1  
2

3/2


a2

2  2 
1

r1
2 1  

2
3/2

 a2

2  2 
1

r r
2r0,1  

2
3/2

.

1.3. 3

1.4.The Point-Free Loop Quantum Gravity.
We remind that canonical quantization of GRT can be expressed as an SU2 gauge

theory on the 3 dimensional manifold  furnished by canonical point-like geometry,

where a topology of space-time M of the form M    is assumed, in a background
independent manner. In such formulation of GR, the gravitational field is described by a
pair of conjugate variables A,E, where Aa

i x is an SU2 connection and E i
ax is the

densitised triad vector field, conjugate to A :

Aa
i x,E j

bx   8jiabx  x , 1.4. 1

with G the gravitational constant and  the Immirzi parameter.The conjugate pair are
constraint to satisfy the system

Gi  DaE i
a  0,Hb  E i

aFab
i  0,

H  ijkFab
i E j

aEk
b  21  2Ka

i Kb
j E i

aE j
b  0,

1.4. 2

which are called Gauss, spatial diffeomorphism and Hamiltonian constraints
respectively.In fact, the task of finding a metric satisfying the Einstein’s equations,
describing configuration of a gravitating system, is now replaced by finding a conjugate
pair A,E satisfying the constraint system (1.4.1). On quantization, one smears the

basic fields A,E to holonomies of A i
a along a curve , defined by hA  P exp 


A ,

and fluxes of E i
a through the surface S, defined by E iS  

S
d2naE i

a. They form the

holonomy-flux algebra in which holonomies act by multiplication, and fluxes act by
derivation. Using a functional representation of quantum field theory and representing
states as functionals of the cylindrical functions of holonomies, the kinematical Hilbert
space of the theory is constructed. After imposing Gauss and diffeomorphism
constraints as operators on such states, the true gauge and diffeomorphism invariant
states of the theory turns out to be spin networks acted upon by holonomies and fluxes
operators which form a unique representation. More precisely, a spin network is a triplet
, j l, in consisting of a graph  with nodes in , labeled by intertwiners in, and links
connecting different nodes, labeled by SU2 representations j l.
Remark 1.4.1.(I)The quantum geometrical picture suggested by canonical LQG [44] is
manifest in quantization of geometrical observables, such as area and volume, as
quantum operators acting on spin network states which result in discrete spectra and
reflect the discrete nature of space-time.



(II) In fact singularity resolution occurs as a result of fundamental discreteness
of space; while in a classical continuum, divergences emerge as distance goes to

zero,
there is no room for divergences in quantum level since there is no zero distance

below
the Planck length.

Canonical quantization of nonlinear distributional GRT can be expressed as an SU2

gauge theory on the 3 dimensional Colombeau distributional manifold  furnished by

Colombeau point-free geometry, where a topology of space-time M of the form

M     is assumed, in a background independent manner. In such formulation of
GRT, the gravitational field is described by a pair of conjugate variables A, E,

where Aa,
i x is an SU2 Colombeau distributional connection and E i,

a x is the

distributional densitised triad vector field, conjugate to A :

Aa,
i x, E j

bx   8jiabx  x , 1.4. 3

with G the gravitational constant and  the Immirzi parameter.The conjugate pair are
constraint to satisfy the system

Gi,  Da,E i,
a   0, Hb,  E i,

a Fab,
i   0


,

H  ijkFab,
i E j,

a Ek,
b 


 21  2 Ka,

i Kb,
j E i,

a E j,
b




0

,

1.4. 4

In fact, the task of finding Colombeau metric satisfying the generalized Einstein’s field
equations (see subsect.1.8), describing configuration of a gravitating system, is now

replaced by finding a conjugate pair A, E satisfying the constraint system
(1.4.3). On quantization, one smears the basic Colombeau generalized fields
A, E to holonomies of A i,

a  along a curve   , defined by

hA  P exp 

A



, and fluxes of E i,
a  through the surface


S, defined by

E i,

S


 

S
d2naE i,

a


.

A spin network is a triplet , j l, in consisting of a graph  with nodes in , labeled by

intertwiners in, and links connecting different nodes, labeled by SU2 representations j l.

1.4.1.Classical point-free phase space
Definition 1.4.1.(1) The general linear group over Colombeau algebras , (the set of

real,complex Colombeau numbers) is the group of n  n invertible matrices of real

(complex) Colombeau numbers, and is denoted by GLn  ,GLn  or

GL n, ,GL n, .

(2) The unitary group of degree n over Colombeau algebra , denoted Un, or Un,
is

the group of n  n unitary matrices over .

(3) The unitary group is a subgroup of the general linear group GL n, .

(4) In the simple case n  1, the group Un, corresponds to the circle group T,
consisting of all Colombeau complex numbers with absolute value 1 under



multiplication,i.e. T  z   |z|  1 .

(5) The special unitary group of degree n, denoted SUn, is the Lie group of n  n

unitary matrices over Colombeau algebra  with determinant 1.

The Colombeau distributional manifold  over Colombeau algebra  having the

symmetry group

S with an isotropy subgroup F, can be decomposed as   /


S 


S/F.

The connection can generally be written as A  A
/

S, 

 A
S/F, 

. Then A
/

S, 

can be considered as the connection of the reduced theory and its holonomies along

curves in /

S can be quantized.For the spherically symmetric case,    


S
2
, and the

symmetry group is

S  SU2. This implies identifying /


S with  and the gauge group

of the reduced theory F with U1. Therefore, reduced connections are U1 gauge fields

on . Roughly speaking, spherical symmetry implies that our basic fields, in the
spherical coordinate x,,, are independent of angular variables. Thus, the
Colombeau generalized connection Ax is just a function of the radial coordinate;

A  Ax.These connections and triads of the reduced spherically symmetric
phase space have the general form:

A  Axx 3dx   A1x 1  A2x 2d  

A1,x2  A2,x1 sin  3cosd 
1.4. 5

and

E  E
xx3 sinx   E

1x1 

E
2x2 sin   E

1x2  E
2x1 

1.4. 6

correspondingly, where i   i
2 i are the generators of su2 algebra. They define the

Colombeau generalized symplectic structure:

 
1

2G  dxdAx,  dE
x  2dA1,  dE

1  2dA2,  dE
2


. 1.4. 7

However, a suitable canonical transformation can be made resulting in Colombeau
generalized canonical variables Axx, E

xx, K,x, E
x


 and

x, P
x:

 
1

2G  dxdAx  dE
x  dK,  dE

  2d  dP



, 1.4. 8

with K, being the  component of the extrinsic Colombeau generalized

curvature.The Gauss constraint, generating U1 gauge transformations, takes the form:

G   dxE
x  P





0

, 1.4. 9

where prime denotes differentiation with respect to x.
Note that in terms of these variables, conjugate pair is not simply the connection-flux

pair which suggests a different situation than the full theory.The Colombeau generalized
Hamiltonian constraint can be written as



HN   1
2G



 dxNx 1
|E

x |
1  ,

2  K,
2 E

  2
 K,E

xAx,     2E
x,





.
1.4. 10

1.4.2.Quantization
Along the standard lines of constructing basic operators and states in the kinematical

Hilbert space of classical LQG, we start with holonomies of the connections. Holonomies

of Ax, along curves  in are defined as h



 exp i

2 

Axx



which

are elements in U1  /

. For A, point holonomies expiA,x  are used

which belongs to the space of continuous almost periodic functions on the Bohr

compactification of real line  , and point holonomies of  

S
1
, have the form

expix  which are elements of U1.
The kinematical Hilbert space of the present reduced theory is the space spanned by

spin network state Tg,k,, :

Tg,k,, 

eg exp
i
2
ke 

e
dxAxx


Vg expi,K,expik


.

1.4. 11

For a given graph g, these are cylindrical functions of holonomies along edges e of g.

Vertices Vg of such spin networks are labeled by irreducible

Bohr representations

,   and irreducible

S
1
representation k  , while edges are labeled by

irreducible representations of U1.
Holonomies act on spin network states by multiplication. Their corresponding

momenta, on the other hand, act by differentiation

Ê
xxTg,k,, 

 
p2

2
kex  kexTg,k,,, 1.4. 12

 dxÊ
xTg,k,  p2v

,Tg,k,,, 1.4. 13

 dxP xTg,k,,  2p2v
k,Tg,k,,. 1.4. 14

The generalized volume operator can be expressed as

V  
 4 dx|Ê

x| |Ê
xx| 1.4. 15

which is diagonal in spin network representation

V Tg,k,, 
 Vk,m,Tg,k,,, 1.4. 16

where

Vk,m,  43/2p3 
|| 1

2
|kex  kex|


. 1.4. 17

Implementing the Gauss constraint as an operator on spin networks to select the
gauge invariant states, leads to a restriction on labels



ĜTg,k,, 
 p2 

kex  kex  2kTg,k,, 
1.4. 18

ĜTg,k, 
 0


 k   1

2
kex  kex. 1.4. 19

Imposing now this on (1.4.11) results in the gauge invariant states

Tg,k,, 

eg exp
i
2
ke 

e
dxAxx   


Vg expiK,


.

1.4. 20

1.5. Schwarzschild Black Hole
Remind that the Schwarzschild metric is a spherically symmetric solution to Einstein

equations describing the space-time of a source with mass m in coordinate system
x,, reads

ds2   1  2m
x dt2  1  2m

x
1
dx2  x2d2. 1.5. 1

Horizon x appear where g00  0:

x  2m  0. 1.5. 2

The event horizons partition space-time into 2 regions: I x  x, and II 0  x  x .
By inspecting the sign of g00, one observes that in region II, x and t interchange their
roles and becomes time-like and space-like respectively.

Classical point-like phase space variables
In region II, the metric of space-time takes the form

ds2   2m
t  1

1
dt2  2m

t  1 dx2  t2d2. 1.5. 3

According to definition of tetrad (frame) fields g  IJeI eJ , they can be determined
only up to a Lorentz transformation. This leaves us with an SO3,1 freedom in choosing
tetrad. In fact, given the metric g  IJeI eJ we are free to choose their sign and
Minkowski indices, which can be viewed as sort of a labeling 4 tetrad fields. However, in
order to serve as the fundamental fields for constructing the conjugate pair A,E, a
particular labeling must be chosen which will be clear below.The suitable choice for
labeling 4 orthogonal frame fields reads

e0   2m
t  1

1/2
dt ; e1  t sind;e2  td ;e3   2m

t  1
1/2
dx, 1.5. 4

which gives the compatible spin connection components

30  03   m
t2

dx ; 20  02  2m
t  1

1/2
d,

10  01  2m
t  1

1/2
sind ; 12  21  cosd.

1.5. 5

The A field can be constructed using spin connections:



A3    m
t2

dx,A2   2m
t  1

1/2
d,

A1   2m
t  1

1/2
sind,A3  cosd.

1.5. 6 To construct the

E field on in we choose a gauge in which e0  n, the normal vector field to the spatial
slice. This way we are in fact breaking the SO3,1 symmetry into SO3 on a
hypersurface with topology    S2. The 3 triad fields become:

e1  t sind ; e2  td ; e3   2m
t  1

1/2
dx, 1.5. 7

with determinant

dete  t2 sin 2m
t  1

1/2
, 1.5. 8

and inverse triad

e1   1
t sin

 ; e2   1
t  ; e3   2m

t  1
1/2

x, 1.5. 9

The E fields become

E1  t 2m
t  1

1/2
,E2  t 2m

t  1
1/2

sin,E3  t2 sinx. 1.5. 10

The 3 triad fields (1.5.7) define their compatible spin connection, ij  e j  de i  0 :

12  21  cosd, 1.5. 11

and

3  1
2 

31212  32121  cosd. 1.5. 12

Extrinsic curvature is related to A via K  A   reads

Kr
3  1

 Ar
3    m

t2
dx,K

2  1
 A

2   2m
t  1

1/2
, 1.5. 13

K
1  1

 A
1   2m

t  1
1/2

sin. 1.5. 14

Note that had we chosen other Minkowski indices for tetrad (1.5.4) we would not have
obtained the conjugate pairA,E with correct indices satisfying Aa

i x,E j
bx j 

jiabx  x .
The phase space variables are determined up to a sign freedom. By demanding E and

A to satisfy the diffeomorphism, Gauss and Hamiltonian constraints, their signs can be
fixed relative to each other. All components of diffeomorphism and Gauss constraints
are zero except

H  t 2m
t  1 cossgnA

1  sgnA
2A

3, 1.5. 15

G2  t 2m
t  1

1/2
cossignE2

  signA
3E1, 1.5. 16

and Hamiltonian constraint gives:

C  t 2m
t  1 sin2 signE2

  signE1
 . 1.5. 17

For the above constraints to be zero we must have

signE2
  signE1

, signA
3  1, signA

1  signA
2. 1.5. 18

This leaves us with two alternatives corresponding to the residual gauge freedom



b,pb  b,pb.

Aa
i  c3dr  b2d  cos3  b sin1d

E i
a  pc3 sinr  pb2 sin  pb1,

1.5. 19

and

Aa
i  c3dr  b2d  cos3  b sin1d

E i
a  pc3 sinr  pb2 sin  pb1,

1.5. 20

where,

b   2m
t  1

1/2
; c    m

t2
, 1.5. 21

pc  t2 ; pb  t 2m
t  1

1/2
. 1.5. 22

The momentum pc  t2 is a monotonic function and can be interpreted as an internal
time parameter (as is interpreted in [44] for the case of the Kantowski-Sachs
minisuperspace of Schwarzshild black hole).
Region I.
The analoguos calculations for region I with line element (1.5.1) leads to the folowing

phase space coordinates

Ãa
i  c3dr  b2d  cos3  bsin1d

E ia  p c3sinr  p b2sin  p b1,
1.5. 23

Ãa
i  c3dr  b2d  cos3  b sin1d

E ia  p c3 sinr  p b2 sin  p b1,
1.5. 24

where,

b   1  2m
x

1/2
; c   m

x2
;p c  x2 ; p b  x 1  2m

x
1/2
. 1.5. 25

This defines variables (1.4.5)-(1.4.6) introduced above in subsection 1.4 as

Ax  c ,Ex  p c;K  b , E  p b;   2n  1,P  0 1.5. 27

which constitute a 4 dimensional phase space.

1.6.Classical point-like Loop Quantum Gravity contradict
with a linear Colombeau geometry.
1.6.1.The point free quantum Schwarzschild geometry.
We remind that in accordance with a linear Colombeau geometry approach [30], the

Schwarzschild black hole,etc. has a distributional source  δx   3,see Eq. (1.1.8)
and Eq. (1.1.11). This result as well established and acceptet by scientific community as
physical reality [29]-[31].
Remark 1.6.1.However under local singularity resolution based on canonical LQG
approach [44], these distributional sources vanishes and we go bak to ubnormal and
mistaken results from classical handbooks, see for example [3],[4].Obviously this is a
contradiction. Thus by using canonical LQG approach we can not quantized the well
established classically distributional Schwarzschild black hole,etc.



Viewing LQG as a method to quantize connections, one would be able to impose a
symmetry through two avenues: (i) to pick, in the classical level, only those connections
which are invariant under symmetry group action and consequently reduce the phase
space, and (ii) to restrict the distributional states of the quantum theory, at the
kinematical level, only to invariant connection [42]-[45].
We will consider the simplest case of a spin network that is equispaced in normal

coordinates with lattice spacing   lPl.
Remind that under naive formal calculation the Kretschmann scalar curvature of the

Schwarzschild black hole reads [43]:

R rR r  48M2

t6
. 1.6. 1

Obviously (1.6.1) indicates that in this case the singularity of space-time lies at r  0
as well. The classical phase space variables calculated in subsect.1.5 c,pc used in this
section are given by Eq.(1.5.21)-Eq.(1.5.22) and therefore

b   2m
t  1

1/2
; c   m

t2
;pc  t2 ; pb  t 2m

t  1
1/2
. 1.6. 2

Let us consider the following quantity on the classical point-like phase space [43]:

 1
2G

c, |pc| 
sgnpc

|pc|
 1

t . 1.6. 3

Following the methods presented in [44], we expand now the holonomy along x
direction of    S2 with oriented length  as

hx  1   
0


dxc3  2, 1.6. 4

and rewrite as

 1
2G

tr 3hx
 hx1, |pc| . 1.6. 5

Now, quantization would be straightforward:

  1
2Pl

2 tr 3ĥx
 ĥx1, |p c|

 1
2Pl

2 cos c
2

|p c| sin c
2

 sin c
2

|p c| cos c
2

.
1.6. 6

Its action on |, which are the simplified version of the spin network states in this
reduced model (with  being the oriented length along the equator of S2), then becomes:

 |,  1
2  Pl

|  1|  |  1| |,. 1.6. 7

Such operator  |, has a bounded spectrum with maximum value of 2   Pl
1
.

Thus the Kretschmann scalar curvature, which is classically divergent, at quantum level
has a maximum value of [43]:

R rR r max
 48M2

r6 max
 48M2

36lPl
6 . 1.6. 8

Remark 1.6.2.Note that a quantity R r 
which is classically has a weak

distributional
limit, at quantum level obtained by canonical LQG has a maximum value of



R r max
 M2

lPl
5

max

. 1.6. 9

Thus lim0R r  0 since RHS of the Eq.(1.6.9) wanishes in the limit   0.

1.6.2.The point free quantum Schwarzschild geometry.
Classical point-free phase space variables
In region II, the Colombeau metric of point-free Schwarzschild space-time takes the

form

ds2   2m
t

 1
1

dt2 
2m
t

 1 dx2  t
2d

2, 1.6. 10

where clt   .According to definition of Colombeau tetrad (frame) fields
g,  IJe,I e,J 


, they can be determined only up to a Lorentz transformation. This

leaves us with an SO3,1 freedom in choosing tetrad. In fact, given the Colombeau
metric g,  IJe,I e,J 


we are free to choose their sign and Minkowski indices,

which can be viewed as sort of a labeling 4 tetrad fields. However, in order to serve as
the fundamental fields for constructing the conjugate pair A, E, a particular
labeling must be chosen which will be clear below.The suitable choice for labeling 4
orthogonal Colombeau generalized frame fields reads

e0   2m
t

 1
1/2

dt ; e
1  t sin d ;

e2  t d  ; e
3   2m

t
 1

1/2

dx ,

1.6. 11

which gives the compatible Colombeau generalized spin connection components


30  

03   m
t2 

dx  ;


20  

02 
2m
t

 1
1/2

d ,


10  

01 
2m
t

 1
1/2

sin d  ;


12  

21  cos d .

1.6. 12

The A field can be constructed using spin connections:

A
3    m

t2
dx , A

2   2m
t

 1
1/2

d ,

A
1   2m

t
 1

1/2

sin d , A
3  cos d .

1.6. 13

To construct Colombeau generalized field E on  we choose a gauge in which
e0  n, the normal vector field to the spatial slice. This way we are in fact breaking the

SO3,1 symmetry into SO3 on a hypersurface with topology   

S
2
. The



Colombeau generalized 3 triad fields become:

e1   t1/2 sin d  ; e
2  t d  ;

e3   2m
t

 1
1/2

dx ,
1.6. 14

with determinant

dete  t2 sin 
2m
t

 1
1/2

, 1.6. 15

and inverse triad

e1,   1
t sin 

   ; e2,   1
t 

   ;

e3,   2m
t

 1
1/2

x, .
1.6. 16

The E fields become

E1,  t 
2m
t

 1 1/2  ,

E2,  t 
2m
t

 1
1/2

sin   ,

E3,  t2 sin x, .

1.6. 17

The Colombeau generalized 3 triad fields (1.6.14) define their generalized compatible
spin connection, 

ij  ej

 dei   0


:


12  

21  cos d , 1.6. 18

and


3 

1
2
312

12  321
21  cos d . 1.6. 19

Extrinsic distributional curvature is related to A via K  A   reads

Kr,
3  

1
 Ar,

3     m
t2

dx ,

K,
2  

1
 A,

2    2m
t

 1
1/2

,

1.6. 20

K,
1 


 1

 A,
1 


  2m

t
 1

1/2

sin . 1.6. 21

Note that had we chosen other Minkowski indices for tetrad (1.6.11) we would not
have obtained the conjugate pairA,E with correct indices satisfying
Aa,

i x,E j
bx   jiabx  x .

The phase space variables are determined up to a sign freedom. By demanding E and
A to satisfy the diffeomorphism, Gauss and Hamiltonian constraints, their signs can be
fixed relative to each other. All components of diffeomorphism and Gauss constraints
are zero except



H,  t 
2m
t

 1 cos signA,
1    signA,

2 A,
3  , 1.6. 22

G2,  t 
2m
t

 1
1/2

cos  signE2,
    sign A

3 E
1 , 1.6. 23

and Hamiltonian constraint gives:

C  t 
2m

t 
 1 sin2 signE2,

    sign E1,
  . 1.6. 24

For the above constraints to be zero we must have

signE2,
    sign E1,

  ,

signA,
3    1, signA,

1    signA,
2  .

1.6. 25

This leaves us with two alternatives corresponding to the residual gauge freedom
b, pb,  b,pb,.

Aa,
i   c 3dr   b 2d  

cos 3  b sin 1d 

E i,
a   pc, 3sin r   

pb, 2sin     pb, 1  ,

1.6. 26

and

Aa,
i   c 3dr   b 2d  

cos 3  b sin 1d

E i,
a   pc, 3sin r    pc, 2sin    

pb, 1  ,

1.6. 27

where,

b   2m
t

 1
1/2

; c   m
t2 

, 1.6. 28

pc,  t2 ; pb,  t 
2m
t

 1
1/2

. 1.6. 29

The momentum pc,  t2 is a monotonic generalized function on  and can be

interpreted as an internal generalized time parameter.
Region I.
The analoguos calculations for region I with Colombeau generalized line element

(1.6.10) leads to the folowing phase space coordinates

Ãa,
i 


 c  3dr   b  

2d  

cos 3  b  
sin 1d ,

E i,a   p c, 3sin r   

p b, 2sin     p b, 1  ,

1.6. 30



Ãa,
i 


 c  3dr   b  

2d  

cos 3  b  
sin 1d ,

E i,a   p c, 3sin r   

p b, 2sin     p b, 1  ,

1.6. 31

where,

b  
  1  2m

x

1/2

; c    m
x2 

; p c,  x2;

p b   x  1  2m
x

1/2

.

1.6. 32

This defines variables (1.4.5)-(1.4.6) introduced above as

Ax,  c , E
x   p c,;K,  b  

,

E



 p b,;   2n  1, P

   0


1.6. 33

which constitute a 4 dimensional phase space.
Let us consider the following quantity on the point-free phase space mentioned above

  
1

2G
c , |pc,|  

signpc, 

|pc,| 
 1

t 
. 1.6. 33

Following the canonical methods presented in [44], we expand now the holonomy
along x

direction of   

S
2
with oriented generalized length  as

hx,



 1   

0


dxc3


  2, 1.6. 34

and rewrite   as

  
1

2G
tr 3 hx,




hx,
1


, |pc,|  . 1.6. 35

Now, quantization would be straightforward:

   
1

2Pl
2 tr 3


h x,





h x,
1


, |p c,| 

 1
2Pl

2 cos c
2 

|p c,| 
sin c

2 


sin c
2 

|p c,| 
cos c

2 
.

1.6. 36

Its action on |,   which are the simplified version of the spin network states in

this reduced model (with  being the oriented length along the equator of

S
2
), then

becomes:

  |,  
1

2  Pl
|  1|  |  1| |,  . 1.6. 37

Such operator   |,  has a bounded spectrum with maximum value of

2   Pl
1
.



Remark 1.6.3.Thus the Colombeau generalized Kretschmann scalar curvature

R tR ,t 
, which is classically has infinite large point value  cl6   

(see Eq.(1.1.18)), at quantum level has a maximum value of :

cl R tR ,t  max


M2

clt6  max



st M2

clt6  max

 M2

36lPl
6 .

1.6. 38

Remark 1.6.4. Note that the Colombeau generalized curvature scalar R t 

obtained at quantum level by point-free LQG by using similarly calculation as it has
been
applied above, has nonzero maximum value

R t  max
 M

lPl
3

max

. 1.6. 39

Remark 1.6.5. We emphasize that in contrast with trivial (zero valued) result obtained
at quantum level for Colombeau generalized curvature scalar R t 

by using

canonical LQG, see Remark 1.6.2, Colombeau generalized curvature scalar R t 

obtained at quantum level by point-free LQG has nonzero maximum value given by
Eq.(1.6.39).

.

1.7.Generalized Stokes’ theorem.

1.7.1.The Colombeau generalized curvilinear coordinates.
Let us consider now the Colombeau generalized transformation from one generalized

coordinate system, x0, x
1, x

2, x
3, to another generalized coordinate system

x0, x
1, x

2, x
3 : transform according to the relation

xi   fix0,x1,x2,x3

, 1.7. 1

where the fi

are certain Colombeau generalized functions and where

Jx 0,x 1,x 2,x 3

Jx0,x1,x2,x3 
x0,x1,x2,x3
x0,x1,x2,x3 

 0


1.7. 2

is the Jacobian of the Colombeau generalized transformation (1.7.1).
Remark 1.7.1.When we transform the coordinates, their Colombeau differentials

dxi 
transform according to the relation

dxi  
xi

xk
dxk



 xi

xk 

dxk. 1.7. 3

Definition 1.7.1.Every tuple of four Colombeau quantities A
i , i  0,1, 2,3, which

under
a transformation (1.7.1) of coordinates, transform like the Colombeau coordinate



differentials (1.7.2), is called Colombeau contravariant four-vector:

A
i  

xi

xk
A
k



 xi

xk 

A
k. 1.7. 4

Let  be the Colombeau scalar. Under a coordinate transformation (1.7.1), the four

Colombeau quantities


xi 

, i  0,1, 2,3 transform according to the formula



xi 




xk
xk

xi 




xk 

xk

xi 

. 1.7. 5

Definition 1.7.2.Every tuple of four Colombeau generalized functions A i, which,
under
a coordinate transformation (1.7.1), transform like the Colombeau derivatives of a

scalar,
is called Colombeau generalized covariant four-vector

A i, 
xk

xi
Ak,




 xk

xi 

Ak,
 . 1.7. 6

Definition 1.7.3.We call the Colombeau generalized contravariant tensor of the
second
rank, A

ik,any tuple of sixteen Colombeau generalized functions which transform like

the
products of the components of two Colombeau generalized contravariant vectors, i.e.
according to the law

A
ik 

xk

xi
xm

xi
A im,




 xk

xi
xm

xi 

A im,
  1.7. 7

and a mixed Colombeau generalized tensor transforms as follows

Ak,
i  

xi

xl
xm

xk
Am,
l



 xi

xl
xm

xk 

Am,
l . 1.7. 8

Remark 1.7.2.Note that the scalar product of two four-vectors A
iB i, is invariant

since

A
iB i, 

xi

xl
xm

xi
A
lBm,





 xm

xl
A
lBm,





 A
lB l,

 . 1.7. 9

The unit four-tensor k
i is defined the same as in classical case: k

i  0 for i  k and
k
i  1 for i  k. If A

k is a Colombeau generalized four-vector,then multiplying by k
i

we
obtain

A
kk

i   A
i , 1.7. 10

i.e. again Colombeau generalized four-vector; this proves that k
i is a tensor.

Remark 1.7.3.The square of the Colombeau generalized line element ds2 in

curvilinear
coordinates is a quadratic form in the differentials dx i, i  0,1, 2,3 :

ds2  gik,dx idxk  gik, dx
idxk. 1.7. 11

where the gik, are Colombeau generalized functions of the coordinates; gik, is
symmetric in the indices i and k :



gik,  gki,. 1.7. 12

Definition 1.7.4.Since the (contracted) product of gik, and the contravariant tensor
dx idxkis a scalar, the gik, form a covariant tensor; it is called the Colombeau
generalized metric tensor.
Definition 1.7.5.Two tensors A ik, and B

ik are said to be reciprocal to each other

if

A ik,B
ik  A ik,  B

ik  k
i . 1.7. 13

In particular the contravariant metric tensor is the tensor gik,reciprocal to the tensor
gik ,that is,

gik, gik  k
i . 1.7. 14

The same physical quantity can be represented in contravariant or covariant
components.
It is obvious that the only quantities that can determine the connection between the
different forms are the components of the metric tensor. This connection is given by

the
formulas:

A
i   gikAk,, A i,  gik,A

k . 1.7. 15

These remarks also apply to Colombeau generalized tensors. The transition between
the
different forms of a given physical generalized tensor is accomplished by using the

metric
tensor according to the formulas:

Ak,
i   gilA lk,, A

ik  gilgkmA lm,,etc. 1.7. 16

The completely antisymmetric unit pseudotensor in galilean coordinates we denote by
e iklm.Let us transform it to an arbitrary system of Colombeau generalized coordinates,

and now denote it by E
iklm. We keep the notation e iklm for the quantities defined as

before by
e0123  1 (or e0123  1).Let the x i, i  0,1, 2,3 be galilean, and the xi , i  0,1, 2,3 be

arbitrary Colombeau generalized curvilinear coordinates. According to the general rules
for transformation of Colombeau generalized tensors, we have

E
iklm 

xi

x p
xk

x r
xl

x s
xm

x t 
eprst, 1.7. 17

or

E
iklm  Jx 0,x 1,x 2,x 3e

prst, 1.7. 18

where Jx 0,x 1,x 2,x 3  0

is the determinant formed from the derivatives x i/x p,

i.e. it is just the Colombeau generalized Jacobian of the Colombeau generalized
transformation from the galilean to the Colombeau generalized curvilinear coordinates:

Jx 0,x 1,x 2,x 3 
x0,x1,x2,x3
x 0,x 1,x 2,x 3 

. 1.7. 19

This Colombeau generalized Jacobian can be expressed in terms of the determinant



of the Colombeau generalized metric tensor gik, (in the system xi ). To do this we

write the formula for the transformation of the metric tensor:

gik 
xi

x i
xk

x m 
g0im, 1.7. 20

where

g0im  gim
0 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

, 1.7. 21

and equate the determinants of the two sides of this equation. The determinant of the

reciprocal tensor det gik  1/g. The determinant det|g0im| 1. Thus we have

1/g  J
2x 0,x 1,x 2,x 3


, and so

J2x 0,x 1,x 2,x 3  1/ g . 1.7. 22

Thus, in curvilinear coordinates the antisymmetric unit tensor of rank four must
bedefined as

E
iklm 

1
g

e iklm 1.7. 23

and its covariant components are

E iklm,  g e iklm. 1.7. 24

In a galilean coordinate system x i, i  0,1, 2,3 the integral of a scalar with respect to
d   dx 0dx 1dx 2dx 3 is also a scalar, i.e. the element d  behaves like a scalar in the

integration. On transforming to Colombeau generalized curvilinear coordinates
xi , i  0,1, 2,3, the element of integration d  goes over into

d  : J1 d  g d, 1.7. 25

where d  dx0dx
1dx

2dx
3.

Thus, in Colombeau generalized curvilinear coordinates, when integrating over a
four-volume the quantity g d behaves like an invariant.

Remark 1.7.4.The element of "area" of the Colombeau generalized hypersurface
spanned
by three infinitesimal Colombeau generalized displacements is the contravariant
antisymmetric Colombeau generalized tensor dSikl; the vector dual to it is gotten by

multiplying by the tensor g e iklm, so it is equal to

g dS,i   1
6 g e iklmdS

kim. 1.7. 26

Remark 1.7.5.Let dfikbe the element of two-dimensional Colombeau generalized

surface spanned by two infinitesimal Colombeau generalized displacements, the dual
Colombeau generalized tensor is defined as



g df ik,



 1

2
g e iklm dflm


. 1.7. 27

We will be use the designations dS,i and dfki,



for e iklmdSkim and e iklm dflm



(and
not for their products by g ).

1.7.2.Generalized Stokes’ theorem.

Remark 1.7.6.Note that the canonical rules for transforming the various integrals into
one
another remain the same, since their derivation was formal in character and not

related to
the tensor properties of the different quantities. Of particular importance is the rule for
transforming the integral over a hypersurface into an integral over a four-volume

(Gauss’
theorem), which is accomplished by the substitution

dSi, : d 

xi 

. 1.7. 28

Remark 1.7.7. (Generalized Stokes’ theorem) Note that for the integral of Colombeau
generalized vector A

i  we have

 A
i dSi,


  A

i

xi
d



  A
i

xi 

d . 1.7. 29

which is the generalization of Stokes’ theorem.
Note that in galilean coordinates the Colombeau generalized differentials dA i, of a

vector A i, form the Colombeau generalized vector, and the derivatives A i,/xk  of
the components of a vector with respect to the coordinates form the Colombeau
generalized tensor. In Colombeau generalized curvilinear coordinates this is not so;
dA i, is not a vector, and A i,/xk  is not the Colombeau generalized tensor.This is

due to the fact that dA i, is the difference of vectors located at different (infinitesimally
separated) points of space; at different points in space vectors transform differently,
since the coefficients in the transformation formulas (1.7.3), (1.7.4) are Colombeau
generalized functions of the generalized coordinates.Thus in order to compare two
infmitesimally separated generalized vectors we must subject one of them to a parallel
translation to the point where the second is located. Let us consider an arbitrary
generalized contravariant vector ; if its value at the point x i is A

i , then at the

neighboring point x i  dx i it is equal to A
i   dA

i   A
i  dA

i . We subject the

vector A
i  to an infinitesimal parallel displacement to the point x i  dx i; the change in

the vector which results from this we denote by A
i  Then the difference DA

i 
between the two Colombeau generalized vectors which are now located at the same
point is

DA
i   dA

i   A
i . 1.7. 30

The change A
i in the components of Colombeau generalized vector under an

infinitesimal parallel displacement depends on the values of the components



themselves, where the dependence must clearly be linear. This follows directly from the
fact that the sum of two Colombeau generalized vectors must transform according to the
same law as each of the constituents. Thus A

i  has the form

A
i   kl,

i A
kdx l, 1.7. 31

where kl,
i  the are certain Colombeau generalized functions of the coordinates. Their

form depends, of course, on the coordinate system; for a galilean coordinate system
kl,

i   0

.From this it is already clear that the quantities kl,

i  do not form

Colombeau generalized tensor, since a tensor which is equal to zero in one coordinate
system is equal to zero in every other one. In a curvilinear space it is, of course,
impossible to make all the kl,

i  vanish over all of space. But we can choose a

coordinate system for which the kl,
i become 0


over a given infinitesimal region. The

quantities kl,
i , are called generalized Christoffel symbols. In addition to the quantities

kl,
i  we shall later also use Colombeau generalized quantities i,kl, defined as

follows

i,kl,  gim,km,
m . 1.7. 32

Conversely,

kl,
i   gimm,kl,. 1.7. 33

It is also easy to relate the change in the components of a covariant vector under a
parallel displacement to the Christoffel symbols. To do this we note that under a parallel
displacement, a scalar is unchanged. In particular, the scalar product of two vectors
does not change under a parallel displacement.Let A i, and B

i  be any covariant

and contravariant vectors. Then from A i,B
i   0


, we have

B
i A i,  A i,B

i   kl,
i B

kA i,dx l 1.7. 34

or, changing the indices,

B
i A i,  il,

k B
iAk,dx l 1.7. 35

From this, by the arbitrariness of the B
i  one obtains

A i,  il,
k Ak, dx l 1.7. 36

which determines the change in a covariant vector under a parallel displacement.
Substituting (1.7.31) and dA

i   A
i /x ldx l in (1.7.30), we obtain

DA
i  

A
i

x l 
 kl,

i A
k  dx l. 1.7. 37

.

1.8.The Colombeau Generalized Curvature Tensor.

Remark 1.8.1. (i) Note that the notion of the classical Rimannian curvature comes
from
the study of parallel transport on a classical Rimannian manifold M,g,see Fig.1.8.1.

For
instance, if a vector is moved around a loop  on the surface   M of a sphere

keeping



parallel throughout the motion,then the final position of the vector may not be the
same as
the initial position of the vector. This phenomenon is known as holonomy.

(ii) Various generalizations capture in an abstract form this idea of curvature as a

measure of holonomy.

Fig.1.8.1.Parallel transporting a vector from

A  N  B  A yields a different vector.

This failure to return to the initial vector

is measured by the classical holonomy of the

surface  spanning by .

Remark 1.8.2.Let M,g be a semirimannian manifold.Let x 0 be infinitesimal closed
contour and let   M be the corresponding surface spanning by ,see Fig.1.8.1. We
assume now that christoffel symbols kl

i x  are smooth on   .The classical formula
for the change in a smooth vector A ix  after parallel displacement around infinitesimal
closed contour  reads [4]:

Ak  


Ak  


kl
i x Akdx l. 1.8. 1

We remind now the classical Stokes’ theorem.
Theorem.1.8.1.(Stokes’ theorem) If ω is a smooth n  1-form with compact support
on smooth n-dimensional manifold  with-boundary Ω of  given the induced
orientation, and i : Ω  Ω is the inclusion map, then


Ω

dω  
Ω

iω. 1.8. 2

Remark 1.8.2.Conventionally, 
Ω

iω is abbreviated as 
Ω

ω, since the pullback of a

differential form by the inclusion map is simply its restriction to its domain iω  ω|Ω
Here d is the exterior derivative, which is defined using the manifold structure only.

The

right-hand side is sometimes written as 
Ω

 ω to stress the fact that the n  1-manifold

Ω
has no boundary.



For the further transformation of the integral (1.8.1), we must note the following. The
values of the vector A i at points inside the contour are not unique; they depend on the
path along which we approach the particular point. However, as we shall see from the
result obtained below, this non-uniqueness is related to terms of second order. We may
therefore, with the first-order accuracy which is sufficient for the transformation, regard
the components of the vector A i at points inside the infinitesimal contour  as being
uniquely determined by their values on the contour itself by the formulas

A ix  il
nxAnxdx l, 1.8. 3

i.e.,by the derivatives

A ix
x l

 il
nxAnx. 1.8. 4

Now applying classical Stokes’ theorem (see Theorem 1.8.1) to the integral (1.8.1)

and considering that the area enclosed by the contour has the infinitesimal value
f im,we get:

Ak  1
2

km
i xA ix
x l


kl

i xA ix
xm f im 

 1
2

A ix
km

i x
x l 

 A ix
kl

i x
xm 

A ix
x l

km
i x  A ix

xm kl
i x f im.

1.8. 5

Remark 1.8.3.Note that:(i) the regularity condition in Stokes’ theorem,i.e. ω is a
smooth n  1-form, essentially important and without this condition the

Stokes theorem is no longer holds. However in physical literature the regularity condition

usually missing in formulation of the Stokes’ theorem, see for example [4].
(ii) Obviously without Stokes’ theorem impossible to derive the Eq.(1.8.5) and

therefore
the expression in the RHS of the Eq.(1.8.5) wihout the regularity condition of the

functions
km
n x, does not make any rigorous mathematical sense, i.e. the Eq.(1.8.5) becomes

to
absurdum.
Substituting now the values of the derivatives (1.8.4) into Eq.(1.8.5), we get

Ak  1
2
Rklm
i xA ixf im, 1.8. 6

where Rklm
i x is a tensor field of the fourth rank:

Rklm
i x 

km
i x
x l


kl

i x
xm  ni

i xkm
n x  nm

i xkl
n x. 1.8. 7

Definition 1.8.1.The tensor field Rkim
l x is called the classical curvature tensor or the

classical Riemann tensor.
The classical Riemann tensor that is a tensorial measure of the classical holonomy.

Definition 1.8.2.Let M,g be a nonclassical semirimannian manifold,i.e.the manifold
endowed on the tangent bundle with a symmetric bilinear form which is allowed to
become degenerate (singular).Let   M be the surface spanning by  and let x 0 be



a
point such that x 0  ,x 0  .Assume that the classical Levi-Civitá connection is
available on \x 0.
(i) We will say that x 0 is a singular point if the classical Levi-Civitá connection is not
available on x 0, see Fig.1.8.2.
(ii) We will say that a surface  is a singular surface if  contains at least one

singular
point, see Fig.1.8.2.
(iii) We will say that the surface  admit the classical tensorial measure of holonomy

(or admit the classical Riemann tensor) iff the Eq.(1.8.6) and Eq.(1.8.7) holds.

Fig.1.8.2.Infinitesimal closed contour 

and corresponding singular surface   x 0

spanning by .

Due to the degeneracy of the metric (1.10.12)

at r  2m, r  0,

the classical Levi-Civitá connection kj
l 

 1
2
glmgmk,j  gmj,k  gkj,m

is available only on 
3 \r  2m, r  0 .



Fig.1.8.3.Infinitesimal closed contour 

and corresponding singular surface   x 0

with singular point x 0 (Rindler horizon)

in Rindler space-time:

ds2  R2d2  dR2.

Remark 1.8.4.Obviously the surface  admit the classical tensorial measure of

holonomy if there is no singular points x 0  .Thus in order to avoid difficultness
which
arises from singular points one needs to replaces the definition of holonomy (1.8.1) by

the
definition aproporiate for the case of the singular surfaces
Remark 1.8.5.Let M be a separable, smooth orientable Hausdorff manifold of

dimension
n endoved with Colombeau generalized metric tensor gi,j,x ij   0

2M whose

determinant detgij, is invertible in M, see subsection 2.1 and [15],[16],[17],[35].

Remark 1.8.6.(i) Let M,gi,j,0x  be a semirimannian manifold endoved with -valued

metric tensor defined by the formula: gi,j,0x   gi,j,x ij  0
.

(ii) We assume now that M,gi,j,0x  is a nonclassical semirimannian manifold,i.e.the
manifold endowed on the tangent bundle with a symmetric bilinear form which is

allowed
to become degenerate (singular).

Example 1.8.1.For instance the christoffel symbols kl,0
i x,x 0 corresponding to the

metric
tensor gi,j,0x  become infinite at some singular point x 0 by formulae

kl,0
i x,x 0  klx x i  x i0

,  1

klx   C 
x0

.
1.8. 8

It follows from Eq.(1.8.8) the Levi-Civitá connection is not available at point x 0.
Let x 0  x 0 be infinitesimal closed contour and let 

x0
 M be the corresponding

surface
spanning by x 0 , see Fig.1.8.4.



Fig.1.8.4. Singular point at BH horizon

r  2m and corresponding singular countur.

Fig.1.8.4. Singular point at Rindler horizon

ds2  R2d2  dR2.

Remark 1.8.7.The classical formula (1.8.1) for the change in a smooth vector A ix 
after
parallel displacement around infinitesimal closed contour x 0 (see Fig.1.8.2)
reads:

Akx 0   

x0

Ak  

x0

kl
i x,x 0Akdx l. 1.8. 9

Obviously the differential form kl
i x Akdx l is not locally integrable in neighborhood of

the point x 0   and therefore Akx 0   .
Remark 1.8.8.In order to avoid these difficultness with divergence Akx 0   ,etc.

we
consider the canonical imbedding M,gi,j,0x   M, gi,j,x ,and we extend now

the
classical formula (1.8.1) from a nonclassical semirimannian manifold M,gi,j,0x  up to
Colombeau manifold M, detgij, in natural way and obtain the formula for the

Colombeau generalized change in a vector after parallel displacement around any

infinitesimal closed contour . This generalized change Ak,   can clearly be



written
in the following form

Ak,  

x0

Ak,



, 1.8. 10

where the Colombeau integral is taken over the given contour x 0 .
Definition 1.8.3.(i) Let M, g be the Colombeau generalized semirimannian

manifold,
and let x 0 be infinitesimal closed contour such that x 0  x 0  M.Let x 0 be a

closed
infinitesimal neighborhood of x 0, then we we abbreviate x 0  x 0  x 0.We will be

say
that a point x 0  x 0 is a singular pont of the Colombeau generalized manifold

M, g if

Ak,x 0 \x
0  inf  \fin and Akx 0 \x 0   , i.e. the quantity

Ak,x 0 \x
0

is infinite large Colombeau generalized number and the quantity Akx 0 \x 0  is finite.
(ii) We will be say that a closed contour is a singular contour x 0 if it contains at least

one
singular pont x 0  x 0 , see Fig.1.8.2.-Fig.1.8.3.
Definition 1.8.4.(i) We will be say that a semirimannian manifold is a singular

manifold
if there exists at least one singular (isolated) pont x 0  M.
Substituting now in place of Ak,the expression (1.7.36), we get

Ak,x,x 0  

kl,
i x,x 0A ix dx l


 , 1.8. 11

where for any i,k, l  0,1, 2,3 : kl,
i x, ,x 0  4,x  x  x0,x1,x2,x3, A ix  G

and where x 0  , x 0    G  4. Note that the vector A i which appears in the
integrand obviously changes as we move along the contour .
Definition 1.8.5.We will be say that generalized change Ak,x,x 0 exists in the

sense
of the Schwartz distributions with compact support if for any A ix   G the limit:
lim0Ak,x,x 0 exists in G, i.e. for any gx   G,where x  G the following

limit
exists

lim0Ak,x,x 0  lim0 d4y 

kl,
i x,x 0A ix gx dx l 1.8. 12

Of course in this case obviously cl kl,
i x,x 0   G  4 where  is an

imbedding the Schwartz distributions G into the full Colombeau algebra 4 :
 : G  4.
For the further transformation of this Colombeau integral (1.8.11), we must note the

following. The values of the vector A i at points inside the contour are not unique; they
depend on the path along which we approach the particular point. However, as we shall
see from the result obtained below, this non-uniqueness is related to terms of second
order. We may therefore, with the first-order accuracy which is sufficient for the



transformation, regard the components of the vector A i, at points inside the
infinitesimal contour  as being uniquely determined by their values on the contour itself
by the formulas

A i,x   il,
n x,x 0An,x dx l, 1.8. 13

i.e., by the Colombeau derivatives

A i,x 
x l 

 il,
n x,x 0An,x . 1.8. 14

Now applying generalized Stokes’ theorem (see Theorem 1.8.2 below) to the
Colombeau integral (1.8.11) and considering that the area enclosed by the contour has
the infinitesimal value fim, we get:

Ak, 

1
2

km,
i x,x 0A ix 

x l 


kl,

i x,x 0A ix 
xm



fim

 1
2

A ix 
km,

i x,x 0
x l 

 A ix 
kl,

i x,x 0
xm





A ix 
x l

km,
i x,x 0 

A ix 
xm kl,

i x,x 0 fim.

1.8. 15

Definition 1.8.6.Colombeau generalized k-form ω on a differentiable manifold M is
a
smooth section of the bundle of alternating Colombeau generalized k-tensors on M.
Equivalently, ω associates to each x  M an alternating Colombeau generalized
k-tensor ωx,, in such a way that in any chart for M, the coefficientsωi1...ik, are
Colombeau generalized functions.
Theorem 1.8.2.(Generalized Stokes’ Theorem) Let ω be Colombeau generalized
differential form.Then the Colombeau integral of a differential form ω over the
boundary of some orientable manifold   M is equal to the integral of its exterior
Colombeau derivative dω over the whole of , i.e.,




ω  


ω



 


dω



 


dω. 1.8. 16

Proof. Immediately from the classical Stokes’ Theorem and definitions.
Example 1.8.2. For example, for the integral of Colombeau generalized vector

A i,x
we have




A i,dx i



 


df ki
A i,

xk


 1
2  dfki



Ak,

x i
 A i,

xk 


1
2  dfki



Ak,

x i
 A i,

xk 
 1

2  dfki


Ak,

x i 
 A i,

xk 
,

1.8. 17

where    and dfki

 dxi dxk  dx

kdxi is the infinitesimal element of

surface which is given by the antisymmetric Colombeau generalized tensor of second



rank dfki

.

Substituting the values of the derivatives (1.4.3) into Eq.(1.4.4), we get

Ak, 
1
2
Rklm,

i xA i,xfim, 1.8. 18

where Rklm,
i x,x 0 is a Colombeau generalized tensor field of the fourth rank:

Rklm,
i x,x 0 

km,
i x,x 0
x l 


kl,

i x,x 0
xm





ni,
i x,x 0km,

n x,x 0  nm,
i x,x 0kl,

n x,x 0.

1.8. 19

Definition 1.8.7.The tensor field Rkim,
l x,x 0 is called the distributional curvature

tensor
or the distributional Riemann tensor.
Remark 1.8.9.Note that in general case for any i,k, l  0,1, 2,3 :

cl Rklm,
i x  4.

Definition 1.8.8.We will say that the distributional Riemann tensor Rklm,
i x,x 0exists

in
the sense of the Schwartz distributions if for any i,k, l  0,1, 2,3 and for any

A ix  G
the limit exists

lim0 
G
Rklm,
i x,x 0A ixd4x. 1.8. 20

Definition 1.8.9.We will say that the distributional Riemann tensor Rklm,
i x,x 0exists

in
the classical sense at point x  4 if there exists standard part of point value of
Colombeau generalized function Rklm,

i x,x 0 at point x  
4, i.e.

st cl Rklm,
i x,x 0  .

From the expression (1.8.19) it follows directly that x   the distributional curvature
tensor is antisymmetric in the indices l and m :

Rklm,
i x,x 0   Rkml,

i x,x 0 1.8. 21

and therefore for any Colombeau generalized vector x   fin

4
the following identity

holds

Rklm,
i x ,x 0   Rkml,

i x ,x 0. 1.8. 22

Obviously the following identity holds

Rkim,
l x,x 0  Rmkl,

i x,x 0  R lmk,
i x,x 0  0


1.8. 23

and therefore for any Colombeau generalized vector x   fin

4
the following identity

holds

Rkim,
l x ,x 0  Rmkl,

i x ,x 0  R lmk,
i x ,x 0  0


1.8. 24

In addition to the mixed distributional curvature tensor Rklm,
i x,x 0, one also uses

the covariant distributional curvature tensor

R iklm,x,x 0  gin,x,x 0Rklm,
n x,x 0  gin,x,x 0 Rklm,

n x,x 0 1.8. 25



and therefore for any Colombeau generalized vector x   fin

4
the following identity

holds

R iklm,x ,x 0  gin,x ,x 0Rklm,
n x ,x 0 

gin,x ,x 0 Rklm,
n x ,x 0

1.8. 26

Obviously by means of simple calculation the following expressions for R iklm,x,x 0
holds

R iklm,x,x 0 

1
2

2gim,x,x 0
xkx l 


2gkl,x,x 0
x ixm 


2gil,x,x 0
xkxm 




2gkm,x,x 0

x ix l 



gnp,x,x 0 kl,
n x,x 0im,

p x,x 0  km,
n x,x 0il,

p x,x 0

1.8. 27

and therefore for any Colombeau generalized vector x   fin

4
the following identity

holds

R iklm,x ,x 0 

1
2

2gim,x ,x 0
xkx l 


2gkl,x ,x 0

x ixm 


2gil,x ,x 0

xkxm 


2gkm,x ,x 0

x ix l 



gnp,x ,x 0 kl,
n x ,x 0im,

p x ,x 0  km,
n x ,x 0il,

p x ,x 0

1.8. 28

From this expressions (1.8.28) it follows

R iklm,x ,x 0   Rkilm,x ,x 0   R ikml,x ,x 0,

R iklm,x ,x 0  R lmik,x ,x 0.
1.8. 28

For R iklm,x ,x 0 and for any Colombeau generalized vector x   fin

4
the following

identities holds

R iklm,x ,x 0  R lmik,x ,x 0. 1.8. 29

For R iklm,x ,x 0 the following identities holds

R iklm,x ,x 0  R imkl,x ,x 0  R ilmk,x ,x 0  0


1.8. 30

The generalized Bianchi identity holds

R ikl;m,
n x,x 0  R imk;l,

n x,x 0  R ilm;k,x,x 0  0


1.8. 31

and for any Colombeau generalized vector x   fin

4
the following identities holds

R ikl;m,
n x ,x 0  R imk;l,

n x ,x 0  R ilm;k,x ,x 0  0

. 1.8. 32

From the Colombeau generalized curvature tensor we can, by contraction, construct
Colombeau generalized tensor of the second rank. This contraction can be carried out in
only one way: contraction of the Colombeau generalized tensorR iklm,x ,x 0 on the



indices i and k or l and m gives zero because of the antisymmetry in these indices, while
contraction on any other pair always gives the same result, except for sign. We define
the Colombeau generalized tensor R ik,x ,x 0 (the generalized Ricci tensor) as

R ik,x ,x 0  glmR ilmk,x ,x 0  R ilk,
l x ,x 0. 1.8. 33

From Eq.(1.8.19) we get

R ik,x ,x 0 
ik,

l x ,x 0
x l 


il,

l x ,x 0
xm





ik,
l x ,x 0lm,

m x,x 0  il,
m x ,x 0km,

l x ,x 0.

1.8. 33

This Colombeau generalized tensor R ik,x ,x 0 is symmetric:

R ik,x ,x 0  Rki,x ,x 0. 1.8. 34

Сontracting R ik,x ,x 0 ,we obtain the invariant

Rx ,x 0  gikx ,x 0R ik,x ,x 0 1.8. 35

which is called the Colombeau generalized scalar curvature.Finally, contracting
R ik,x ,x 0,we obtain the invariant

Rx ,x 0  gikx ,x 0R ik,x ,x 0 1.8. 36

which is the point value at point x   fin

4
of the Colombeau generalized scalar

curvature Rx,x 0.We remind that the point value at point x   fin

4
of the

Colombeau generalized scalar curvature Rx ,x 0 is clRx ,x
0   .

1.9.Generalized Einstein’s field equations

The action functional for the gravitational field reads [37]:

 R g d

. 1.9. 1

The invariant Colombeau integral (1.9.1) can be transformed by means of
Gauss’theorem to the integral of an expression not containing the second derivatives.
Thus Colombeau integral (1.9.1) can be presented in the following form

 R g d

 G g d


   g w

i

x i
d



, 1.9. 2

where G contains only the tensor gik, and its first derivatives, and the integrand of
the second integral has the form of a divergence of a certain quantity w

i .According to

Gauss’ theorem, this second integral can be transformed into an integral over a
hypersurface surrounding the four-volume over which the integration is carried out in the
other two integrals. When we vary the action, the variation of the second term on the
right vanishes, since in the principle of least action, the variations of the field at the limits
of the region of integration are zero. Consequently, we may write

  R g d

   R g d


  G g d


. 1.9. 3



The left side is Colombeau scalar; therefore the expression on the right is also

Colombeau scalar (the quantity G itself is, of course, not Colombeau scalar). The
quantity G satisfies the condition imposed above, since it contains only the gik,
and its Colombeau derivatives. Thus finally we obtain

Sg    c3
16

 G g d

  c3

16k
  R g d


. 1.9. 4

The constant  is called the gravitational constant. The dimensions of  follow from
(1.9.4). Its numerical value is   6.67  108sm3 gr1  sec2.
We now proceed to the derivation of the equations of the gravitational field. These

equations are obtained from the principle of least action Sm,  Sg   0

, where

Sm, and Sg are the distributional actions of the gravitational field and matter

respectively. We now subject the gravitational Colombeau metric field, that is,the
quantities gik, to variation. Calculating the variation Sg , we get

  R g d

   R g d


   gikR ik, g d




 R ik, g gikd

  R ik,gik g d


  gik g R ik,d



 R ik, g gik 
 R ik,gik g


 gik g R ik,


d.

1.9. 5

Thus, the variation Sg  is equal to

Sg    c3
16  R ik,  1

2
gik,R g gikd


. 1.9. 10

Remark 1.9.1.We note that if we had started from the expression

Sgg    c3
16

 G g d


1.9. 11

for the action of the field, then we get

Sg  

 c3
16  gikd

 G g
gik



 
x l

 G g

 g
ik

x l 

.
1.9. 12

Comparing Eq.(1.9.12) with Eq.(1.9.10), we get

R ik, 
1
2
gik,R 

1
g



 G g
gik



 
x l

 G g

 g
ik

x l 

.
. 1.9. 13

For the variation of the action of the matter we can write

Sm, 
1
2c  Tik, g gikd


, 1.9. 14

where Tik,  4 is the generalized energy-momentum tensor of the matter



fields.
Thus, from the principle of least action

Sg   Sm,  0


1.9. 15

one obtains

 c3
16  R ik,  1

2
gik,R  8

c4
Tik, g gikd


 0


. 1.9. 16

From Eq.(1.9.16), since of the arbitrariness of the gik  4 finally we get

R ik, 
1
2
gik,R 

8
c4

Tik, 1.9. 17

or, in mixed components,

R i,
k  

1
2
ikR 

8
c4

Ti,
k . 1.9. 18

They are called the generalized Einstein equations.
Contracting (1.9.18) on the indices i and k,we get

R   8
c4

Ti,
i    8

c4
T. 1.9. 19

Therefore the generalized Einstein equations of the field can also be written in the
form
[37]

R ik, 
8
c4

Tik, 
1
2
gik,T . 1.9. 20

Note that the generalized Einstein equations of the gravitational field are nonlinear
Colombeau equations.

1.10.The densitized Einstein field equations revisited.

1.10.1.Remarks on the A. Einstein and N. Rosen paper

from 1935.
The densitized Einstein field equations originally considered in A. Einstein and N.

Rosen paper [32], see also [46]. As an exzample of the problem which arises from
degenerasy of the metric tensor gik, the metric field is considered (see [32],eq.1):

ds2  dx12  dx22  dx32  2x1
2dx4

2. 1.10. 1

The g of this field satisfy in general the equations Rklm
i  0,and hence the equations

Rkl  Rklm
m  0. 1.10. 2

A. Einstein emphasized that: "The g corresponding to (1.10.1) are regular for all
finite (i.e. nonzero) points of space-time. Nevertheless one cannot assert that
Eqs.(1.10.2) are satisfied by (1.10.1) for all finite values of x1, . . . ,x4. This is due to the
fact that the determinant g of the g vanishes for x1  0. The contravariant g therefore
become infinite and the tensors Rklm

i and Rkl take on the form 0/0.From the standpoint of
Eqs.(1.10.2) the hyperplane x1  0 then represents a singularity of the field".



We now ask whether the field law of gravitation (and later on the field law of gravitation
and electricity) could not be modified in a natural way without essential change so that
the solution (1.10.1) would satisfy the field equations for all finite points, i.e., also for
x1  0.
W. Mayer has called our attention to the fact that one can make Rklm

i and Rkl into
rational functions of the g, and their first two derivatives by multiplying them by suitable
powers of g. It is easy to show that in g2Rkl there is no longer any denominator. If then
we replace (1.10.3) by (see [32],eq.3a):

Rkl
  g2Rkl  0, 1.10. 3

this system of equations is satisfied by (1.10.1) at all finite points. This amounts to
introducing in place of the g the cofactors g  of the g in g in order to avoid the
occurrence of denominators. One is therefore operating with tensor densities of a
suitable weight instead of with tensors. In this way one succeeds in avoiding singularities
of that special kind which is characterized by the vanishing of g".
Remark 1.10.1.Note that A. Einstein actually rejected densitized field equations by the

following reason:"The solution (1) naturally has no deeper physical significance insofar
as it extends into spatial infinity. It allows one to see however to what extent the
regularization of the hypersurfaces g  0 leads to a theoretical representation of matter,
regarded from the standpoint of the original theory. Thus, in the framework of the original
theory one has the gravitational equations

R ik  1
2
gikR  Tik, 1.10. 4

where Tik is the tensor of mass or energy density. Nevertheless in physical literature the
densitized Einstein field equations holds from A. Einstein time untill nowoday, see for
example [46].
Remark 1.10.2.Note that obviously the system of equations (1.10.3) is satisfied by
(1.10.1) at all finite points.Nevertheless these equations can not solved the problem

since
the ancetanty 0/0 holds again in tensors Rklm

i and Rkl on hypersurface x1  0.
Remark 1.10.3.Note that if some components of the Riemann curvature tensor Rklm

i x 
become ancetanty 0/0 or infinite at point x 0 one obtain the breakdown of canonical
formalism of Riemann geometry in a sufficiently small neighborhood  of the point
x 0  , i.e. in such neighborhood  Riemann curvature tensor Rklm

i x  must be
changed
by formula (1.10.7) see remark 1.10.2.
Remark 1.10.4.Note that in Möller’s paper [38] the metric (1.10.1) has been derived
in fact under abnormal assumption 0/0  1 without respect to Levi-Civitá connection.
.

1.10.2.Remarks on Mӧller abnormal famous paper from
1943
Recall that the classical Cartan’s structural equations show in a compact way the

relation
between a connection and its curvature, and reveals their geometric interpretation in
terms of moving frames. In order to study the mathematical properties of singularities,



we
need to study the geometry of manifolds endowed on the tangent bundle with a

symmetric
bilinear form which is allowed to become degenerate (singular). But if the fundamental

tensor is allowed to be degenerate (singular), there are some obstructions in
constructing
the geometric objects normally associated to the fundamental tensor. Also, local
orthonormal frames and co-frames no longer exist, as well as the metric connection

and
its curvature operator [46].
As an important example of the geometry with the fundamental tensor which is

allowed to
be degenerate, we consider now Mӧller’s uniformly accelerated frame given by

Mӧller’s
line element (1.10.4).Recall that Möller dealing with the following line element [38]:

ds2  xdt2  dx2  dy2  dz2, 1.10. 4

where x  a  gx2.
Remark 1.10.3. Of course Mӧller’s metric (1.10.4) degenerate at Mӧller horizon
xhor  a/g.
However in contrast with A.Einstein paper [32],in famous but ubnormal paper [38]

Möller
mistakenly argue that metric field (1.10.4) is an global vaccuum solution of the

A.Einstein
field equations (1.10.5), i.e. the g of this field for all values of t,x,y, z satisfy the
equations

R ik  1
2
gikR  0. 1.10. 5

Remark 1.10.4. In physical literature this Möller’s abnormal mistake holds from
Möller’s
time until nowadays.
Remark 1.10.5. Note that formally corresponding to the Mӧller’s metric (1.10.4)

classical
Levi-Civitá connection reads

44
1 x  a  gx,14

4 x  41
4 x  ga  gx1 1.10. 6

and therefore classical Levi-Civit‘a connection (1.10.6) of course is not available at
Mӧller
horizon since at horizon formal expressions (1.10.6) becomes infinity:

14
4  a

g  41
4  a

g  . 1.10. 7

Remark 1.10.6.Note that Möller dealing with Einstein’s field equations in the following
form

Gi
k  R i

k  1
2
ikR  0, 1.10. 8

where R i
k is the contracted Riemann-Christoffel tensor, formally calculated by

canonical



way by using classical Levi-Civit‘a connection (1.10.6) and where R  R i
i.By using the

following ansatz

ds2  xdt2  dx2  dy2  dz2, 1.10. 9

Möller finally obtain

G2
2x  G3

3x   1
2x

 x 
 x2

2x
 

1/2x 

1/2x
. 1.10. 10

where  x  dx/dx.
Remark 1.10.7.From Eq.(1.10.10) Möller obtain the following ordinary differential
equation

1/2x   0, 1.10. 11

since it was mistakenly assumed that G2
2x and G3

3x for all values of x satisfy the

equations

G2
2x  G3

3x  0. 1.10. 12

The equation (1.10.11) obviously has the following trivial general solution

x  a  gx2. 1.10. 13

Remark 1.10.8.Note that at Möller horizon xhor  a/g the functions G2
2x and G3

3x
ofcourse is not zero identically but becomes uncertainty, since

G2
2a/g  G3

3a/g  
a/g1/2



a/g1/2
 0

0
. 1.10. 14

Remark 1.10.9.Note that at any point x  a/g obviously G2
2x  G3

3x  0 since at
these
points one obtains

G2
2x  G3

3x   1
2x

 x 
 x2

2x
.

 1
2a  gx2

2g2  4g2a  gx2

2a  gx2
  1

2a  gx2
2g2  2g2   0.

1.10. 15

Remark 1.10.10.At point x  a/g the quantity G2
2a/g and G3

3a/g well defined only
by
formal limit

G2
2a/g  G3

3a/g 
x a/g
lim  0

2a  gx2
 0. 1.10. 16

Remark 1.10.11.However in the limit x  a/g the christoffel symbols (1.10.6)
becomes
infinity:



x a/g
lim 14

4 x 
x a/g
lim ga  gx1  ,

x a/g
lim 41

4 x 
x a/g
lim ga  gx1  .

1.10. 17

It follows from (1.10.17) at horizon x  a/g the canonical expression for the
contracted Riemann-Christoffel tensor R i

k no longer holds, due to the degeneracy of
(1.10.4), the Levi-Civitá connection is not available at Möller horizon x  a/g.
In the following subsection we resolve this tension rigorously using linear distributional

geometry.

1.10.3.The densitized Einstein field equations revisited by

using the linear distributional geometry.
In order to derive the densitized Einstein field equations rigorously we apply in this

subsection the aparatus of the linear distributional geometry.Note that in linear

distributional geometry one dealing exactly with Schwartz distributions with compact
support but not with full algebra of Colombeau generalized functions, see for example
[30].
Remark 1.10.12. (i) Note that the notion of the Rimannian curvature comes from the
study of parallel transport on a Rimannian manifold,see Fig. For instance, if a vector is
moved around a loop on the surface of a sphere keeping parallel throughout the

motion,
then the final position of the vector may not be the same as the initial position of the
vector. This phenomenon is known as holonomy.

(ii) Various generalizations capture in an abstract form this idea of curvature as a

measure of holonomy.

(iii) Classical holonomy presented by the classical formula (1.10.18) for the change
Ak

in a smooth vector A ix  after parallel displacement around infinitesimal closed contour
.
(iv) Note that in classical case the change Ak always finite,i.e. Ak  .



Fig.1.10.1.Parallel transporting a vector from

A  N  B  A yields a different vector.

This failure to return to the initial vector

is measured by the holonomy of the

surface spanning by .

Remark 1.10.13.Let M,g be a semirimannian manifold.Let x 0 be infinitesimal closed
contour and let   M be the corresponding surface spanning by ,see Fig.1.10.1. We
assume now that christoffel symbols kl

i x  are smooth on   .The classical formula
for the change in a smooth vector A ix  after parallel displacement around infinitesimal
closed contour  reads [4]:

Ak  


Ak  


kl
i x Akdx l. 1.10. 18

We remind now the classical Stokes’ theorem.
Theorem.1.10.1.(Stokes’ theorem) If ω is a smooth n  1-form with compact support
on smooth n-dimensional manifold  with-boundary Ω of  given the induced

orientation,
and i : Ω  Ω is the inclusion map, then


Ω

dω  
Ω

iω. 1.10. 19

Conventionally, 
Ω

iω is abbreviated as 
Ω

ω, since the pullback of a differential

form by the inclusion map is simply its restriction to its domain iω  ω|Ω Here d is the
exterior derivative, which is defined using the manifold structure only. The right-hand

side is sometimes written as 
Ω

 ω to stress the fact that the n  1-manifold Ω has no

boundary.
For the further transformation of the integral (1.10.18), we must note the following.

The values of the vector A i at points inside the contour are not unique; they depend on
the path along which we approach the particular point. However, as we shall see from
the result obtained below, this non-uniqueness is related to terms of second order. We
may therefore, with the first-order accuracy which is sufficient for the transformation,
regard the components of the vector A i at points inside the infinitesimal contour  as



being uniquely determined by their values on the contour itself by the formulas

A ix  il
nxAnxdx l, 1.10. 20

i.e.,by the derivatives

A ix
x l

 il
nxAnx. 1.10. 21

Now applying classical Stokes’ theorem (see Theorem 1.10.1) to the integral (1.10.18)

and considering that the area enclosed by the contour has the infinitesimal value
f im,we get [4]:

Ak  1
2

km
i xA ix
x l


kl

i xA ix
xm f im 

 1
2

A ix
km

i x
x l 

 A ix
kl

i x
xm 

A ix
x l

km
i x  A ix

xm kl
i x f im.

1.10. 22

Remark 1.10.13.Note that:(i) the regularity condition in Stokes’ theorem,i.e. ω is a
smooth n  1-form is essentially important and without this condition this theorem is

no longer holds.

(ii) Obviously without Stokes’ theorem impossible to derive the Eq.(1.10.22) and

therefore
the expression (1.10.24) wihout the regularity condition of the functions km

n x does
not
make any sense and becomes to absurdum.
Substituting now the values of the derivatives (1.10.21) into Eq.(1.10.22), we get

Ak  1
2
Rklm
i xA ixf im, 1.10. 23

where Rklm
i x is a tensor field of the fourth rank:

Rklm
i x 

km
i x
x l


kl

i x
xm  ni

i xkm
n x  nm

i xkl
n x. 1.10. 24

Definition 1.10.3.The tensor field Rkim
l x is called the classical curvature tensor or the

classical Riemann tensor.
The classical Riemann tensor that is a tensorial measure of holonomy.

Definition 1.10.4.Let M,g be a nonclassical semirimannian manifold.Let   M be
the
surface spanning by .We will say that the surface  admit the classical tensorial

measure of holonomy (or admit the classical Riemann tensor) iff the Eq.(1.10.23) and
Eq.(1.10.24) holds.
Remark 1.10.14.Let M,g be a nonclassical semirimannian manifold,i.e.the manifold
endowed on the tangent bundle with a symmetric bilinear form which is allowed to
become degenerate (singular). Let x 0  x 0 be infinitesimal closed contour and let


x0
 M be the corresponding surface spanning by x 0 , see Fig.1.10.2.

We assume now that:
(i) christoffel symbols kl

i x,x 0 become infinite at singular point x 0 by formulae



kl
i x,x 0  klx x i  x i0

,  1

klx   C 
x0

1.10. 25

and (ii) x 0  x 0  
x0
.The classical formula (1.10.18) for the change in a smooth

vector
A ix  after parallel displacement around infinitesimal closed contour x 0 reads:

Akx 0   

x0

Ak  

x0

kl
i x,x 0Akdx l. 1.10. 26

Obviously the differential form kl
i x Akdx l does not locally integrable in neighborhood

of
the point x 0   and therefore Akx 0   .
Remark 1.10.15.Note that under nonregularity conditions Akx 0    the classical
formula (1.10.26) can not define correctly the holonomy of the surface 

x0
spanning

by
x 0 since the classical holonomy becomes infinity. In order to avoid this difficultness

one
needs to replace the classical formula (1.10.26) by the formula appropriate for singular
case.
We started now from some definitions.
Definition 1.10.5.(i) Let M,g be a semirimannian manifold, and let x 0 be

infinitesimal
closed contour such that x 0  x 0  M.Let x 0 be a closed infinitesimal

neighborhood
of x 0, then we we abbreviate x 0  x 0  x 0.We will be say that a point x 0  x 0 is a
singular pont of the manifold M,g if Akx 0 \x

0   and Akx 0 \x 0   .
(ii) We will be say that a closed contour is a singular contour x 0 if it contains at least

one
singular pont x 0  x 0 , see Fig.1.10.2-Fig.1.10.3.
Definition 1.10.6.(i) We will be say that a semirimannian manifold is a singular

manifold
if there exists at least one singular (isolated) pont x 0  M.
(ii)



Fig.1.10.2. Singular point at BH horizon

and corresponding singular countur.

Fig.1.10.2. Singular point 0,0 at Rindler horizon

R  0 and corresponding singular countur.

ds2  dR2  R2d2.

Remark 1.10.15.Obviously the Schwarzschild singularity r  0 is singular isolated pont
of the Schwarzschild manifold.
Definition 1.10.3.Let M,g be a nonclassical semirimannian closed manifold, and let

x 0  M be infinitesimal closed contour such that x 0  x 0  M.We will be say that a
contour x 0

#  x 0 \x
0 with deleted point x 0 (see Fig.1.10.3) is a singular truncated

contour of the open manifold M ,g ,where M   M \M and g  g|M  if

Akx 0 \x
0   and Akx 0 \x 0   .

Remark 1.10.16.(i) Note that the Levi-Civit‘a connection kl
i x,x 0 is available on any

singular truncated contour x 0
#  x 0 \x

0 of the open manifold M ,g but despite

this
again Akx 0 \x

0  . (ii) Note that the semirimannian submanifold M ,g of

nonclassical semirimannian closed manifold M,g impossible treated classically,since
the classical holonomy breaks down by divergence Akx 0 \x

0  .



Fig.1.10.3. Singular truncated contour

x 0
#  x 0 \x

0

Definition 1.10.3.Let M,g be a semirimannian manifold, and let M1,g1 be closed
submanifold where g1  g|M.

Remark 1.10.17.Let M,g be a nonclassical semirimannian manifold,i.e.the manifold
endowed on the tangent bundle with a symmetric bilinear form which is allowed to
become degenerate (singular). Let  be infinitesimal closed contour and let

x 0    M,x 0   be the corresponding surface spanning by , see Fig.1.10.4 and
Fig.1.10.5.Note that the Eq.(1.10.22) again breaks down (see Remark 1.10.13), since

the
regularity condition of the functions km

n x,x 0 are violeted at point x 0  .

Fig.1.10.4.Infinitesimal closed contour 

and corresponding singular surface   x 0

with singular point x 0 (Rindler horizon)

in Rindler space-time:

ds2  R2d2  dR2.

Remark 1.10.18.In order to avoid the divergence mentioned above we consider the
Christoffel symbols kl

i x,x 0 as distributions on aproporiate space of the test
functions.
Definition 1.10.4.Schwartz distributions with compact support (Schwartz generalized

functions with compact support) are a class of linear functionals that map a space of



test functions (conventional and well-behaved functions) into the set of real numbers

.
In the simplest case, the space of test functions considered is n,K, which is the

set
of functions φ : n   having two properties:
(i) φ is smooth (infinitely differentiable);
(ii) φ has compact support (is identically zero outside some compact set K  n.
Definition 1.10.5. Schwartz distribution with compact support (Schwartz generalized
functions) T is a linear mapping : n,K  . Instead of writing Tφ, it is

conventional
to write T,φ for the value of T acting on a test function φ. A simple example of a
distribution is the Dirac delta δ,defined by δ,φ  φ0,meaning that δ evaluates a test
function at 0. Its physical interpretation is as the density of a point source.
Definition 1.10.6. Suppose that f : K  n   is a locally integrable function. Then a
corresponding distribution Tf  n,K may be defined by

Tf,φ  
K

fxφxdnx 1.10. 27

for φ  n,K.
Definition 1.10.7. We chose now the a space of test functions 4,K,x 0 :
4,K,x 0  x   x  x 0x |x   4,K,x 0,

where x  x 0 
i0

4

x i  x i0
2,  1,x   4,K,x 0  K.

Let us introduce now similarly to canonical Definition 1.8.5 the formula for the

regularized (or generalized) change Ak in a vector A ix  after parallel
displacement

around infinitesimal closed contour  (see Fig.1.10.3).This regularized change Ak can
clearly be written in the form

Ak  Akx ,x  x 0x   


x  x 0x Akx , 1.10. 28

where x  x 0 
i0

4

x i  x i0
2,  1,x   4,K,x 0  K and where the integral is

taken over the given contour   K,x 0  . If x 0   (see Fig.1.10.4) the regularized

change Ak can clearly be written in the form

Ak  Akx ,x  x 0x   
\ x 0

x  x 0x Akx . 1.10. 29

Substituting in place of Ak the canonical expression Ak  kl
i x Akdx l (see

[4],Eq.(85.5)) we obtain

Ak  kl
i x ,x  x 0x Ak  




x  x 0x Ak  


kl
i x x  x 0x Akdx l ,

1.10. 30



where

A i

x l
 kl

i x Ak. 1.10. 31

Remark 1.10.18.Note that: (i) Eq.(1.10.31) holds since x 0  . (ii) In any neighborhood
Ox 0,  x : x  x 0  ,  0,  1of the singular point x 0 the functions
kl
i x x  x 0 is regular.(iii) At singular point x 0 the quantities kl

i x x  x 0|xx 0
are well defined by the limit:

kl
i x x  x 0|xx 0  limxx 0 kl

i x x  x 0,

since for any i,k, l the limit limxx 0 kl
i x x  x 0 exists and finite by the choosing of

the
function x  x 0.
(iv) It follows from (i)-(iii) the classical Stokes’ theorem (see [4],Eq.(6.19)) holds for the
integral (1.10.30).

Fig.1.10.5.Infinitesimal closed contour 

and corresponding singular surface   x 0

spanning by .

Due to the degeneracy of the

Schwarzschild metric (1.1)

at point r  0,

the Levi-Civitá connection kj
l 

 1
2
glmgmk,j  gmj,k  gkj,m

is not available on 
3  0 .



Fig.1.10.6.Infinitesimal closed contour  with a

singularity at point x 0 on Horizon and

corresponding singular surface   x 0

spanning by .

Due to the degeneracy of of the

Schwarzschild metric field (1.1)

at r  2m,

the classical Levi-Civitá connection kj
l 

 1
2
glmgmk,j  gmj,k  gkj,m

is not available on 
3  r  2m in classical sense

but is available on 
3  r  2m  r  0 in the sense

of the generalized functions in 4,K,x 0.

Remark 1.10.19.Note that:(i) by using the Eq.(1.10.30) the classical singular
Levi-Civitá connection corresponding to the degenerate and singular Schwarzschild
metric field (1.6) now is avaluble on extended Schwarzschild spacetime
ShS2  r  2m  0  r  2m  ,since the singular Christoffel symbols (1.7) in
Schwarzschild coordinates are well defined as generalized functions in 4,K,x 0.
(ii) The same holds for the Schwarzschild metric in isotropic coordinates (1.11).
Now applying Stokes’ theorem (see [4],Eq.(6.19)) to the integral (1.10.30) and
considering that the area enclosed by the contour has the infinitesimal value f lm,
we get



Ak  


x  x 0 kl
i x Akdx l 

 1
2 



km
i x A ix  x 0

x l

kl

i x A ix  x 0
xm df lm 


km

i x A ix  x 0
x l


kl

i x A ix  x 0
xm

f lm

2


x  x 0
km

i x  x 0A i

x l
 km

i x A i
x  x 0

x l


x  x 0
kl

i x A i
xm  kl

i x A i
x  x 0

xm
f lm

2


x  x 0
km

i x A i

x l
 x  x 0

kl
i x A i
xm 

A ix x  x 0
2km

i x 
x l  x l0

 A ix x  x 0
2kl

i x 
xm  xm0

f lm

2
.

1.10. 32

Substituting the values of the derivatives (1.10.31) into Eq.(1.10.32), we get finally:

Ak  Rklm

i A ix x  x 0f lm

2
, 1.10. 33

where Rklm

i
, is a tensor of the fourth rank

Rklm

i
 Rklm

i  2
km
i x 

x l  x l0
 kl

i x 
xm  xm0

. 1.10. 34

Here Rklm
i is the classical Riemann curvature tensor.That Rklm

i
is a tensor is clear from the

fact that in (1.10.6) the left side is a vector–the difference Ak between the values of
vectors at one and the same point.

Definition1.10.8. The tensor Rklm

i
is called the generalized curvature tensor or the

generalized Riemann tensor. Note that for any i,k, l,m : Rklm

i
 4,K,x 0.

Definition1.10.9. The generalized Ricci curvature tensor Rkm is defined as

Rkm  Rkim

i
. 1.10. 35

Remark 1.10.20.Note that for any k,m : Rkm  4,K,x 0.

Definition1.10.10. The generalized Ricci scalar R is defined as

R  gkm Rkm. 1.10. 36

Remark 1.10.21.Note that the generalized Ricci scalar R  4,K,x 0.

Definition1.10.11. The generalized Einstein tensor for any k,m : Gkm  4,K,x 0 is
defined as

Gkm  Rkm  1
2
gkmR. 1.10. 37

Thus the revisited densitized Einstein field equations in 4,K,x 0 reads:




K
Gkmx x  x 0df km  

K
Rkmx   1

2
gkmx Rx  x  x 0df km 

 
K
Tkmx x  x 0df km.

1.10. 38

Remark 1.10.22.Note that Beyond any small neighborhood
Ox 0,  x : x  x 0  ,   0,  1of the singular point x 0 the equations
(1.10.38) becomes to the following form

Gkmx x  x 0  Rkmx   1
2
gkmRx   Tkmx , 1.10. 39

where x  Ox 0,.We rewrite now the Eq.(1.10.34) in the following form

Rklm

i
 Rklm

i  klm
i

klm
i  2

km
i x 

x l  x l0
 kl

i x 
xm  xm0

.
1.10. 40

Thus the revisited densitized Einstein field equations (1.10.38) reads


K
Rkmx   1

2 K gkmx Rx  


K
Rkmx  x 0df km  

K
kmx  x 0df km 

1
2 K gkmx Rx   x x  x

0df km 


K

Rkmx   1
2
gkmx Rx  x  x 0df km 


K
kmx   1

2
gkmx x  x  x 0df km  

K
Tkmx x  x 0df km.

1.10. 41

We assume now that


K
kmx   1

2
gkmx x  x  x 0df km  

K
Tkmx x  x 0df km. 1.10. 42

From the Eqs.(1.10.41)-(1.10.42) we get the (revisited) densitized "vacuum"
equations:


K

Rkmx   1
2
gkmx Rx  x  x 0df km  0. 1.10. 43

Remark 1.10.23.It follows that a metric field gkmx  has a distributional source in
4,K,x 0 given by Eq.(1.10.42),since the "vacuum" equations (1.10.43) follows

from the densitized Einstein field equations (1.10.38) under setting given by
Eq.(1.10.42).
Remark 1.10.24.Beyond any neighborhood Ox 0,  x : x  x 0  ,  0,of
the singular point x 0 the equations (1.10.43) becomes to the following canonical
"vacuum" form

Rkmx   1
2
gkmx Rx   0. 1.10. 44

Remark 1.10.25.The "vacuum" equations (1.10.44) return the canonical
Schwarzschild
solutions (1.6) and (1.11) except any neighborhood Or  2m  r  0,,  0 of



horizon and Schwarzschild singularity.But we ephazized that scalar curvature of the

Schwarzschild spacetime is given exactly by the generalized Ricci scalar R  R.
Remark 1.10.26.It follows from the Eqs.(1.10.41) that the Möller metric field (1.10.9)

has
a singular source Tkm.

Beyond the neighborhood Oxhor,  x : |a  gx|  ,  0 of the Möller horizon
xhor  a/g, but not on whole Möller spacetime, one obtains in accordance with

classical
Möller’s result,see Eqs.(1.10.15):

Rm
k x  1

2
gmk xRx  0. 1.10. 45

Inside the submanifold Oxhor, the corresponding densitized "vacuum" equations
(1.10.43) reads


Oxhor,

Rm
k x  1

2
gmk xRx xdf km  0 1.10. 46

Therefore from the Eqs.(1.10.46) and Eqs.(1.10.10) one obtains


Oxhor,

G2
2xxdx  

Oxhor,
G3

3xdx 


Oxhor,

1
2x

 x 
 x2

2x
xdx  0,

1.10. 47

since at Möller horizon xhor  a/g the function

x  1
x

 x 
 x2

2x
x  1

x
2g2  4g2x

2x
1.10. 48

is well defind by taking the limit x  xhor (see Remark 1.10.18) and therefore

limxxhor x  limxxhor
x
x

2g2  4g2x
2x



limxxhor
x
x

2g2  2g2 limxxhor
x
x

 2g2  2g2  0.
1.10. 49

Remark 1.10.27.Note that in contrast with abnormal Möller’s calculation, see Remark
1.10.10-1.10.11, Eq.(1.10.16)
Remark 1.10.28. (I) Note that the Schwarzschild metric field (1.6) in classical sense is
well defined only for r  2m,The boundary of the manifold r  2m in 3   is the
submanifold r  2m of 3  , diffeomorfic to a product S2  .This submanifold is
colled the event horizon, or simply the horizon [33],[34].
(II) The Schwarzschild metric (1.10.12) in canonical coordinates x0, r,,,with m  0,
ceases to be a smooth Lorentzian metric for r  2m, because for such a value of r the
coefficient g00 becomes zero while g11 becomes infinite. For 0  r  2m the metric

(1.9.9) again a smooth Lorentzian metric but t is a space coordinate
while r a time coordinate. Hence the metric cannot be said to be either spherically
symmetric or static for r  2m [33].
(III) From consideration above obviously follows that on Schwarzschild spacetime



Sh S2  r  2m  0  r  2m   the Levi-Civita connection

kj
l  1

2
glmgmk,j  gmj,k  gkj,m 1.10. 50

is not available in classical sense and that is well known many years from
mathematical
literature, see for example [22] and Remark 1.10.19 above.
(IV) Note that [4] : (i) The determinat detglm  r4 sin2 of the metric (1.6)
is reqular on horizon,i.e., smooth and non-vanishing for r  2m.
In addition:
(ii) The curvature scalar R  g R is zero for r  2m.
(iii) The none of higher-order scalars such as RR,etc. blows up. For

example
the quadratic scalar RR  48m2/r6 is reqular on horizon,i.e.,smooth

and
non-vanishing for r  2m.
(V) Note that: (i) In physical literature (see for example [4],[33],[35],) it was wrongly
assumed that a properties (i)-(iii) is enough to convince us that r  2m represent the
non honest physical singularity but only coordinate singularity.

(VI) Such assumption based only on wrong formal extensions

R,R

R, . . . ,

R


R of the curvature scalar R and higher-order scalars such as
RR, . . . ,RR on horizon r  2m and on origin r  0 by

formulae

Rr
r2m


r2m
lim Rr  0,Rr

r0

r0
lim Rr  0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

R


rRr
r2m


r2m
lim RrRr 

r2m
lim 48m2

r6
 48m2

r6 r2m
,

R


rRr
r0


r0
lim RrRr 

r0
lim 48m2

r6
 .

1.10. 51

However in the limit r  2m the Levi-Civitá connection kj
l becomes infinite [4]:

00
1 r|r2m 

r2m
lim

mr  2m
r3

 0,11
1 r|r2m 

r2m
lim m

rr  2m
 ,

01
0 r|r2m 

r2m
lim m

rr  2m
 ,

12
2 r|r2m 

r2m
lim 1

r  21m1,22
1 |r2m  

r2m
lim r  2m  0,

13
3 |r2m 

r2m
lim 1

r  21m1,33
1 |r2m  

r2m
lim r  2m sin2  0,

00
1 r|r0 

r0
lim

mr  2m
r3

 11
1 r|r0 

r0
lim m

rr  2m
 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33
2   sincos,23

3  cos
sin

.

1.10. 52



Thus obviously by consideration above (see Remark 1.1-Remark 1.10.2) this
extension given by Eq.(1.10.15) has no any sense in respect of the canonical
Riemannian geometry.
(VII) From consideration above (see Remark 1.10.1-Remark 1.10.2) obviously follows

that the scalars such as R,R

R, . . . , R


R has no any

rigorous sense in respect to the canonical Levi-Civitá connection (1.10.11) and therefore
cannot be said to be either honest physical singularity or only coordinate singularity in
respect of the canonical Riemannian geometry.
Remark 1.10.29. Note that in physical literature the spacetime singularity usually is

defined as location where the quantities that are used to measure the gravitational field
become infinite in a way that does not depend on the coordinate system. These
quantities are the classical scalar invariant curvatures of singular spacetime, which
includes a measure of the density of matter.
Remark 1.10.30. In general relativity, many investigations have been derived with

regard to singular exact vacuum solutions of the Einstein equation and the singularity
structure of space-time. Such solutions have been formally derived under condition
T
x  0,where T

x represent the energy-momentum densities of the gravity source.
This for example is the case for the well-known Schwarzschild solution, which is given
by, in the Schwarzschild coordinates x0, r,,,

ds2  hrdx02  h1rdr2  r2d2  sin2d2 ,hr  1  rs
r , 1.10. 52

where, rs is the Schwarzschild radius rs  2GM/c2 with G,M and c being the Newton
gravitational constant, mass of the source, and the light velocity in vacuum Minkowski
space-time, respectively. The metric (1.10.44) describe the gravitational field produced
by a point-like particle located at r  0, see [30].
Remark 1.10.31. Note that when we say, on the basis of the canonical expression of

the curvature square

RrRr 
12rs2

r6
1.10. 53

formally obtained from the metric (1.10.44), that r  0 is a singularity of the
Schwarzschild space-time, the source is considered to be point-like and this metric is
regarded as meaningful everywhere in space-time.
Remark 1.10.32. From the metric (1.10.44), the calculation of the canonical Einstein

tensor proceeds in a straighforward manner gives for r  0

Gt
tr  Gr

rr   hr
r

 1  hr
r2

 0 ,

G
r  G

r   hr
2

 hr
r2

 0,
1.10. 54

where hr  1  rs/r.Using Eq.(1.10.54) one formally obtains a boundary conditions

Gt
t0 

r0
lim Gt

tr  0,Gr
r0 

r0
lim Gr

rr  0,

G
0 

r0
lim G

r  0,G
0 

r0
lim G

r  0.
1.10. 55

However as pointed out above the canonical expression of the Einstein tensor in a
sufficiently small neighborhood  of the point r  0 and must be replaced by the



generalized Einstein tensor Gkm (1.10.37). By simple calculation easy to see that

Gt

t
0 

r0
lim Gt

t
r  ,Gr

r
0 

r0
lim Gr

r
r  ,

G


0 

r0
lim G


r  ,G


0 

r0
lim G


r  .

1.10. 56

and therefore the boundary conditions (1.10.56) are completely wrong. But other hand
as pointed out by many authors [5]-[17] that the canonical representation of the Einstein
tensor, valid only in a weak (distributional) sense,i.e. [12]:

Gb
a
x   8m0

ab
03

x  1.10. 57

and therefore again we obtain Gb
a0    0

ab
0.Thus canonical property fo the

Einstein tensor: Gb
a
x   0, is breakdown in rigorous mathematical sense for the

Schwarzschild solution at origin r  0.

1.11.The nonlinear distributional Möller geometry using the
full algebra of the Colombeau generalized functions.
A.Einstein as the Copernicus of nonlinear distributional
geometry.
Note that the -regularization related to Colombeau geometry originally considered in
A. Einstein and N. Rosen paper [32]. A. Einstein emphasized that:
"The solution (1.10.1) (see [32],eq.1) naturally has no deeper physical significance

insofar as it extends into spatial infinity. It allows one to see however to what extent the
regularization of the hypersurfaces g  0 leads to a theoretical representation of matter,
regarded from the standpoint of the original theory. Thus, in the framework of the original
theory one has the gravitational equations (see [32],eq.4)

R ik  1
2
gikR  Tik, 1.11. 1

where Tik is the tensor of mass or energy density. To interpret (1.11.1) in the framework
of this theory we must approximate the line element by a slightly different one which
avoids the singularity g  0. Accordingly we introduce a small constant  and let (see
[32],eq.1a)

ds2  dx12  dx22  dx32  2x1
2  dx4

2 1.11. 2

the smaller  ( 0) is chosen, the nearer does this gravitational field come to that of
(1.11.2). If one calculates from this the (fictitious) (see Remark 1.11.1) energy tensor Tik

one obtains as nonvanishing components

T22  T23  2
2x1

2  2
. 1.11. 3

We see then that the smaller one takes  the more is the tensor concentrated in the
neighborhood of the hypersurface x1  0.From the standpoint of the original theory the
solution (1.11.1) contains a singularity which corresponds to an energy or mass
concentrated in the surface x1  0; from the standpoint of the modified theory, however,
(1.11.2) is a solution of (1.10.3) (see [32],eq.3a), free from singularities, which describes
the "field-producing mass, " without requiring for this the introduction of any new field



quantities".
Remark 1.11.1. Note that the energy tensor Tik (1.11.3) A. Einstein mistakenly has

been
considered as "fictitious". It is clear that A. Einstein thought that by using any fixed

semi
Riemannian metric and thus in particular by the fixed metric field mentioned in his

paper
[32]:

ds2  dx12  dx22  dx32  2x1
2dx4

2 1.11. 4

one obtains full and unique semi Riemannian structure corresponding to uniformly
accelerated reference system,etc. This principle mistake holds in physical community
from A. Einstein time until nowadays. However even in A. Einstein time it were well

known
that for non classical semi Riemannian metric fields this opinion completely wrong and
one needs something more than only simply formula (1.11.4),see [4]-[6] in

Refferences B.
Actually as we know the imbedding ds2  ds2  in Colombeau generalized object

ds2 
is necessary.
Remark 1.11.2.Note that the regularization mentioned in A. Einstein and N. Rosen

paper
[32]. by introducing -regularization    ,  0,,  1 in contemporary

Colombeau
notations reads

ds2  dx12  dx22  dx32  2x1
2  2 dx4

2 1.11. 5

Thus in accordance with the Colombeau framework the classical metric field (1.1.1)
embedded in Colombeau object ds2.

Remark 1.11.3.(i) Note that in contemporary Colombeau notations A. Einstein
"fictitious"
energy tensor Tik obviously reads [5]:

T22  T23  2 2

2x1
2  22 

, 1.11. 6

where    ,  0,,  1. The generalized Einstein field equations (1.9.17)
corresponding to distributional energy tensor (1.11.5.) reads

R ik, 
1
2
gik,R  Tik. 1.11. 7

(ii) Note that in any classical point x1,x2,x3,x4 with x1  \0 the energy tensor
(1.10.)
becomes to infinite small values, i.e. Tik  0

(iii) Note that in any classical point x1,x2,x3,x4 with x1  0 the energy tensor (1.11.6)

has well defined point value  inf  .
(iv) Note that in accordance with result obtained above in subsection 1.10.3 the

generalized Einstein field equations meant that metric field (1.11.1) has a non trivial



Colombeau distributional source

2

2x1
2  22 

 . 1.11. 8

(v) Note that it follows from Eq.() the Colombeau curvature scalar R
in any classical point x1,x2,x3,x4 with x1  \0
We consider now the Mӧller’s metric (1.10.4)

ds2  xdt2  dx2  dy2  dz2, 1.11. 9

where x  a  gx2.
In order to avoid difficultness with degeneracy of the classical metric (1.11.9)

mentioned
above in subsection 1.10.2, we replace now Mӧller’s line element (1.11.8) by
corresponding Colombeau line element

ds2  x dt
2  dx2  dy2  dz2, 1.11. 10

where x  a  gx2  2 ,  0,1.

Remark 1.11.4. Note that in contrast with a wrong formal expression (1.10.6) the
distributional Levi-Cività connection corresponding Colombeau line element (1.11.10)
reads

44,
1 x  a  gx, 14,

4 x  41,
4 x 

a  gx

a  gx2  2


1.11. 11

Notice that the distributional Levi-Cività connection (1.11.11) is well defined and even
regular on whole Mӧller’s space-time.
Let Gi,

k x be the distributional Einstein tensor Gi
kx  R i

kx 
1
2 i

kRx,

where R i,
k x is the contracted distributional Riemann-Christoffel tensor calculated

by
using distributional Levi-Civit‘a connection (1.11.1) corresponding to Colombeau line
element (1.11.10) [5],[35] and Rx  R i

i. Therefore for the case of the

Colombeau line element (1.11.10) we get

G2
2x;  G3

3x; 

 1
2x


x 


 x 

2

2x
  g22


2x 

.
1.11. 12

Notice that x;   g22


2x 

,  0,1 is Colombeau generalized function such

that clx;   G and cl  a/g1;


 cl2   inf  .

Thus Colombeau generalized fundamental tensor gik corresponding to
Colombeau
metric (1.11.10) that is non vacuum Colombeau solution of the of the generalized
Einstein’s field equations (1.11.7) with Colombeau generalized source.For Colombeau
scalars Rx and R

x,Rx, we get [5]:

Rx 
g22


2x 

1.11. 13

and



Rx,Rx,  g44 a  gx2  2
4

1.11. 14

correspondingly.

1.12.The distributional Schwarzschild geometry by using
the linear L.Schwartz distributions and by using the full
algebra of the Colombeau generalized functions.
General relativity as a physical theory is governed by particular physical equations; the

focus of interest is the breakdown of physics which need not coincide with the
breakdown of geometry. It has been suggested to describe singularity at the origin as
internal point of the Schwarzschild spacetime, where the Einstein field equations are
satisfied in a weak sense [5]-[22].

1.12.1.The distributional Schwarzschild geometry at the
origin.The smooth regularization of the singularity at the
origin.
The two singular functions we will work with throughout this paper (namely the singular

components of the Schwarzschild metric) are 1
r and 1

r  rs , rs  0.Since 1
r  Lloc

1 3,

it obviously gives the regular distribution 1
r  D3. By convolution with a mollifier ρx

(adapted to the symmetry of the spacetime, i.e. chosen radially symmetric) we embed it
into the Colombeau algebra  3 [22]:

1
r


  1

r  1
r    1

r 
,  1

3
ρ r ,  0,1. 1.12. 1

Inserting (1.12.1) into Schwarzschild metric (1.10.44) we obtain a generalized
Colombeau object modeling the singular Schwarzschild spacetime [22]:

ds2  hrdt2  h
1rdr2  r

2d2  sin2d2 ,

hr  1  rs 1
r 

,  0,1.
1.12. 2

Remark 1.12.1.Note that under regularization (1.12.1) for any   0,1 the metric

ds2  hrdt2  h1rdr2  r2d2  sin2d2 

obviously is a classical Riemannian object and there no exist an the breakdown of
canonical formalism of Riemannian geometry for these metrics, even at origin r  0. It
has been suggested by many authors to describe singularity at the origin as an internal
point, where the Einstein field equations are satisfied in a distributional sense [5]-[22].
From the Colombeau metric (1.12.2) one obtains in a distributional sense [22]:

R2
2r,  R3

3r, 
h r
r 

1  hr
r2 

 8m
r
r2

,

R0
0r,  R1

1r, 
1
2

hr
2


h r
r



 4m r
r2

.
1.12. 3

Hence, the Colombeau distributional Ricci tensor and the Colombeau distributional



curvature scalar Rr  are of δ-type, i.e. Rr   m
r
r2

 3.

Remark 1.12.2. Note that the formulae (1.12.3) should be contrasted with what is the
expected result Gb

ax  8m0
ab

03x given by Eq.(1.10.49). However the equations
(1.12.3) are obviously given in spherical coordinates and therefore strictly speaking this

is not correct, because the basis fields 
r ,


 , 

 are not globally defined.

Representing distributions concentrated at the origin requires a basis regular at the
origin. Transforming the formulae for R ijε into Cartesian coordinates associated with
the spherical ones, i.e., r,θ,φ  x i, we obtain, e.g., for the Einstein tensor the
expected result Gb

ax  8m0
ab

03x given by Eq.(1.10.49), see [22].

1.12.2.The nonsmooth regularization of the singularity at
the origin.
The nonsmooth regularization of the Schwarzschild singularity at the origin r  0 is

considered by N. R. Pantoja and H. Rago in paper [12]. Pantoja non smooth
regularization regularization of the Schwarzschild singularity reads

hr  1  rs
r r   

,  0,1, r  rs. 1.12. 4

Here u is the Heaviside function and the limit   0 is understood in a distributional
sense.Equation (1.12.2) with h as given in (1.12.4) can be considered as an regularized
version of the Schwarzschild line element in curvature coordinates. From equation
(1.12.4), the calculation of the distributional Einstein tensor proceeds in a straighforward
manner. By simple calculation it gives [12]:

Gt
tr,  Gr

rr,   h r
r



 1  hr
r2 



 rs
r  

r2 
 rs

r
r2

1.12. 5

and

G
r,  G

r,   hr
2 

 hr
r2 



rs
r  

r2 
 rs 

r2
d
dr

r  

 rs

r
r2

.
1.12. 6

which is exactly the result obtained in Ref. [9] using smoothed versions of the Heaviside
function Θr  . Transforming now the formulae for Gb

ar,ε into Cartesian
coordinates associated with the spherical ones, i.e., r,θ,φ  x i, we obtain for the
generalized Einstein tensor the expected result given by Eq.(1.10.49)

Gb
ax  8m0

ab
03x, 1.12. 7

see Remark 1.12.2.

1.12.3.The smooth regularization via Horizon in



Schwarzschild coordinates and the smooth regularization
at horizon in isotropic coordinates.

1.12.3.1.The smooth regularization via Horizon in
Schwarzschild coordinates
The smooth regularization via Horizon is considered by J.M.Heinzle and R.Steinbauer

in paper [22]. Note that 1
r  rs  Lloc

1 3. An canonical regularization is the principal

value vp 1
r  rs  D3 which can be embedded into  3 [22]:

1
r  rs

vp
 vp 1

r  rs

    vp 1

r  rs  1
r  rs 

  3. 1.12. 8

Inserting now(1.12.8) into Schwarzschild metric (1.10.44) we obtain a generalized
Colombeau object modeling the singular Schwarzschild space-time [22]:

ds2  hrdt2  h
1rdr2  r

2d2  sin2d2 , 1.12. 9

where

hr  1  rs
r ,h1r  1  rs 1

r  rs 
,  0,1. 1.12. 10

Remark 1.12.3.Note that obviously Colombeau object (1.12.9) is degenerate at r  rs,
because hr is zero at the horizon. However, this does not come as a surprise. Both
hr and h1r are positive outside of the black hole and negative in the interior. As a
consequence any smooth regularization of hr (or h1) must pass through zero
somewhere and, additionally, this zero must converge to r  rs as the regularization
parameter goes to zero.

Remark 1.12.4.Note that due to the degeneracy of Colombeau object (1.10.26), even
the
distributional Levi-Civitá connection obviously is not available by using the smooth
regularization via horizon [22].
Remark 1.12.5.Note that the smooth regularization (1.12.8) doesn’t make any sense,
since Colombeau object (1.12.9) again is degenerate at r  rs.However in isotropic
coordinates t,ρ,,ϕ the smooth regularization at horizon obviously possible.

1.12.3.2.The smooth regularization at horizon in isotropic
coordinates.

The Schwarzschild metric in isotropic coordinates t,ρ,,ϕ reads [3]:

ds2   4ρ  rs
2

4ρ  rs
dt2  1  rs

4ρ

4

dρ2  ρ2d2  sin2dϕ2, 1.12. 11

where we let c  1.The canonical simple regularization at horizon reads

4ρ  rs2  4ρ  rs2  2. 1.12. 12

Inserting now(1.12.12) into Schwarzschild metric (1.12.11) we obtain a generalized
Colombeau object modeling the degenerate Schwarzschild space-time in isotropic
coordinates

ds2  
4ρ  rs2  2 

4ρ  rs
dt2  1  rs

4ρ

4

dρ2  ρ2d2  sin2dϕ2. 1.12. 13



Corresponding to (1.12.13) Colombeau distributional geometry considered in sect. 2.4.

1.12.4.The nonsmooth regularization via Gorizon

In this paper we leave the neighborhood of the singularity at the origin and turn to the
singularity at the horizon. The question we are aiming at is the following: using
distributional geometry (thus without leaving Schwarzschild coordinates), is it possible to
show that the horizon singularity of the Schwarzschild metric is not merely a coordinate
singularity. In order to investigate this issue we calculate the distributional curvature at
the horizon in Schwarzschild coordinates.
The main focus of this work is a (nonlinear) superdistributional description of the

Schwarzschild spacetime. Although the nature of the Schwarzschild singularity is much
“worse” than the quasi-regular conical singularity, there are several distributional
treatments in the literature [8]-[29], mainly motivated by the following considerations: the
physical interpretation of the Schwarzschild metric is clear as long as we consider it
merely as an exterior (vacuum) solution of an extended (sufficiently large) massive
spherically symmetric body. Together with the interior solution it describes the entire
spacetime. The concept of point particles—well understood in the context of linear field
theories—suggests a mathematical idealization of the underlying physics: one would like
to view the Schwarzschild solution as defined on the entire spacetime and regard it as
generated by a point mass located at the origin and acting as the gravitational source.
This of course amounts to the question of whether one can reasonably ascribe

distributional curvature quantities to the Schwarzschild singularity at the horizon.
The emphasis of the present work lies on mathematical rigor. We derive the

“physically expected” result for the distributional energy momentum tensor of the
Schwarzschild geometry, i.e., T0

0  8m3x, in a conceptually satisfactory way.
Additionally, we set up a unified language to comment on the respective merits of some
of the approaches taken so far. In particular, we discuss questions of differentiable
structure as well as smoothness and degeneracy problems of the regularized metrics,
and present possible refinements and workarounds.These aims are accomplished using
the framework of nonlinear supergeneralized functions (supergeneralized Colombeau
algebras  3,).Examining the Schwarzschild metric (1.12) in a neighborhood of the
horizon, we see that, whereas hr is smooth, h1r is not even Lloc

1 (note that the origin
is now always excluded from our considerations; the space we are working on is 3\0).
Thus, regularizing the Schwarzschild metric amounts to embedding h1 into  3, (as
done in (3.2)).Obviously, (3.1) is degenerate at r  2m, because hr is zero at the
horizon. However, this does not come as a surprise. Both hr and h1r are positive
outside of the black hole and negative in the interior. As a consequence any (smooth)
regularization hr (hr) [above (below) horizon] of hr must pass through small
enough vicinity O

2m  x  3|x  2m,x  2m  
(O

2m  x  3|x  2m,x  2m  ) of zeros set O02m  y  3|y  2m

somewhere and, additionally, this vicinity O
2m (O

2m) must converge to O02m as
the regularization parameter  goes to zero.Due to the degeneracy of the Schwarzschild
metric (1.10.44) , the Levi-Cività connection is not available. By apriporiate nonsmooth
regularization (see sect. 3) we obtain an Colombeau generalized object modeling the



singular Schwarzschild metric above and below horizon, i.e.,

ds2  hrdt2  hr
1dr2


 r2d2 ,

ds2  hrdt2  hr
1dr2


 r2d2,

  0,1.

1.12. 14

Consider corresponding distributional connections kj
l


 kj

lh    3, and

kj
l


 kj

lh    3, :

kj
l


 1

2
glmgmk,j  gmj,k  gkj,m,

kj
l


 1

2
g lmgmk,j  gmj,k  gkj,m.

1.12. 15

Obviously kj
lh , kj

lh  coincides with the corresponding Levi-Cività connection

on 3\r  0  r  2m, as h  h0
, h  h0

, and glm  g0
lm, glm  g0

lm

there. Clearly, connections kj
l,kj

l,  0,1 in respect the regularized metric

g,  0,1, i.e., g ij;k  0. Proceeding in this manner, we obtain the nonstandard
result

R
 1

1

 R

 0
0


 m 2m,

R
 1

1

 R

 0
0


 m 2m.

1.12. 16

Investigating the weak limit of the angular components of the generalized Ricci tensor
using the abbreviation

 r  
0



sind 
0

2

dx

and let x be the function x  2m
 3 (x  2m

 3), where by 2m
 3

( 2m
 3) we denote the class of all functions x with compact support such that
(i) suppx  x|x  2m (suppx  x|x  2m) (ii)  r  C. Then

for any function x  2m
 3 we get:

w -
0
lim R

 1
1  w -

0
lim R

 0
0  m |  m 2m,

w -
0
lim R

 1
1  w -

0
lim R

 0
0  m |  m 2m,

1.12. 17

i.e., the Schwarzschild spacetime is weakly Ricci-nonflat (the origin was excluded from
our considerations). Furthermore,the Tolman formula [3],[4] for the total energy of a
static and asymptotically flat spacetime with g the determinant of the four dimensional

metric and d3x the coordinate volume element, gives

ET   Tr
r  T

  T
  Tt

t g d3x  m, 1.12. 18

as it should be.
The paper is organized in the following way: in section II we discuss the conceptual as

well as the mathematical prerequisites. In particular we comment on geometrical matters
(differentiable structure, coordinate invariance) and recall the basic facts of nonlinear
superdistributional geometry in the context of algebras M, of supergeneralized



functions. Moreover, we derive sensible nonsmooth regularizations of the singular
functions to be used throughout the paper. Section III is devoted to these approach to
the problem. We present a new conceptually satisfactory method to derive the main
result. In these final section III we investigate the horizon and describe its distributional
curvature. Using nonlinear superdistributional geometry and supergeneralized functions
it seems possible to show that the horizon singularity is not only a coordinate singularity
without leaving Schwarzschild coordinates.

1.12.5. Distributional Eddington-Finkelstein spacetime.
In physical literature many years exist belief that Schwarzschild spacetime

S2  r  2m   is extendible, in the sense that it can be immersed in a larger
spacetime whose manifold is not covered by the canonical Schwarzschild coordinate
with r  2m. In physical literature [4],[33], [34],[35] one considers the formal change of
coordinates obtained by replacing the canonical Schwarzschild time by "retarded time"
above horizon  given when r  2m by

  t  r  2m ln r
2m

 1 . 1.12. 19

From (1.12.19) it follows for r  2m

dt   dr
1  2m

r
 dv. 1.12. 20

The Schwarzschild metric (1.10.44) above horizon ds2 (see section 3) in this coordinate
obviously takes the form

ds2   1  2m
r dv2  2drdv  r2d2  sin2d2 . 1.12. 21

When r  2m we replace (1.12.19) below horizon by

  t  r  2m ln 1  r
2m

1.12. 22

From (1.12.22) it follows for r  2m

dt  dr
2m
r  1

 dv. 1.12. 23

The Schwarzschild metric (1.10.44) below horizon ds2 (see section 3) in this coordinate
obviously takes the form

ds2  2m
r  1 dv2  2drdv  r2d2  sin2d2 . 1.12. 24

Remark 1.12.6.(i) Note that the metric (1.12.21) is well defined on the manifold
S2  r  0   and obviously it is regular Lorentzian metric: its coefficients are

smooth.
(ii) The term 2drdv ensures its non-degeneracy for r  2m.
(iii) Due to the nondegeneracy of the metric (1.12.24) the Levi-Civita connection

kj
l  1

2
glmgmk,j  gmj,k  gkj,m 1.12. 25

obviously now available and therefore nonsingular on horizon in contrast with
Schwarzschild metric one obtains [3]:




  rs

2r2
,

r 
rsr  rs

2r3
,r

r   rs
2r2

,r
  1

r ,

r
  1

r ,
  r,

r  rr  rs,
  cot,


  r sin2,

r  rr  rs sin2,
   sincos.

1.12. 26

(iv) In physical literature [3],[4] by using properties (i)-(iii) this spacetime wrongly
convicted as an rigorous mathematical extension of the Schwarzschild spacetime.
Remark 1.12.7.Let us consider now the coordinates: (i) v, r  r,  ,    and (ii)

v, r  r,  ,    . Obviously both transformations given by Eq.(1.12.20) and
Eq.(1.12.23) are singular because the both Jacobian of these transformations is singular
at r  2m :

v
t

v
r

r
t

r
r


1 r

r  2m
0 1

1.12. 27

and

v
t

v
r

r
t

r
r


1  r

2m  r
0 1

. 1.12. 28

Remark 1.12.8.Note first (i) such singular transformations not allowed in conventional
Lorentzian geometry and second (ii) both Eddington-Finkelstein metrics given by
Eq.(1.12.21) and by Eq.(1.12.24 ) well defined in rigorous mathematical sence at r  2m.
Remark 1.12.9. (I) From consideration above follows that Schwarzschild spacetime

S2  r  2m   is not extendible, in the sense that it can be immersed in a larger
spacetime whose manifold is not covered by the canonical Schwarzschild coordinate
with r  2m. Thus Eddington-Finkelstein spacetime cannot be considered as an
extension of the Schwarzschild spacetime in natural way in respect with conventional
Lorentzian geometry. Such "extension" are the extension by abnormal definition and
nothing more. (II) However distributional Eddington-Finkelstein spacetime (1.10.53) is
equivalent of the distributional Schwarzschild spacetime in natural way.
Remark 1.12.10.From consideration above follows that it is necessary an

regularization of the Eq.(1.12.20) and Eq.(1.12.23) on horizon. However obviously only
nonsmooth regularization via horizon r  2m possible. Under nonsmooth regularization
(see section 3) Eq.(1.12.20) and Eq.(1.12.23) takes the form

dt   dr
1
r r  2m2  2

 dv,

  0,1

1.12. 29

and

dt  dr
1
r 2m  r2  2

 dv,

  0,1

1.12. 30

correspondingly. Therefore Eq.(1.12.27)-Eq.(1.12.28) takes the form



v
t

v
r

r
t

r
r


1 r

r  2m2  2

0 1

1.12. 32

and

v
t

v
r

r
t

r
r


1  r

2m  r2  2

0 1

. 1.12. 33

From Eq.(1.12.29)-Eq.(1.12.30) one obtain generalized Eddington-Finkelstein
transformatios

dt   rdr

r  2m2  2


 dv,

  0,1

1.12. 34

and

dt  rdr

2m  r2  2


 dv,

  0,1.

1.12. 35

Therefore Eq.(1.12.32)-Eq.(1.12.33) takes the form

v
t 

v
r 

r
t

r
r



1 r

r  2m2  2


0 1

1.12. 36

and

v
t 

v
r 

r
t

r
r



1  r

2m  r2  2


0 1

. 1.12. 37

At point r  2m one obtain

v
t 

v
r 

r
t

r
r

r2m


1 r1
0 1

1.12. 38

and

v
t 

v
r 

r
t

r
r

r2m


1 r1
0 1

, 1.12. 39

where 1  . Thus generalized Eddington-Finkelstein transformations (1.12.34)-

(1.12.35) well defined in the sense of Colombeau generalized functions. From the



Eq.(1.12.34) one obtains

dt2   rdr

r  2m2  2


 dv

2

 r2dr2

r  2m2  2




 2rdrdv

r  2m2  2


 dv2,

dt2hr  
r  2m2  2


r dt2 

 rdr2

r  2m2  2


 2drdv  1
r r  2m2  2 dv2.

1.12. 40

From the Eq.(1.12.35) one obtains

dt2  rdr

r  2m2  2


 dv

2

 r2dr2

r  2m2  2





2rdrdv

r  2m2  2


 dv2,

dt2hr 
r  2m2  2


r dt2 

rdr2

r  2m2  2


 2drdv  1
r r  2m2  2 dv2.

1.12. 41

Substituting Eqs.(1.12.40)-(1.12.41) into distributional Schwarzschild metric (1.12.42)
above (below) gorizon (see subsect.3.1)

ds2  hrdt2  hr
1dr2


 r2d2 ,

ds2  hrdt2  hr
1dr2


 r2d2,

hr  
r  2m2  2


r , hr 

r  2m2  2


r

1.12. 42

one obtains

ds2   1
r r  2m2  2 dv2  2drdv  r2d2  sin2d2 .

ds2 
1
r 2m  r2  2 dv2  2drdv  r2d2  sin2d2 .

1.12. 43

Therefore Colombeau generalized object modeling the classical Eddington-Finkelstein
metric given Eq.(1.12.21) and Eq.(1.10.24) above and below gorizon takes the form



ds2  hrdv2  2drdv  r2d2  sin2d2 ,

ds2  hrdv2  2drdv  r2d2  sin2d2 .
1.12. 44

It easily to verify by using formula A.2 (see appendix) that the distributional curvature
scalar R again singular at r  2m as in the case of the distributional Schwarzschild
spacetime given by Eq.(1.12.42). However this is not surprising because the classical
Eddington- Finkelstein spacetime and generalized Eddington-Finkelstein specetime
given by Eq.(1.12.44) that is essentially different geometrical objects.

2. Generalized Colombeau Calculus
2.1.Notation and basic notions from standard Colombeau
theory.
We use [1],[2],[7] as standard references for the foundations and various applications

of standard Colombeau theory. We briefly recall the basic Colombeau construction.
Throughout the paper  will denote an open subset of n. Stanfard Colombeau
generalized functions on  are defined as equivalence classes u  u of nets of
smooth functions u  C (regularizations) subjected to asymptotic norm conditions
with respect to   0,1 for their derivatives on compact sets.
The basic idea of classical Colombeau’s theory of nonlinear generalized functions

[1],[2] is regularization by sequences (nets) of smooth functions and the use of
asymptotic estimates in terms of a regularization parameter . Let u0,1 with
u 

M for all   ,where M a separable, smooth orientable Hausdorff
manifold of dimension n.
Definition 2.1.1.The classical Colombeau’s algebra of generalized functions on M is
defined as the quotient:

M  MM/ M 2.1. 1

of the space MM of sequences of moderate growth modulo the space M of
negligible sequences. More precisely the notions of moderateness resp. negligibility are
defined by the following asymptotic estimates (where M denoting the space of
smooth vector fields on M):

MM  u| KK  Mkk  NN  

1,,k1,,k  M
pK
sup |L1Lk up| ON as   0 ,

2.1. 2

M  u| KK  M, kk  0qq  N

1,,k1,,k  M
pK
sup |L1Lk up| Oq as   0 .

2.1. 3

Remark 2.1.1. In the definition the Landau symbol a  O appears, having the
following meaning: CC  000  0,1  0a  C.
Definition 2.1.2. Elements of M are denoted by:

u  clu  u  M. 2.1. 4

Remark 2.1.2.With componentwise operations (, ) M is a fine sheaf of differential



algebras with respect to the Lie derivative defined by Lu  clLu.
The spaces of moderate resp. negligible sequences and hence the algebra itself may

be
characterized locally, i.e., u  M iff u    V for all charts V,, where

on
the open set V  n in the respective estimates Lie derivatives are replaced by
partial derivatives.
The spaces of moderate resp. negligible sequences and hence the algebra itself may

be characterized locally, i.e., u  M iff u    V for all charts V,, where
on the open set V  n in the respective estimates Lie derivatives are replaced by
partial derivatives.
Remark 2.1.3.Smooth functions f  M are embedded into M simply by the
“constant” embedding , i.e., f  clf, hence M is a faithful subalgebra

of M.

2.2.Point Values of a Generalized Functions on M.
Generalized Numbers.
Within the classical distribution theory, distributions cannot be characterized by their

point values in any way similar to classical functions. On the other hand, there is a very
natural and direct way of obtaining the point values of the elements of Colombeau’s
algebra: points are simply inserted into representatives. The objects so obtained are
sequences of numbers, and as such are not the elements in the field  or . Instead,
they are the representatives of Colombeau’s generalized numbers. We give the exact
definition of these ”numbers”.
Definition 2.2.1.Inserting p  M into u  M yields a well defined element of the ring

of constants (also called generalized numbers) (corresponding to K  resp. ),
defined as the set of moderate nets of numbers (r  K0,1 with |r| ON for some
N) modulo negligible nets (|r| Om for each m); componentwise insertion of points of
M into elements of M yields well-defined generalized numbers, i.e.,elements of the
ring of constants:

 cM/ cM 2.2. 1

(with   or   for K   or K  ), where

cM  r  KI|nn   |r |  On as   0

cM  r  KI|mm   |r |  Om as   0

I  0,1.

2.2. 2

Generalized functions on M are characterized by their generalized point values, i.e., by
their values on points in M c, the space of equivalence classes of compactly supported
nets p  M0,1 with respect to the relation p  p : dhp,p   Om for all m,
where dh denotes the distance on M induced by any Riemannian metric.

Definition 2.2.2. For u  M and x0  M, the point value of u at the point x0,ux0, is
defined as the class of ux0 in .

Definition 2.2.3.We say that an element r  is strictly nonzero if there exists a



representative r and a q   such that |r|  q for  sufficiently small. If r is strictly
nonzero, then it is also invertible with the inverse 1/r. The converse is true as

well.
Treating the elements of Colombeau algebras as a generalization of classical

functions,
the question arises whether the definition of point values can be extended in such a

way
that each element is characterized by its values. Such an extension is indeed possible.
Definition 2.2.4. Let  be an open subset of n. On a set  :

  x  I|pp  0|x |  Op 

x  I|pp  000  0 |x |  p, for 0    0
2.2. 3

we introduce an equivalence relation:

x  y  qq  0  0 |x  y |  q, for 0    0 2.2. 4

and denote by    /  the set of generalized points. The set of points with compact
support is

c 
x  clx  |KK  00  0 x  K for 0    0 2.2. 5

Definition 2.2.5. A generalized function u  M is called associated to zero, u  0
on
  M in L.Schwartz sense if one (hence any) representative u converges to zero
weakly,i.e.

w - lim0 u  0 2.2. 6

We shall often write:

u
Sch
 0. 2.2. 7

The M-module of generalized sections in vector bundles-especially the space of

generalized tensor fields s
rM-is defined along the same lines using analogous

asymptotic estimates with respect to the norm induced by any Riemannian metric on the
respective fibers. However, it is more convenient to use the following algebraic
description of generalized tensor fields

s
rM  M  s

rM , 2.2. 8

where s
rM denotes the space of smooth tensor fields and the tensor product is taken

over the module CM. Hence generalized tensor fields are just given by classical ones
with generalized coefficient functions. Many concepts of classical tensor analysis carry
over to the generalized setting [1]-[2], in particular Lie derivatives with respect to both
classical and generalized vector fields, Lie brackets, exterior algebra, etc. Moreover,
generalized tensor fields may also be viewed as M-multilinear maps taking
generalized vector and covector fields to generalized functions, i.e., as M-modules we
have

s
rM  LM 1

0Mr, 0
1Ms; M. 2.2. 9



In particular a generalized metric is defined to be a symmetric, generalized 0,2-tensor
field gab  gab  (with its index independent of  and) whose determinant detgab is
invertible in M. The latter condition is equivalent to the following notion called strictly
nonzero on compact sets: for any representative detgab  of detgab we have
K  M m  infpK|detgab | m  for all  small enough. This notion captures the
intuitive idea of a generalized metric to be a sequence of classical metrics approaching a
singular limit in the following sense: gab is a generalized metric iff (on every relatively
compact open subset V of M) there exists a representative gab  of gab such that for
fixed  (small enough)gab  gab  (resp. gab |V) is a classical pseudo-Riemannian
metric and detgab is invertible in the algebra of generalized functions. A generalized
metric induces a M-linear isomorphism from 0

1M to 1
0M and the inverse metric

gab  gab
1 is a well defined element of 0

2M (i.e., independent of the
representative gab ). Also the generalized Levi-Civita connection as well as the
generalized Riemann-, Ricci- and Einstein tensor of a generalized metric are defined
simply by the usual coordinate formulae on the level of representatives.

2.3. The nonlinear distributional Schwarzschild geometry.
The truncated distributional Schwarzschild geometry.
Gravitational singularity.
There exist two different types of distributional Colombeau solution of the Generalized

Einstein’s Field Equations (1.9.18) corresponding to classical Schwarzschild solution.
That is: (i) full distributional Schwarzschild blackhole geometry, given by Colombeau
generalized object ds2, ds

2 , given by Equations (1.10.28), see Figure 2.3.1(a)

and (ii) the truncated distributional Schwarzschild space-time given by Colombeau
generalized object ds2,i.e. in this case distributional space-time ends just on the

Schwarzschild horizon, see Figure 2.3.1(b).

Fig.2.3.1.

Fig.2.3.1.(a) The picture of a distributional Schwarzschild blackhole, given by the full
Colombeau generalized object (1.10.28). Distributional spacetime ends just on the
Schwarzschild singularity. (b) The truncated Schwarzschild distributional geometry,

given
by Colombeau generalized object . Distributional spacetime ends just on the
Schwarzschild horizon.
The Colombeau generalized Ricci tensor above horizon Rr

 (see Eq.3.1.4) reads



R
r0

0

 R

r1
1


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hr 
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r

R
r2

2

 R

r3
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
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r 

1  hr
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.
2.3. 1

From Eq.(3.1.5) we obtain

2r2R
r0

0

 2r2R

r1
1


 r2hr  2rhr 

 r
r  2m2  2

1/2




rr  2m2

r  2m2  2
3/2





 r
r  2m2  2

1/2


rr  2m2

r  2m2  2
3/2

2.3. 2

and

r2R
r2

2

 r2R

r3
3


 rhr  1  hr 

 r  2m
r  2m2  2

1/2



 1   r  2m
r  2m2  2

1/2
 1.

2.3. 3

For any r  2m   from Eq.(2.3.2)-Eq.(2.3.3) one obtains

2r2R
r0

0

 2r2R

r1
1


 r2h  2rh 

 r
r  2m2  2

1/2


rr  2m2

r  2m2  2
3/2



 r
r  2m 1  r  2m22

1/2


rr  2m2

r  2m3 1  r  2m22
3/2



 r
r  2m

 r
r  2m

 O 2  O 2

2.3. 4

and

r2R
r2

2

 r2R

r3
3


 rhr  1  hr 

 r  2m
r  2m2  2

1/2
 1   r  2m

r  2m 1  r  2m22
1/2

 1 

1  1  O 2  O 2 ,

2.3. 5

where   0,,  1.
Thus for any r  2m   the nonlinear distributional Schwarzschild geometry returns
the classical result.
For any r  2m  0


from Eq.(2.3.2)-Eq.(2.3.3) in contrast with ubnormal canonical

result
one obtains



R
r0

0
 r2m

 R
r1

1
 r2m



 r
4m2 r  2m2  2

1/2

r2m


rr  2m2

4m2 r  2m2  2
3/2
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

 21m11

2.3. 6

and

R
r2

2
 r2m

 R
r3

3
 r2m



 r  2m
4m2 r  2m2  2

1/2

r2m

 41m2  41m2. 2.3. 7

It follows from Eq.(2.3.7)

R
r2

2

 R

r3
3


 41m2r, 2m, 2.3. 8

where

r, 2m 

0 if r  2m

1 if r  2m

2.3. 9

The Colombeau generalized Ricci tensor below horizon R
 

  R
 

(see Eq.3.1.21)
reads
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.
2.3. 10

From Eq.(3.1.22) we obtain
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0

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2.3. 11
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1/2

 1. 2.3. 12

For any r  2m   from Eq.(2.3.11)-Eq.(2.3.12) one obtains
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r
r  2m

 r
r  2m

 O 2  O 2

2.3. 13

and

r2R
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
 r2R

r3
3


 r  2m

r  2m2  2
1/2

 1  O 2 2.3. 14

where   0,,  1.
Thus for any r  2m   the nonlinear distributional Schwarzschild geometry returns
the classical result.
For any r  2m  0


from Eq.(2.3.11)-Eq.(2.3.12) in contrast with ubnormal canonical

result one obtains

2r2R
r0

0
 r2m

 2r2R
r1

1
 r2m



r
r  2m2  2

1/2

r2m

 rr  2m2

r  2m2  2
3/2

r2m

 21m11
2.3. 15

and
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 41m2  41m2.
2.3. 14

It follows from Eq.(2.3.14)

R
r2

2

 R

r3
3


 41m2r, 2m, 2.3. 15

where

r, 2m 

0 if r  2m

1 if r  2m

2.3. 16

Remark 2.3.1.Note that any sequence R
r0

0, R
r1

1, R
r2

2, R
r3

3 and any
sequence R

r0
0, R

r1
1, R

r2
2, R

r3
3 has a weak limit in 3 :

w-lim0R
r0

0  3, . . . ,w-lim0R
r3

3  3, see Section 3.

2.4. The nonlinear distributional Schwarzschild geometry in
isotropic coordinates.
The Schwarzschild metric in isotropic coordinates t,ρ,,ϕ reads [3]:



ds2   1  rs/4ρ
1  rs/4ρ

2

dt2  1  rs
4ρ

4

dρ2  ρ2d2  sin2dϕ2, 2.4. 1

see Eq.(1.1) where we let c  1,or in the equivalent form

ds2   4ρ  rs
2

4ρ  rs
dt2  1  rs

4ρ

4

dρ2  ρ2d2  sin2dϕ2. 2.4. 2

In order to obtain Colombeau solutions of the generalized Einstein field equations
(1.9.18), corresponding to the nonclassical semi Riemannian metric (2.4.2) we apply the
regulariation 4ρ  rs2  4ρ  rs2  2 and embed (2.4.2) in the Colombeau object

ds2  
4ρ  rs2  2 

4ρ  rs
dt2  1  rs

4ρ

4

dρ2  ρ2d2  sin2dϕ2. 2.4. 3

We rewrite now Eq.(2.4.3) in the following form (see Appendix A,Eq.(A.1))

ds2  A dt
2  B  Cdρ2 

Bρ2d2  sin2dϕ2,
2.4. 4

where

A 
4ρ  rs2  2

4ρ  rs
,B  1,B  C  1  rs

4ρ

4

 G. 2.4. 5

The Colombeau generalized curvature scalar R reads (see Appendix
A,Eq.(A.2))

R  G 2
  A

 
A



 




2C
2  A


A

 1
2
A
 

A

 

 

,
2.4. 6

where

  AG,
   A

 G  AG


 




A
 G  AG

AG


A
 

A


G
G

.
2.4. 7

Substituting Eq.(2.4.7) into Eq.(2.4.3) we get

R  G 2
  A

 
A



 




2C
2  A


A

 1
2
A
 

A

 

 



G 2


G
G


2C
2  A


A

 1
2
A
 

A
A
 

A


G
G 

,

2.4. 8

where



A 
4ρ  rs2  2

4ρ  rs
,A

  
84ρ  rs
4ρ  rs

 4ρ  rs2  2

4ρ  rs2
,

A
  64rs

4  rs2


82  2rs2  8rs

4  rs3
,

A


A
 64rs

4ρ  rs2  2 4  rs
 8
4  rs2

2.4. 9

and

A
 

A


84ρ  rs
4ρ  rs2  2

 1
4ρ  rs

. 2.4. 10

From Eq.(2.4.9)-Eq.(2.4.10) we obtain

A
 

A 4rs


84ρ  rs

4ρ  rs2  2 4rs

 1
4ρ  rs 4rs

  1
2rs

A


A 4rs


8rs4  rs

4ρ  rs2  2 4rs

 8
4  rs2 4rs



8rs4  rs

4ρ  rs2  2 4  rs
 16rs

2
 2

rs2
.

2.4. 11

From Eq.(2.4.11) and Eq.(2.4.8) finally we obtain

R |4rs 
16rs
2

 const. 2.4. 11

2.5.Generalized Colombeau Calculus.

2.5.1.Super Generalized Functions.
We briefly recall the basic generalized Colombeau construction. Colombeau

supergeneralized functions on   n, where dim  n are defined as equivalence
classes u  u of nets of functions u  C\,  0, such that any u is a net
of functions smooth on \ and has a discontinuity on a subset   , where

dim  n.We assume that for any   0, the derivative mu
x1

k1 . . .xnkn
exists in the

sense of the theory of generalized functions and mu
x1

k1 . . .xnkn
 .

The basic idea of generalized Colombeau’s theory of nonlinear supergeneralized
functions [33] is regularization by sequences (nets) of nonsmooth functions with
derivatives in  and the use of asymptotic estimates in terms of a regularization
parameter . Let u0,1 with u such that: (i) u  M\ and (ii)
L1Lku  M, for all   0,,where M a separable, smooth orientable Hausdorff
manifold of dimension n.
Definition 2.5.1.The supergeneralized Colombeau’s algebra  M, of

supergeneralized functions on M, where   M, dimM  n, dim  n , is defined as
the quotient:

M,  MM,/ M, 2.5. 1



of the space MM, of sequences of moderate growth modulo the space M, of
negligible sequences. More precisely the notions of moderateness resp. negligibility are
defined by the following asymptotic estimates (where M\ denoting the space of
smooth vector fields on M\):

MM,  u| KK  M\kk  NN  

1,,k1,,k  M\
pK
sup |L1Lk up| ON,  0 &

KK  Mkk  NN  f  M1,,k1,,k  M

L1
w Lk

w u 
f M

sup L1
w Lk

w uf  ON,  0 ,

2.5. 2

M,  u| KK  M\, kk  0qq  N

1,,k1,,k  M\
pK
sup |L1Lk up| Oq,  0 &

KK  Mkk  NN  f  M1,,k1,,k  M

L1
w Lk

w u 
f M

sup L1
w Lk

w uf  Oq,  0 ,

2.5. 3

where Lk
w denoting the weak Lie derivative in L.Schwartz sense.In the definition the

Landau symbol a  O appears, having the following meaning:
CC  000  0,1  0a  C.

Definition 2.5.2. Elements of M, are denoted by:

u  clu  u  M,. 2.5. 4

Remark 2.5.1.With componentwise operations (, ) M, is a fine sheaf of
differential algebras with respect to the Lie derivative defined by Lu  clLu.
The spaces of moderate resp. negligible sequences and hence the algebra itself may

be characterized locally, i.e., u  M, iff u    V for all charts V,,
where on the open set V  n in the respective estimates Lie derivatives are
replaced by partial derivatives.
The spaces of moderate resp. negligible sequences and hence the algebra itself may

be characterized locally, i.e., u  M, iff u    V for all charts V,,
where on the open set V  n in the respective estimates Lie derivatives are
replaced by partial derivatives.
Remark 2.5.2.Smooth functions f  M\ are embedded into M, simply by the

“constant” embedding , i.e., f  clf, hence M\ is a faithful subalgebra
of M,.

2.5.2.Point Values of a Supergeneralized Functions on M.
Supergeneralized Numbers
Within the classical distribution theory, distributions cannot be characterized by their



point values in any way similar to classical functions. On the other hand, there is a very
natural and direct way of obtaining the point values of the elements of Colombeau’s
algebra: points are simply inserted into representatives. The objects so obtained are
sequences of numbers, and as such are not the elements in the field  or . Instead,
they are the representatives of Colombeau’s generalized numbers. We give the exact
definition of these ”numbers”.
Definition 2.5.3.Inserting p  M into u  M, yields a well defined element of the

ring of constants (also called generalized numbers) (corresponding to K  resp. ),
defined as the set of moderate nets of numbers (r  K0,1 with |r| ON for some
N) modulo negligible nets (|r| Om for each m); componentwise insertion of points of
M into elements of M, yields well-defined generalized numbers, i.e.,elements of the
ring of constants:

 cM,/ cM, 2.5. 5

(with    or   for K   or K  ), where

cM,  r  KI|nn   |r |  On as   0 ,

cM,  r  KI|mm   |r |  Om as   0

I  0,1.

2.5. 6

Supergeneralized functions on M are characterized by their generalized point values,
i.e., by their values on points in M c, the space of equivalence classes of compactly
supported nets p  M\0,1 with respect to the relation
p  p : dhp,p   Om for all m, where dh denotes the distance on M\ induced by
any Riemannian metric.

Definition 2.5.4. For u  M, and x0  M, the point value of u at the point
x0,ux0, is
defined as the class of ux0 in .

Definition 2.5.5.We say that an element r  is strictly nonzero if there exists a
representative r and a q   such that |r|  q for  sufficiently small. If r is strictly
nonzero, then it is also invertible with the inverse 1/r. The converse is true as well.
Treating the elements of Colombeau algebras as a generalization of classical

functions, the question arises whether the definition of point values can be extended in
such a way that each element is characterized by its values. Such an extension is
indeed possible.
Definition 2.5.6. Let  be an open subset of n\. On a set   :

   x  \I|pp  0|x |  Op 

x  \I|pp  000  0 |x |  p, for 0    0
2.5. 7

we introduce an equivalence relation:

x  y  qq  0  0 |x  y |  q, for 0    0 2.5. 8

and denote by    /  the set of supergeneralized points. The set of points with



compact support is

,c 
x  clx  |KK  \00  0 x  K for 0    0 2.5. 9

Definition 2.5.7. A supergeneralized function u  M, is called associated to zero,
u  0 on   M in L. Schwartz’s sense if one (hence any) representative u
converges to zero weakly,i.e.

w - lim0 u  0 2.5. 10

We shall often write:

u
Sch
 0. 2.5. 11

Definition 2.5.8.The M,-module of supergeneralized sections in vector bundles-

especially the space of generalized tensor fields s
rM\-is defined along the same

lines using analogous asymptotic estimates with respect to the norm induced by any
Riemannian metric on the respective fibers. However, it is more convenient to use the
following algebraic description of generalized tensor fields

s
rM,  M,  s

rM\ , 2.5. 12

where s
rM\ denotes the space of smooth tensor fields and the tensor product is

taken over the module CM\. Hence super generalized tensor fields are just given by
classical ones with generalized coefficient functions. Many concepts of classical tensor
analysis carry over to the generalized setting, in particular Lie derivatives with respect to
both classical and generalized vector fields, Lie brackets, exterior algebra, etc.
Moreover, generalized tensor fields may also be viewed as M,-multilinear maps
taking generalized vector and covector fields to generalized functions, i.e., as
M,-modules we have

s
rM,  LM 1

0
M,r, 0

1M,s; M,. 2.5. 13

In particular a supergeneralized metric is defined to be a symmetric, supergeneralized
0,2-tensor field gab  gab  (with its index independent of  and) whose

determinant detgab is invertible in M,. The latter condition is equivalent to the
following notion called strictly nonzero on compact sets: for any representative
detgab  of detgab we have K  M\ m  infpK|detgab | q  for all  small
enough. This notion captures the intuitive idea of a generalized metric to be a sequence
of classical metrics approaching a singular limit in the following sense: gab is a
generalized metric iff (on every relatively compact open subset V of M) there exists a
representative gab  of gab such that for fixed  (small enough)gab  gab  (resp.
gab |V) is a classical pseudo-Riemannian metric and detgab is invertible in the algebra

of generalized functions. A generalized metric induces a M,-linear isomorphism

from 0
1M, to 1

0
M, and the inverse metric gab  gab

1 is a well defined

element of 0
2
M, (i.e., independent of the representative gab ). Also the

supergeneralized Levi-Civita connection as well as the supergeneralized Riemann, Ricci
and Einstein tensor of a supergeneralized metric are defined simply by the usual
coordinate formulae on the level of representatives.



2.5.3.Remarks on distributional derivatives in 
Let fx be a function of a single variable x   that has a jump discontiuity at x  x0 of

magnitude fx0  fx0  0  fx0  0 but has a continuous derivative everywhere else

except x  x0 (see Fig.2.5.1) i.e.,

fx 
f1x x  x0

f2x x  x0

Fig.2.5.1.

Let the derivative in the interval x  x0 and x  x0 be denoted f x , where

f x  f x iff x  x0. This derivative f x is undefined at x  x0. With the help of

generalized functions, however, the distributional derivative f x is obtained by setting:

gx  fx  fx0Hx  x0, 2.5. 14

where Hx  x0 is the Heaviside function. The function gx is continuous at x  x0. Its
derivative coincides with that of fx on both sides of x0. Accordingly, we differentiate
both sides of Eq.(2.5.14) and therefore one obtains

f x  f x  fx0x  x0. 2.5. 15

Thus finally we get

f x  f x  fx0x  x0. 2.5. 16

or

f x 
f1
x  fx0x  x0 x  x0

f2
x  fx0x  x0 x  x0

2.5. 17

Equation (2.5.17) is easily generalized to a function fx that has jumps of magnitude
fx0 , fx1 , . . . , fxk at x0,x1, . . . ,xk. The result is

f x  f x i0
k
fxix  x i. 2.5. 18

Let us now consider a function fx that admits derivatives up to the second order on
both sides of the point x0, that has a jump discontinuity of strength fx0 , and whose

derivative has a jump discontinuity of strength f 
x0
at this point. To obtain f x, one

substitutes f x for fx in (2.5.14) and immediately one obtains



f x  f x  fx0
x  x0  f 

x0
x  x0, 2.5. 19

where f x  f x iff x  x0,or

f x 
f1
x  fx0

x  x0  f 
x0
x  x0 x  x0

f2
x  fx0x  x0  f 

x0
x  x0 x  x0

2.5. 20

This process can be continued for higher derivatives and for singularities at several
points.Thus, a function fx that admits continuous derivatives up to the m-th order in
each of the intervals x j1,x j, j  1,2, . . . , l has m-th order distributional derivative f mx :

f mx  f mx j1
l aj m1x  x j  bj m2x  x j . . .f j x  x j , 2.5. 21

where aj  fxxj ,bj  f x
xj
, . . . , f j  f m1x

xj
and xj stands for the jump in the

quantity across the point x j.

2.5.4.The super distributional geometry of the
Schwarzschild space-time.
Note that the Colombeau generalized object ds2, ds

2 , given by Equations

(1.10.28) that is a natural way is a supergeneralized 0,2-tensor field gab  gab 

whose determinant detgab is invertible in 4,r  2m and the inverse metric

gab  gab
1 is a well defined element of 0

2
4,r  2m.Thus the full super

generalized Ricci tensor reads

Rr0
0


 Rr1

1

 1

2
h r 

2
r h
  r ,

Rr2
2


 Rr3

3



h

r


r 

1  hr
r2

,

2.5. 22

where h  h, h
 and the istributional derrivatives h  r and h r is defined

by Eq.(2.5.17) and by Eq.(2.5.20) correspondingly.
From Eq.(3.1.2) we obtain

h 2m  h2m  0  h
2m  0  h2m  h2m 

 
2m

 
2m

 /m.
2.5. 23

From Eq.(2.5.23) and Eq.(2.5.17) we obtain

h  r 
hr  h 2mr  2m r  2m

hr

 h 2mr  2m r  2m

2.5. 24

where h2m  /m and therefore

h  r 
hr 


m r  2m r  2m

hr



m r  2m r  2m

2.5. 25

From Eq.(3.1.5) and Eq.(3.1.22) we obtain



h
2m

 h2m  0  h
2m  0  h2m  h

2m 


4m2  


4m2 


2m2 .

2.5. 26

From Eq.(3.1.5),Eq.(3.1.22) and Eq.(2.5.7) we obtain

h r



hr  h 2m
r  2m  h

2m
r  2m r  2m

hr  h 2mr  2m  h
x0
r  2m r  2m

2.5. 27

where h 2m  /2m
2 and therefore

h r 
hr 


m r  2m 


2m2 r  2m r  2m

hr 

m r  2m 


2m2 r  2m r  2m

2.5. 28

Inserting Eqs.(2.5.26)-(2.5.28) into Eqs.(2.5.22) finally we get for r  2m :

R
r0

0

 R

r1
1


 1

2
h r 

2
r h
  r 

1
2

hr 
2
r h

x 



2m

r  2m 

2m2 r  2m 

2
rm r  2m,

R
r2

2

 R

r3
3




h

r


r 

1  hr
r2



hr
r 

1  hr
r2



rm r  2m.

2.5. 29

And finally we get for r  2m :

R
r0

0

 R

r1
1


 1

2
h r 

2
r h
  r 

1
2

hr 
2
r h

x 



2m

r  2m 

2m2 r  2m 

2
rm r  2m,

R
r2

2

 R

r3
3




h

r


r 

1  hr
r2



hr
r 

1  hr
r2



rm r  2m.

2.5. 30

Note that in  :

w- lim0
1

r  2m2  2
 r  2m, 2.5. 31



and therefore in  :

w- lim0
d
dr


r  2m2  2

 w- lim0
21r  2m

r  2m2  2
2  r  2m . 2.5. 32

By using Eq.(2.5.31) and Eq.(2.5.32) one obtains the natural imbeddings

r  2m   : r  2m  1 
r  2m2  2 

  2.5. 33

and

r  2m   : r  2m  21
r  2m

r  2m2  2
2



  2.5. 34

correspondingly.
Remark 2.5.3
Remark 2.5.4.Note that in 2m, :

w- lim0
2r  2m

r  2m2  2
2  c1r  2m. 2.5. 35

2.6.Superdistributional general relativity
We briefly summarize the basics of superdistributional general relativity, as a

preliminary to latter discussion.In the classical theory of gravitation one is led to consider
the Einstein field equations which are,in general,quasilinear partial differential equations
involving second order derivatives for the metric tensor. Hence, continuity of the first
fundamental form is expected and at most, discontinuities in the second fundamental
form, the coordinate independent statements appropriate to consider 3-surfaces of
discontinuity in the spacetime manifolfd of General Relativity.
In standard general relativity, the space-time is assumed to be a four-dimensional

differentiable manifold M endowed with the Lorentzian metric ds2  gdxdx

,  0,1, 2,3. At each point p of space-time M, the metric can be diagonalized as

dsp2  dXpdXp with   1,1, 1,1, by choosing the coordinate system
X;  0,1, 2,3 appropriately.
In superdistributional general relativity the space-time is assumed to be a four-

dimensional differentiable manifold M\, where dimM  4,dim  3 endowed with
the Lorentzian supergeneralized metric

ds2  gdxdx ;,  0,1, 2,3. 2.27

At each point p  M\, the metric can be diagonalized as

dsp2  dX
pdX

p with   1,1, 1,1, 2.28

by choosing the generalized coordinate system X
;  0,1, 2,3 appropriately.

The classical smooth curvature tensor is given by

R
  



 
 



 
 

 

 

 

 

 

2.29



with 

 
being the smooth Christoffel symbol.The supergeneralized nonsmooth

curvature tensor is given by

R
  



   
 



   
 

   


   



 

   


   

2.30

with 

   
being the supergeneralized Christoffel symbol.The fundamental

classical action integral is

 1
c   G  Md4x, 2.31

where M is the Lagrangian density of a gravitational source and  G is the gravitational
Lagrangian density given by

 G  1
2

. 2.32

Here  is the Einstein gravitational constant   8G/c4 and is defined by

 g g 
 



 
 

 



 
2.33

with g  detg. There exists the relation

g R     , 2.34

with

   g g 
 

 g 

 
. 2.35

Thus the supergeneralized fundamental action integral   is

  
1
c    G   Md

4x , 2.36

where  M is the supergeneralized Lagrangian density of a gravitational source and

  G is the supergeneralized gravitational Lagrangian density given by

  G 
1
2

  . 2.37

Here  is the Einstein gravitational constant   8G/c4 and   is defined by

   g g



  



  
 

  



  
2.38

with g  detg . There exists the relation

g R      
 , 2.39

with

 
   g g


   

 g


   
. 2.40

Also, we have defined the classical scalar curvature by

R  R
 2.41

with the smooth Ricci tensor

R  R
 . 2.42



From the action , the classical Einstein equation

G
  R

  1
2
 R  T

 , 2.43

follows, where T
 is defined by

T
 

T


g 2.44

with

T


 2g

 M

g
2.45

being the energy-momentum density of the classical gravity source. Thus we have
defined the supergeneralized scalar curvature by

R  R
 2.46

with the supergeneralized Ricci tensor

R  R
 . 2.47

From the action  , the generalized Einstein equation

G
  R

 
1
2
 R  T

 , 2.48

follows, where T
 is defined by

T
 

T




g
2.49

with

T






 2g
 M
g

2.50

being the supergeneralized energy-momentum density of the supergeneralized gravity

source.The classical energy-momentum pseudo-tensor density

t 

of the gravitational

field is defined by

t 

    G    G

g,
g, 2.51

with g,  g/x.The supergeneralized energy-momentum pseudo-tensor density

t 


of the gravitational field is defined by


t 




    G 

  G
g, 

g, 2.52

with g,  g/x.

3.Distributional Schwarzschild Geometry from nonsmooth
regularization via Horizon

3.1.Calculation of the stress-tensor by using nonsmooth
regularization via Horizon
In this section we leave the neighborhood of the singularity at the origin and turn to the



singularity at the horizon. The question we are aiming at is the following: using
distributional geometry (thus without leaving Schwarzschild coordinates), is it possible to
show that the horizon singularity of the Schwarzschild metric is not merely only a
coordinate singularity. In order to investigate this issue we calculate the distributional
curvature at horizon in Schwarzschild coordinates. In the usual Schwarzschild
coordinates t, r,,, r  2m the Schwarzschild metric (1.12) takes the form above
horizon r  2m and below horizon r  2m correspondingly

above horizon r  2m :

ds2  hrdt2  hr1dr2  r2d2,

hr  1  2m
r   r  2m

r
below horizon r  2m :

ds2  hrdt2  hr1dr2  r2d2,

hr  1  2m
r  2m  r

r

3.1. 1

Remark 3.1.1. Following the above discussion we consider the metric coefficients
hr, hr1 hr,and hr1 as an element of 3 and embed it into  3 by
replacements above horizon r  2m and below horizon r  2m correspondingly

r  2m : r  2m  r  2m2  2 ,

r  2m : 2m  r  2m  r2  2 .

Remark 3.1.2. Note that, accordingly, we have fixed the differentiable structure of the
manifold: the usual Schwarzschild coordinates and the Cartesian coordinates associated
with the spherical Schwarzschild coordinates in (3.1.1) are extended on r  2m through
the horizon. Therefore we have above horizon r  2m and below horizon r  2m
correspondingly



hr 
 r  2m

r if r  2m

0 if r  2m
 hr  

r  2m2  2

r


,

where hr  3,B2m,R,B2m,R  x  3|2m  x  R.

h1r 
 r
r  2m

, r  2m

, r  2m
 h

1r

hr 
 r  2m

r if r  2m

0 if r  2m
 hr 

2m  r2  2
r

where hr  3,B0,2m, B0,2m  x  3|0  x  2m

h1r 
 r
r  2m

, r  2m

, r  2m
 h

1r 

 r

r  2m2  2


 3,B0,2m

3.1. 2

Inserting (3.2) into (3.1) we obtain a generalized object modeling the singular
Schwarzschild metric above (below) gorizon, i.e.,

ds2  hrdt2  hr
1dr2


 r2d2 ,

ds2  hrdt2  hr
1dr2


 r2d2

3.1. 3

The generalized Ricci tensor above horizon R 
 may now be calculated

componentwise using the classical formulae

R
 0

0

 R

 1
1


 1

2
h 

2
r h



R
 2

2

 R

 3
3




h
r 

1  h
r2

.
3.1. 4

From (3.1.2) we obtain



hr   r  2m
r r  2m2  2

1/2


r  2m2  2
1/2

r2
,

rh  1  h 

r  r  2m
r r  2m2  2

1/2


r  2m2  2
1/2

r2
 1 

r  2m2  2

r 

 r  2m
r  2m2  2

1/2


r  2m2  2
1/2

r  1 
r  2m2  2

r 

 r  2m
r  2m2  2

1/2
 1.

hr   r  2m
r r  2m2  2

1/2




r  2m2  2

1/2

r2





  1
r r  2m2  2

1/2


r  2m2

r r  2m2  2
3/2

 r  2m
r2 r  2m2  2

1/2


 r  2m
r2 r  2m2  2

1/2


2 r  2m2  2
1/2

r3
.

r2h  2rh 

r2  1
r r  2m2  2

1/2


r  2m2

r r  2m2  2
3/2

 r  2m
r2 r  2m2  2

1/2


 r  2m
r2 r  2m2  2

1/2


2 r  2m2  2
1/2

r3


2r  r  2m
r r  2m2  2

1/2


r  2m2  2
1/2

r2


 r
r  2m2  2

1/2


rr  2m2

r  2m2  2
3/2

 r  2m
r  2m2  2

1/2


 r  2m
r  2m2  2

1/2


2 r  2m2  2
1/2

r 

 2r  2m

r  2m2  2
1/2


2 r  2m2  2

1/2

r 

 r
r  2m2  2

1/2


rr  2m2

r  2m2  2
3/2

.

3.1. 5

Investigating the weak limit of the angular components of the Ricci tensor (using the
abbreviation



 r  
0



sind 
0

2

dx

and let x be the function x  2m
 3, where by 2m

 3 we denote the class of all
functions x with compact support such that:
(i) suppx  x|x  2m (ii)  r  C.
Then for any function x  2m3 we get:


K

R
 2

2

xd3x  

K
R

 3
3


xd3x 


2m

R

rh  1  h  rdr  
2m

R

 r  2m
r  2m2  2

1/2
 rdr  

2m

R

 rdr.
3.1. 6

By replacement r  2m  u, from (3.1.6) we obtain


K

R
 2

2

xd3x  

K
R

 3
3


xd3x 

 
0

R2m
u u  2mdu

u2  21/2
 

0

R2m

 u  2mdu.
3.1. 7

By replacement u  , from (3.1.7) we obtain the expression

I3
  

K
R

 3
3


xd3x  I2

  
K

R
 2

2

xd3x 

  
0

R2m


   2md

2  11/2
 

0

R2m


   2md .
3.1. 8

From Eq.(3.1.8) we obtain

I3
  I2

   
 2m
0! 

0

R2m



2  11/2

 1 d 

 
2

1! 
0

R2m



2  11/2

 1  1d 

 2m R  2m


2
 1  R  2m

  1 

 
2

1 
0

R2m



2  11/2

 1  1d,

3.1. 9

where we have expressed the function   2m as

  2m  l0
n1 l2m

l!
 l  1

n!
nn ,

    2m , 1    0 , n  1
3.1. 10

with  l  dl /dl. Equations (3.1.9)-(3.1.10) gives



0
lim I3

 
0
lim I2

 

0
lim  2m R  2m


2
 1  1  R  2m

 


0
lim  

2

1 
0

R2m



2  11/2

 1  1d  0.

3.1. 11

Thus in 2m
 BR

2m  2m
 3  3, where B2m,R  x  3|2m  x  R

from Eq.(3.1.11) we obtain

w 
0
lim R

 3
3 

0
lim I3

  0,

w 
0
lim R

 2
2 

0
lim I2

  0.
3.1. 12

For R
 1

1

, R

 0
0


we get:

2 
K

R
 1

1

xd3x  2 

K
R

 0
0


xd3x 


2m

R

r2h  2rh  rdr 

 
2m

R

 r
r  2m2  2

1/2


rr  2m2

r  2m2  2
3/2

 rdr.

3.1. 13

By replacement r  2m  u, from (3.1.13) we obtain

I1
  2 

K
R

 1
1


xd3x  I2

  2 
K

R
 0

0

xd3x

 
2m

R

r2h  2rh  rdr 

 
0

R2m

 u  2m
u2  21/2


u2u  2m

u2  23/2
 u  2mdu.

3.1. 14

By replacement u  , from (3.1.14) we obtain



2 
K

R
 1

1

xd3x  2 

K
R

 0
0


xd3x 

 
2m

R

r2h  2rh  rdr 

  
0

R2m


   2m

22  21/2

22  2m

22  23/2
   2md 

 
0

R2m


2   2md

22  21/2
 2m 

0

R2m


   2md

22  21/2



0

R2m


43   2md

22  23/2
 2m 

0

R2m


32   2md

22  23/2


  
0

R2m


   2md

2  11/2
 

0

R2m


3   2md

2  13/2


2m  
0

R2m


   2md

2  11/2
 

0

R2m


2   2md

2  13/2
.

3.1. 15

From Eq.(3.1.15) we obtain

I0
  I1

  2m
 2m

0! 
0

R2m


 1
2  11/2


2

2  13/2
d 

 
1! 

0

R2m


 1  1
2  11/2


2

2  13/2
d 


 2m

0! 
2m


R2m


 1
2  11/2


2

2  13/2
d 

 
2

1! 
0

R2m


 1  1
2  11/2


2

2  13/2
d,

3.1. 16

where we have expressed the function   2m as

  2m  l0
n1 l2m

l!
 l  1

n!
nn ,

    2m , 1    0 , n  1
3.1. 17

with  l  dl /dl.Equation (3.1.17) gives



w -
0
lim I0

  w -
0
lim I1

 

2m 2m
0
lim 

0

R2m


 1
2  11/2


2

2  13/2
d 

2m 2m
s
lim 

0

s 2d
2  13/2

 
0

s d
2  11/2



 2m 2m.

3.1. 18

where use is made of the relation

s
lim 

0

s
2d

2  13/2
 

0

s
d

u2  11/2
 1 3.1. 19

Thus in 2m
 B2m,R  2m

 3 we obtain

w -
0
lim R

 1
1  w -

0
lim R

 0
0  m 2m. 3.1. 20

The Colombeau generalized Ricci tensor below horizon R
 

  R
 

 may now be
calculated componentwise using the classical formulae

R
 0

0

 R

 1
1


 1

2
h 

2
r h

 ,

R
 2

2

 R

 3
3




h
r 

1  h
r2

.
3.1. 21

From Eq.(3.1.21) we obtain

hr   r  2m
r  hr 

2m  r2  2
r  hr, r  2m.

hr  hr  r  2m
r r  2m2  2

1/2


r  2m2  2
1/2

r2
,

rh  1  h  rh  1  h 
r  2m

r  2m2  2
1/2

 1.

hr  hr 

 r  2m
r2 r  2m2  2

1/2


2 r  2m2  2
1/2

r3
.

r2h  2rh  r2h  2rh 

r
r  2m2  2

1/2
 rr  2m2

r  2m2  2
3/2

.

3.1. 22

Investigating the weak limit of the angular components of the Ricci tensor (using the

abbreviation  r  
0



sind 
0

2

dx where x  C3, x is a function with



compact support K such that K  B0,2m  x  3|0  x  2m we get:


K

R
 2

2

xd3x  

K
R

 3
3


xd3x 


0

2m

rh  1  h  rdr  
0

2m

r  2m
r  2m2  2

1/2
 rdr  

0

2m

 rdr.
3.1. 23

By replacement r  2m  u, from Eq.(3.1.23) we obtain


K

R
 2

2

xd3x  

K
R

 3
3


xd3x 


2m

0
u u  2mdu

u2  21/2
 
2m

0

 u  2mdu.
3.1. 24

By replacement u  , from (3.1.23) we obtain

I3
  

K
R

 3
3


xd3x  I2

  
K

R
 2

2

xd3x 

  
 2m



0
   2md

2  11/2
 
 2m



0

   2md ,
3.1. 25

which is calculated to give

I3
  I2

  
 2m

0! 
 2m



0


2  11/2
 1 d 

 
2

1! 
 2m



0


2  11/2
 1  1d 

 2m 1  2m


2
 1  2m

   
2

1 
 2m



0


2  11/2
 1  1d,

3.1. 26

where we have expressed the function   2m as

  2m  l0
n1 l2m

l!
 l  1

n!
nn ,

    2m , 1    0 , n  1
3.1. 27

with  l  dl /drl. Equation (3.1.27) gives

0
lim I3

 
0
lim I2

 

0
lim  2m 1  2m


2
 1  2m

 


0
lim 2

2 
 2m



0


2  11/2
 1  1d  0.

3.1. 28



Thus in 2m
 BR

2m  2m
 3, where B0,2m  x  3|0  x  2m from

Eq.(3.1.28) we obtain

w 
0
lim R

 3
3 

0
lim I3

  0.

w 
0
lim R

 2
2 

0
lim I2

  0.
3.1. 29

For R
 1

1

, R

 0
0


we get:

2 
K

R
 1

1

xd3x  2 

K
R

 0
0


xd3x 


0

2m

r2h  2rh  rdr 

 
0

2m

r
r  2m2  2

1/2
 rr  2m2

r  2m2  2
3/2

 rdr.

3.1. 30

By replacement r  2m  u, from (3.1.30) we obtain

I1
  2  R

 1
1


xd3x  I2

  2  R
 0

0

xd3x

 
0

2m

r2h  2rh  rdr 

 
2m

0

u  2m
u2  21/2

 u2u  2m

u2  23/2
 u  2mdu.

3.1. 31

By replacement u  , from (3.1.31) we obtain



2 
K

R
 1

1

xd3x  2 

K
R

 0
0


xd3x 


 2m



0

r2h  2rh  rdr 

  
 2m



0
  2m

22  21/2
 22  2m

22  23/2
   2md 


 2m



0
2   2md

22  21/2
 2m 

 2m


0
   2md

22  21/2


 
 2m



0
43   2md

22  23/2
 2m 

 2m


0
32   2md

22  23/2


 
 2m



0
   2md

2  11/2
 
 2m



0
3   2md

2  13/2


2m 
 2m



0
   2md

2  11/2
 
 2m



0
2   2md

2  13/2
.

3.32

which is calculated to give

I0
  I1

  2m
 2m

0!
l 

 2m


0

1
2  11/2

 2

2  13/2
d 

 
1! 

0

2m


 1 1
2  11/2

 2

2  13/2
d  O2.

3.33

where we have expressed the function   2m as

  2m  l0
n1 l2m

l!
 l  1

n!
nn ,

    2m , 1    0 , n  1
3.34

with  l  dl /dl.Equation (3.34) gives

0
lim I0

 
0
lim I1

 

2m
0
lim

 2m
0! 

 2m


0

1
2  11/2

 2

2  13/2
d 

2m 2m
s0
lim 

s

0 d
2  11/2

 
s

0 2d
2  13/2



 2m 2m.

3.35

where use is made of the relation



s
lim 

s

0
d

u2  11/2
 
s

0
2d

2  13/2
 1. 3.36

Thus in B0,2m  3 we obtain

w -
0
lim R

 1
1  w -

0
lim R

 0
0  m 2m. 3.37

Using Egs. (3.12),(3.20),(3.29),(3.37) we obtain

 Tr
r  T

  T
  Tt

t  Tr
r  T

  T
  Tt

t g d3x  0 3.38

Thus the Tolman formula [3],[4] for the total energy of a static and asymptotically flat
spacetime with g the determinant of the four dimensional metric and d3x the coordinate

volume element, gives

ET   Tr
r  T

  T
  Tt

t g d3x  m, 3.39

We revrite now the Schwarzschild metric (3.3) in the form

ds2  hrdt2  1  C
rdr2  r

2d2

C
r  1  hr1.

3.40

Using Eq.(A.5) from Eq.(3.40) one obtains for r  2m

RR
 




1
2
h

  1
r h

 
2


 2  h

 

r  1
r2

2





 4

4m4 2  r  2m2
3



,

3.41

and

Rr,Rr,   Krs  4

4m4 2  r  2m2
3



. 3.42

3.2.Examples of distributional geometries. Calculation of
the distributional quadratic scalars by using nonsmooth
regularization via Horizon
Let us consider again the Schwarzschild metric (3.1)

ds2  hrdt2  hr1dr2  r2d2,

hr  1  2m
r   r  2m

r ,

h1r   r
r  2m

.

3.43



We revrite now the Schwarzschild metric (3.43) above Horizon (r  2m) in the form

ds2  Ardt2  Ar1rdr2  r2d2,

Ar  r  2m
r ,

Ar1  r
r  2m

.

3.44

Following the above discussion we consider the singular metric coefficient A1r as an
element of 3 and embed it into  3 by replacement

r  2m  r2  2  2m. 3.45

Thus above Horizon (r  2m) the corresponding distributional metric

ds2 

takes the

form

ds2 

 A
rdt2  A

r1dr2

 r2d2,

A
r 

r2  2  2m
r



,

A
r1


 r

r2  2  2m 

.

3.46

We revrite now the Schwarzschild metric (3.43) below Horizon (r  2m) in the form

ds2  Ardt2  Ar1dr2  r2d2,

Ar  2m  r
r , Ar1  r

2m  r .
3.47

Following the above discussion we consider the singular metric coefficient A1r as an
element of 3 and embed it into  3 by replacement

2m  r  2m  r2  2 . 3.48

Thus belov Horizon (r  2m) the corresponding distributional metric

ds2 

takes the

form

ds 
2


 A

rdt2  A
r1dr2


 r2d2,

A
r 

2m  r2  2
r



, A
r1


 r

2m  r2  2 

.
3.49

From Eq.(3.46) one obtains

A
    r2  2  2m

r



  1
r2  2


r2  2  2m

r2

A
   r

r2  23/2
 2

r2  2  2m
r3

 1
r r2  2

3.50

From Eq.(3.46) using Eq.(A.5) one obtains



R   4A


r  2AC

r2
 A






 4
r  1

r2  2


r2  2  2m
r2



 2
r2



 r
r2  23/2

 2
r2  2  2m

r3
 1

r r2  2 

.

3.51

From Eq.(3.51) for r  2m one obtains

R  c1r  2m, 3.52

see subsect. 2.5,Remark 2.5.4.
Remark 3.3. Note that curvature scalar R again nonzero but nonsingular.
Let us introduce now the general metric which has the form [11]:

ds2  Ardx02  2Drdx0dr  Br  Crdr2

Brr2d2  sin2d2  ,
3.53

where

Ar  2 1  a
Kr

, Br 
K2r
2r

,

Cr  1  a
Kr

1

Kr2  K2r
2r

 1  a
Kr

f 2 ,

Dr   1  a
Kr

f ,Kr  dKr/dr, f r  dfr/dr,

Kr  r  |a|,

a  0.

3.54

Note that the coordinates t  x0/c and r are time and space coordinates, respectively,
only if

1  a
K

 0 , 1  a
K

1
K2  1  a

K
f 2  0 . 3.55

In the Cartesian coordinate system x;  0,1, 2,3 with

x1  rcos sin,x2  r sin sin,x3  rcos, 3.56

the metric (3.53)-(3.55) takes the form

ds2  gdxdx 3.57

with g given by

g00  A , g0  D x
r , g  B  C xx

r2
. 3.58

From Eq.(3.54) one obtain



Ar  2 r
r  |a|

, B 
r  |a|2

2r
,

Cr 
r  |a|
r

 r  |a|2

2r
 r

r  |a|
f r2 ,

Dr  
r

r  |a|
f r, f r  dfr/dr.

3.59

Regularizing the function r  |a|1 above gorizon (under condition r  |a|  0) such
as

r  |a|  0 :

r  |a|
1
 r  |a|1  2r  2  |a|

1
3.60

with   0,1 from Eq.(3.59)-Eq.(3.60) one obtains

A
r  2 r

r  |a|
, B

r 
r  |a|2


2r

,

C
r 

r  |a|
r

 r  |a|2


2r

 r
r  |a|

f r2 ,

D
r  

r
r  |a|

f r, f r  dfr/dr.

3.61

Regularizing the function |a|  r1 below gorizon (under condition |a|  r  0) such
as

|a|  r  0 :

|a|  r1  |a|  r  |a|  r2  2
1

3.62

with   0,1 from Eq.(3.59),Eq.(3.62) one obtains

A
r  2 r

|a|  r
, B

r 
|a|  r2


2r

,

C
r   |a|  r

r
 |a|  r2


2r


r

|a|  r
f r2,

D
r   r

|a|  r
f r, f r  dfr/dr.

3.63

Remark 3.4. Finally the metric (3.57) becomes the Colombeau object of the form

ds2  g dxdx 3.64

with g given by

g00
   A

r, g0
   D

r x


r ,

g   B
r  C

r x
x

r2
.

3.65

Using now Eq. A2 one obtains that the Colombeau curvature scalars R in terms of



Colombeau generalized functions A
r, B

r, C
r, D

r is expressed as

R 
r2  2

r2  2  |a|
2

9a2

r2  2
5
2

 2a2

r2r2  2
3
2



R   r2  2

r2  2  |a|
2

9a2

r2  2
5
2

 2a2

r2r2  2
3
2



3.66

Remark 3.6. Note that (i) on horizon r  a Colombeau scalars R well defined

and becomes to infinite large Colombeau generalized numbers

R 

a2  2

a2  2  |a|
2

9a2

a2  2
5
2

 2a2

a2a2  2
3
2



 7a22  ,

R 

 a2  2

a2  2  |a|
2

9a2

a2  2
5
2

 2a2

r2r2  2
3
2



 7a22  

3.67

(ii) for r  a Colombeau scalars R well defined and becomes to infinite small

Colombeau generalized numbers R  2.

Using now Eq. A2 one obtains that the Colombeau scalars RR
 


in terms

of Colombeau generalized functions A
r, B

r, C
r, D

r is expressed as

RR
 





r2  22

r2  2  |a|
4

5
2

3a2

r2  2
5
2

2

 2a2

r2r2  2
3
2



2 3a2

r2  2
5
2

 a2

r2r2  2
3
2

2



3.68

Remark 3.7. Note that (i) on horizon r  a Colombeau scalars RR
 


well

defined and becomes to infinite large Colombeau generalized numbers, (ii) for r  a
Colombeau scalars R well defined and becomes to infinite small Colombeau

generalized numbers.
Using now Eq. A2 one obtains that the Colombeau scalars RR

 

in

terms of Colombeau generalized functions A
r, B

r, C
r, D

r is

expressed as



RR
 


 12a2

r2  2  |a|
6 1  a2

r2  2
3
2

2



 4a2

r2  2  |a|
5 1  a2

r2  2
3
2

2

22

r2r2  2
 92

r2  2
5
2



a2

r2  2  |a|
4

44

r4r2  2
 814

r2  23
.

3.69

Remark 3.8. Note that (i) on horizon r  a Colombeau scalars RR
 



well defined and becomes to infinite large Colombeau generalized numbers, (ii) for r  a
Colombeau scalars finite

RR
 


 12a2

r2  |a|6
3.70

and tends to zero in the limit r  .
Remark 3.9. Note that under generalized transformatios such as

dt  d
r2  2  2m

r v




r2  2  2m

r dv



, 3.71

and

dt  d
2m  r2  2

r v




2m  r2  2

r dv



, 3.72

the metric given by Eq.(3.61)-Eq.(3.64) becomes to Colombeau metric of the form

ds2  Ar,dv2  2vD2
r,dvdr  Br,  C1

v, r,dr2 

Br,r2d2  sin2d2 .
3.73

4. Quantum scalar field in curved distributional space-time
4.1 Canonical quantization in curved distributional space-time
Much of formalism can be explained with Colombeau generalized scalar field.The

basic concepts and methods extend straightforwardly to distributional tensor and
distributional spinor fields. To being with let’s take a spacetime of arbitrary dimension D,
with a metric gµν of signature . . .. The action for the Colombeau generalized scalar
field   M is

S  
M

dDx 1
2

|g | g
  m2  R

2



. 4.1

The corresponding equation of motion is

  m2  R ,  0,1. 4.2

Here

  |g |1/2|g |1/2g 
. 4.3

With  explicit, the mass m should be replaced by m/.Separating out a time coordinate



x0, xµ  x0,x i, i  1,2, 3 we can write the action as

S   dx0L

, L   dD1x


. 4.4

The canonical momentum at a time x0 is given by

x  L /0x  |h |1/2nx 
, 4.5

where x labels a point on a surface of constant x0, the x0 argument of  is
suppressed, nµ is the unit normal to the surface, and |h | is the determinant of the
induced spatial metric hij. To quantize, the Colombeau generalized field  and

its conjugate momentum x are now promoted to hermitian operators and required
to satisfy the canonical commutation relation,

x, y

 iD1 x,y ,  0,1. 4.6

Here dD1yD1 x,y f y  fx for any scalar function f  D3, without the use of a

metric volume element. We form now a conserved bracket from two complex
Colombeau solutions to the scalar wave equation (4.2) by

,   


dj




,  0,1. 4.7

where

j,  i/ |g |1/2g
   

. 4.8

This bracket is called the generalized Klein-Gordon inner product, and ,  the
generalized Klein Gordon norm of . The generalized current density j, is

divergenceless,i.e. j,  0 when the Colombeau generalized functions 
and  satisfy the KG equation (4.2), hence the value of the integral in (4.7) is
independent of the spacelike surface Σ over which it is evaluated, provided the functions
vanish at spatial infinity. The generalized KG inner product satisfies the relations

,  
 ,   , ,  0,1. 4.9

We define now the annihilation operator associated with a complex Colombeau solution
 by the bracket of  with the generalized field operator  :

a  , . 4.10

It follows from the hermiticity of  that the hermitian conjugate of a is given by

a  a. 4.11

From Eq.(4.5) and CCR (4.6) one obtain

a,a  , . 4.12

Note that from Eq.(4.11) follows

a,a  , , a
,a  ,  4.13

Note that if  is a positive norm solution with unit norm and with, then a and
a satisfy the commutation relation a,a  1. Suppose now that |Ψ is a

normalized quantum state satisfying a|Ψ  1, then for each n, the state



|n,Ψ  1/n!an|Ψ

is a normalized eigenstate of the number operator

N  aa with eigenvalue n. The span of all these states defines a

Fock space of the distributional - wavepacket “n-particle excitations” above the
state |Ψ. If we want to construct the full Hilbert space of the field theory in curved
distributional spacetime,how can we proceed? We should find a decomposition of the
space of complex Colombeau solutions to the wave equation (4.2) S into a direct sum of
a positive norm subspace Sp and its complex conjugate Sp, such that all brackets
between solutions from the two subspaces vanish. That is, we must find a direct sum
decomposition:

S  Sp Sp 4.14

such that

,   0,  Sp 4.15

and

,   0,,   Sp. 4.16

The condition (4.15) implies that each  in Sp can be scaled to define its own
harmonic oscillator sub-albegra. The second condition implies, according to (4.13), that
the annihilators and creators for  and  in the subspace Sp commute amongst
themselves:

a,a  a,a  0. 4.17

Given such a decompostion a total Hilbert space H for the field theory can be defined as
the space of finite norm sums of possibly infinitely many states of the form

a1,. . .an,|0, 4.18

where |0 is a state such that an,|0  0 for all  in Sp. The state |0, as in
classical case, is called a Fock vacuum and Hilbert space H is called a Fock space. The
representation of the field operator on this Fock space is hermitian and satisfies the
canonical commutation relations in sense of Colombeau generalized function.

4.2 Defining distributional outgoing modes

For illustration we consider the non-rotating,uncharged d-dimensional SAdS BH with a
distributional line element

ds2  fdt2  f1dr2

 r2dd2

2 ,  0,1, 4.19

where

f  0,  0,1,

f0  1  r2

L2  r0
d3

rd3
,

4.20

where dd2
2 is the metric of the (d  2)-sphere, and the AdS curvature radius squared L2

is related to the cosmological constant by L2  d  2d  1/2Λ. The parameter r0 is
proportional to the mass M of the spacetime: M  d  2Ad2r0

d3/16π, where Ad2 
2πd1/2/Γd  1/2. The distributional Schwarzschild geometry corresponds to
L  .The corresponding equation of motion (4.2) for massless case are



 
d  2
4d  1

R,

G,  g,  8GT,,

T,~x.

4.21

The time-independence and the spherical symmetry of the metric imply the canonical
decomposition

t, r,  eit  lm,rY lm
rd2/2   

, 4.22

where Y lm denotes the d-dimensional scalar spherical harmonics, satisfying

d2Y lm  ll  d  3Y lm, 4.23

the Laplace-Beltrami operator.Substituting the decomposition (4.22) into Eq. (6) one get
a radial wave equation

f2
d2lm,r

dr2
 ff

 dlm,r
dr

 2  V lm,rlm,r


 0. 4.24

We define now a “tortoise” distributional coordinate r  rr by the relation

dr

dr 
 f1r


. 4.25

By using a “tortoise” distributional coordinate the Eq.(4.24) can be written in the form of a
Schrödinger equation with the potential V lm,r

dr
dr 

 2  Vrr  0. 4.26

Note that the tortoise distributional coordinate rr becomes to infinite Colombeau
constant rr   ln  at the horizon, i.e. as r  r, but its behavior at infinity is
strongly dependent on the cosmological constant: rr    for asymptotically-flat
spacetimes, and rr   finite Colombeau constant for the SAdSd geometry.

4.2.1. Boundary conditions at the horizon of the distributional SAdS BH
geometry.
For most spacetimes of interest the potential Vrr  0 as r  r, i.e.
|rr|  , and in this limit solutions to the wave equation (4.26) behave as

t, r~expit  r
r, as r~r. 4.27

Note that classically nothing should leave the horizon and thus classically only ingoing
modes (corresponding to a plus sign) should be present,i.e.

t, r~expit  r
r, as r~r. 4.28

Note that for non-extremal spacetimes, the tortoise coordinate tends to

rr   f1rdr

~ fr



1
ln|r  r |   as r~r, 4.29

where fr

 0. Therefore near the horizon, outgoing modes behave as



expit  rr  expit, rexp2ir
r 

 expit, r |r  r |  2i/f

r 


,

4.30

where t, r  t  rr. Now Eq. (4.30) shows that outgoing modes is Colombeau
generalized function of class .

5. Energy-momentum tensor calculation by using
Colombeau distributional modes

We shall assume now any distributional spacetime which is conformally static in both
the asymptotic past and future. We will be considered distributional spacetime which is
conformally flat in the asymptotic past,i.e.

ds2  f,in2 dt2  dx2 asymp. past

ds2  f,out2 dt2  h,ijdx idx j, asymp. future
5.1

where   0,1 f,J  f,Jt,x  0,J  in,out, are smooth functions and

h,ij  h,ijx, i, j  1,2, 3, are the components of an arbitrary distributional spatial metric.
Note that we use the same labels t and x  x1,x2,x3 for coordinates in the asymptotic
past and future only for simplicity; they are obviously defined on non-intersecting regions
of the spacetime.) In each of these asymptotic regions the distributional field  can
be written as    /f,J, where 

  satisfies

 2

t2



 ,J   V,J , 5.2

where ,in is the flat Laplace operator, ,out is the Laplace operator associated
with the spatial metric hij, and the effective potential VJ is given by

V,J 
Jf,J
f,J 

 f,J
2 m2  R




1  6
Jf,J
f,J 

 m2 f,J
2


 K,J,

5.3

with K,in  0, K,out  K,outx the scalar curvature associated with the spatial
distributional metric h,ij.

We assume now this condition: (i) the massless (m  0) field with arbitrary coupling 
in spacetimes which are asymptotically flat in the past and asymptotically static in the
future,i.e. f in  1 and f,out  f,outx, as those describing the formation of a static BH
from matter initially scattered throughout space, and (ii) the massless, conformally
coupled field (m  0 and   1/6). With this assumptions for the potential, two different

sets of positive-norm distributional modes, u
,k



and v,


, can be naturally defined

by the requirement that they are the solutions of Eq.(5.2) which satisfy the asymptotic
conditions:

u
,k


 past
 163k

1/2 eiktk
x f,in

1


5.4



and

v,
 future

 21/2eit f,out
1 F,x


, 5.5

where k  3, k : k,   0, and F,x are Colombeau solutions of

,out  V,outxF,x  
2F,x,

F,x |0  C3
5.6

satisfying the normalization


out

d3x h F,xF,x

 , 5.7

on a Cauchy surface out in the asymptotic future. Note that each F,,  0,1 can be
chosen to be real without loss of generality. There are reasonable situations where the
distributional modes v,


, given in Eq. (5.5), together with distributional modes

v,

fail to form a complete set of distributional normal modes. This happens

whenever the operator ,out  V,outx in Eq. (5.2) happens to possess

normalizable i.e., satisfying Eq. (5.7) eigenfunctions with negative eigenvalues,


2  
2  0. In this case, additional positive-norm modes w,




with the asymptotic

behavior

w,


 future

 eti/12  eti/12
F,x

2 f,outx 

5.8

and their complex conjugates w,



are necessary in order to expand an arbitrary

Colombeau solution of Eq.(5.1) As a direct consequence, at least some of the in-modes

u
,k



(typically those with low k) eventually undergo an exponential growth.This

asymptotic divergence is reflected on the unbounded increase of the vacuum
fluctuations,


2x

future

  e2 t

2
F x
f,outx 

2

1  et, 5.9

where F x is the eigenfunction of Eq. (5.6) associated with the lowest negative
eigenvalue allowed, 

2   2,  is some positive constant, and  is a dimensionless
constant (typically of order unity) whose exact value depends globally on the spacetime

structure (since it crucially depends on the projection of each u
,k



on the mode

w,



whose 

2   2;  also depends on the initial state, here assumed to be the

vacuum |0 in). As one would expect, these wild quantum fluctuations give an important
contribution to the vacuum energy stored in the field. In fact, the expectation value of its
distributional energy-momentum tensor, T,x,  0,1, in the asymptotic future

is found to be dominated by this exponential growth:

T,00x
future

 
2x

1  4
2

 2 
DF 2

F 2
 m2f2  K



1  6
2D2f

f

Df2

2f2
 DifDiF 

fF 


 et ,

5.10



T,0ix
future




2x 1  4  DiF 

F  
 1  6

 Dif
f 

 et ,
5.11

T,ijx
future




2x 1  2

DiF DjF 
F 2 

 2
DiDjF 
F 

  R,ij



1  4hij

2
 2  DF 2

F 2
 m2f2  K



1  6
DifDjf

f2
 DifDjF

fF 
 DjfDiF 

fF  



h,ij
2D2f

f
 Df2

2f2


DkfDkF 
fF  

 et,

5.12

where Di is the derivative operator compatible with the distributional metric h,ij (so

that out  D2), R,ij

is the associated distributional Ricci tensor so that

K,out  hijR,ij

, and we have omitted the subscript out in f,out and K,out for

simplicity. The Eqs. (5.10-5.12), together with Eq.(5.9), imply that on time scales
determined by  1, the vacuum fluctuations of the field should overcome any other
classical source of energy, therefore taking control over the evolution of the background
geometry through the semiclassical Einstein equations (in which T,  is included as

a source term for the distributional Einstein tensor). We are then confronted with a
startling situation where the quantum fluctuations of a field, whose energy is usually
negligible in comparison with classical energy components, are forced by the
distributional background spacetime to play a dominant role. We are still left with the
task of showing that there exist indeed well-behaved distributional background
spacetimes in which the operator ,out  V,outx  possesses negative eigenvalues


2  0,condition on which depends Eq(5.9). Experience from quantum mechanics tells

us that this typically occurs when V,out gets sufficiently negative over a sufficiently
large region. It is easy to see from Eq. (5.3) that, except for very special geometries (as
the flat one), one can generally find appropriate values of   which make V,out as
negative as would be necessary in order to guarantee the existence of negative
eigenvalues. For distributional BH spacetime using Eq.(5.9)-Eq.(5.12) one obtains


2r

future

  e2 t

2
r1/2F r

r  r2  2
1/4



2

, r  r 5.13



T,00r
future




2r

1  4
2

 2 
DF r2

F 2r
 m2 r  r2  2

1/2
 K



1  6  2D2fr

r  r2  2
1/4


Dfr2

r  r2  2
1/4

 DifrDiF 

r  r2  2
1/4
F  

,

r  r, fr  r  r2  2
1/4

5.14

T,0ir
future




2r 1  4

 DiF r
F r 

 1  6
 Difr

r  r2  2
1/4



,

r  r, fr  r  r2  2
1/4

5.15

T,ijr
future




2r 1  2

DiF DjF 
F 2 

 2
DiDjF 
F 

  R,ij



1  4hij

2
 2  DF r2

F 2r
 m2 r  r2  2

1/2  K


1  6
DifDjf

r  r2  2
1/2

 DifDjF

r  r2  2
1/4
F 

 DjfDiF 

r  r2  2
1/2
F  



h,ij
2D2f

r  r2  2
1/4

 Df2

2 r  r2  2
1/2


DkfDkF 

r  r2  2
1/4
F  

,

r  r.

5.16

Remark 5.1.Note that in spite of the unbounded growth at r  r in
Eq.(5.13)-Eq.(5.16), T,  is covariantly conserved: T,


  0. In the static case

f,out  f,outx, for instance for distributional BH geometry, this implies that the total

vacuum energy is kept constant, although it continuously flows from spatial regions
where its density is negative to spatial regions where it is positive.
Remark 5.2. Note that the singular behavior at r  r appearing in Eq.(5.13)-Eq.(5.16)

leads only to asymptotic divergences, i.e. all the quantities remain finite everywhere
except horizon.

6. Distributional SAdS BH spacetime-induced vacuum
dominance



6.1. Adiabatic expansion of Green functions

Using equation of motion Eq.(5.2) one can obtain corresponding distributional
generalization of the canonical Green functions equations. In particular for the
distributional propagator

iG
x,x   0|T

x
x |0,  0,1 6.1

one obtains directly

,x  m2  Rx,G
x,x   gx,1/2nx  x . 6.2

Special interest attaches to the short distance behaviour of the Green functions, such as
G

x,x  in the limit x  x   0 with a fixed   0,1. We obtan now an adiabatic

expansion of G
x,x . Introducing Riemann normal coordinates y for the point x, with

origin at the point x׳ we have expanding

g x,    1
3

R
 


yy  1

6
R;

 

yyy 

 1
20

R;
 


 2

45
R

 

Rv

 

yyyy . . .

6.3

where  is the Minkowski metric tensor, and the coefficients are all evaluated at y  0.
Defining now


x,x   g x,

1/4


G

x,x  6.4

and its Colombeau-Fourier transform by


x,x   2n  dnkeiky

k


6.5

where ky  ky, one can work in a sort of localized momentum space. Expanding
(6.2) in normal coordinates and converting to k-space, 

k can readily be solved by
iteration to any adiabatic order. The result to adiabatic order four (i.e., four derivatives of
the metric) is


k  k2  m21  1

6
  k2  m22R 

 i
2

1
6
  k2  m22R;

  

 1
3

a 

k2  m22  1

6
 

2
R2


 2

3
a 



k2  m23

6.6

where   /k,

a 

 1

2
  R;

 

 1

120
R;

 

 1

140
R;
 




 1
30

R
 


R

 

 1

60
R  
  


R

  

 1
60

R 
  


R

 

,

6.7

and we are using the symbol  to indicate that this is an asymptotic expansion. One
ensures that Eq.(6.5) represents a time-ordered product by performing the k0 integral



along the appropriate contour in Pic.3. This is equivalent to replacing m2 by m2  i.
Similarly, the adiabatic expansions of other Green functions can be obtained by using
the other contours in Pic.3.Substituting Eq.(6.6) into Eq.(6.5) gives


x,x   2n 

 dnkeiky a0
x,x ;  a1

x,x ;  
m2  a2

x,x ; 
m2

2

k2  m21



6.8

where

a0
x,x ;  1 6.9

and, to adiabatic order 4,

a1
x,x ; 

1
6
  R 

i
2

1
6
  R;

  y
  1

3
a 


yy

a2
x,x ; 

1
2

1
6
  R2


 1

3
a 




6.10

with all geometric quantities on the right-hand side of Eq.(6.10) evaluated at x .

Fig.4.The contour in the complex k0plane 

to be used in the evaluation of the integral

giving 

.The cross indicates the pole at

k0  |k|2  m2
1/2
.

If one uses the canonical integral representation

k2  m2  i1  i 
0



dseis k2m2i 6.11

in Eq.(6.8), then the dnk integration may be interchanged with the ds integration, and
performed explicitly to yield (dropping the i)


x,x   i4n/2 

0



idsisn/2 exp im2s 
x,x 
2is


x,x ; is



x,x   1
2
yy.

6.12



The function x,x  which is one-half of the square of the proper distance between x
and x , while the function x,x ; is has the following asymptotic adiabatic expansion


x,x ; is  a0

x,x ;  isa1
x,x ;  is

2a2
x,x ; . . . 6.13

Using Eq.(6.4), equation (6.12) gives a representation of G
x,x  :

G
x,x  

i4n/2 
1/2x,x ;



0



idsisn/2 exp im2s 
x,x 
2is

x,x ; is



6.14

where x,x ; is the distributional Van Vleck determinant

x,x ;  detx,x  gx,gx ,1/2


6.15

In the normal coordinates about x  that we are currently using, x,x ; reduces to

gx,1/2

.The full asymptotic expansion of 

x,x ; is to all adiabatic orders

are


x,x ; is 

j0



is ja2
x,x ; 6.16

with a0
x,x ;  1, the other ajx,x ; being given by canonical recursion

relations which enable their adiabatic expansions to be obtained. The expansions (6.13)
and (6.16) are, however, only asymptotic approximations in the limit of large adiabatic
parameter T.
If (6.16) is substituted into (6.14) the integral can be performed to give the adiabatic

expansion of the Feynman propagator in coordinate space:

G
x,x   4in/2 

1/2x,x ;
j0



ajx,x ;  
m2

j



  2m2



n2
4
Hn2/2

2 2m2
1
2



6.17

which, strictly, a small imaginary part i should be subtracted from .Since we have not
imposed global boundary conditions on the distributional Green function Colombeau
solution of (6.2), the expansion (6.17) does not determine the particular vacuum state in
(6.1). In particular, the "i" in the expansion of G

x,x  only ensures that (6.17)

represents the expectation value, in some set of states, of a time-ordered product of
fields. Under some circumstances the use of "i" in the exact representation (6.14) may
give additional information concerning the global nature of the states

6.2. Effective action for the quantum matter fields in curved
distributional spcetime
As in classical case one can obtain Colombeau generalized quantity W, called the

effective action for the quantum matter fields in curved distributional spcetime, which,
when functionally differentiated, yields



2
g

1
2

W

g


 T 6.18

To discover the structure of W, let us return to first principles, recalling the
Colombeau path-integral quantization procedure such as developed in [34],[35],[36]. Our
notation will imply a treatment for the scalar field, but the formal manipulations are
identical for fields of higher spins. Note that the generating functional

ZJ   D exp iSm  i  Jxxdnx


6.19

was interpreted physically as the vacuum persistence amplitude out, 0|0, in . The
presence of the external distributional current density J can cause the initial vacuum
state |0, in  to be unstable, i.e., it can bring about the production of particles. In flat
space, in the limit J  0, no particles are produced, and one have the normalization
condition

Z0  D exp iSm  i  Jxxdnx
 J0

 0|0   1. 6.20

However, when distributional spacetime is curved, we have seen that, in general,

|0,out   |0, in , 6.21

even in the absence of source currents J. Hence (6.19) will no longer apply.
Path-integral quantization still works in curved distributional spacetime; one simply treats
Sm in (6.19) as the curved distributional spacetime matter action, and Jx as a
current density (a scalar density in the case of scalar fields). One can thus set J  0 in
(6.19) and examine the variation of Z0 :

Z0  i D SmexpiSm;  iout, 0|Sm|0, in . 6.22

Note that

2
g

1
2

Sm
g



 T. 6.23

From (6.22) and (6.23) one obtains directly

2
g

1
2

Z0
g



 iout, 0|T|0, in  6.24

Noting that the matter action Sm appears exponentiated in (6.19), one obtains directly

Z0  expiW 6.25

and

expW  ilnout, 0|0, in . 6.26

Following canonical calculation one obtains

Z
0  detG

x,x 
1
2


6.27

where the proportionality constant is metric-independent and can be ignored. Thus we
obtain

W
  ilnZ

0   i
2

tr ln Ĝ



. 6.28



In (6.28) Ĝ



is to be interpreted as an Colombeau generalized operator which acts

on an linear space  of generalized vectors |x,normalized by

x|x    x  x  gx,
1
2


6.29

in such a way that

G
x,x   x|Ĝ

|x  

. 6.30

Remark 6.1.Note that the trace tr  of an Colombeau generalized operator 
which acts on a linear space , is defined by

tr    dnxgx, 1
2 xx;


  dnxgx, 1

2 x|xx;|x  

. 6.31

Writing now the Colombeau generalized operator Ĝ



as

Ĝ



 

1  i 
0



dsexps
 



, 6.32

by Eq.(6.14) one obtains

x| exps
 |x   

i4n/2 
1/2x,x ;


exp im2s 

x,x 
2is


x,x ; isisn/2

6.33

Now, assuming  to have a small negative imaginary part, we obtains






dsis1iexps
 



 Eii
 6.34

where Eix is the exponential integral function.
Remark 6.2.Note that for x  0

Eix    lnx  Ox 6.35

 is the Euler’s constant. Substituting now (6.35) into (6.34) and letting   0 we obtain

ln Ĝ



 ln  

0



dsexps
 is1



, 6.36

which is correct up to the addition of a metric-independent infinite large Colombeau

constant    that can be ignored in what follows. Thus, in the generalized De
Witt-Schwinger representation (6.33) or (6.14) we have

x| ln Ĝ
 |x  


 

m2



G
x,x ;m2dm2



, 6.37

where the integral with respect to m2 brings down the extra power of is1 that appears
in Eq.(6.36). Returning now to the expression (6.28) for W

 using Eq.(6.37) and
Eq.(6.31) we get

W
 

i
2  dnxgx, 1

2

 xx
lim 

m2



G
x,x ;m2dm2



6.38

Interchanging the order of integration and taking the limit x  x  one obtains



W
 

i
2 

m2



dm2  dnxgx, 1
2 G

x,x;m2



. 6.39

Colombeau quantity W
 is colled as the one-loop effective action. In the case of

fermion effective actions, there would be a remaining trace over spinorial indices. From
Eq.(6.39) we may define an effective Lagrangian density L;eff

 x

by

W
   dnxgx, 1

2 L;eff
 x


6.40

whence one get

L
x  gx,

1
2 ;eff

 x  i
2

xx
lim 

m2



dm2G
x,x ;m2



. 6.41

6.3. Stress-tensor renormalization
Note that L

x diverges at the lower end of the s integral because the /2s damping
factor in the exponent vanishes in the limit x  x . (Convergence at the upper end is
guaranteed by the i that is implicitly added to m2 in the De Witt-Schwinger
representation of L

x. In four dimensions, the potentially divergent terms in the
DeWitt- Schwinger expansion of L

x are

L;div
 x 

3221

xx
lim 

1/2x,x ;


0


ds
s3

exp im2s 
x,x 
2is



 a0
x,x ;  isa1

x,x ;  is2a2
x,x ;



6.42

where the coefficients a0
, a1

 and a2
 are given by Eq.(6.9)-Eq.(6.10). The remaining

terms in this asymptotic expansion, involving a3
 and higher, are finite in the limit x  x .

Let us determine now the precise form of the geometrical L;div
 x terms, to

compare them with the conventional gravitational Lagrangian that appears in (2.38). This
is a delicate matter because (6.48) is, of course, infinite. What we require is to display
the divergent terms in the form   geometrical object. This can be done in a variety of
ways. For example, in n dimensions, the asymptotic (adiabatic) expansion of L;eff

 x


is

L;eff
 x




214n/2

xx
lim 

1/2x,x ;


j0



ajx,x ; 


0



idsis j1n/2 exp im2s 
x,x 
2is



6.43

of which the first n/2  1 terms are divergent as   0. If n is treated as a variable which



can be analytically continued throughout the complex plane, then we may take the x  x 

limit

L;eff
 x


 214n/2 

j0



ajx; 
0



idsis j1n/2 expim2s





214n/2
j0



ajx;m2n/2j j  n
2

,

ajx;  ajx,x;.

6.44

From Eq.(6.44) follows we shall wish to retain the units of L;eff
 x as (length)4, even

when n  4. It is therefore necessary to introduce an arbitrary mass scale  and to
rewrite Eq.(6.44) as

L;eff
 x


 214n/2 m


n4 

j0



ajx;m242j j  n
2



. 6.45

If n  4, the first three terms of Eq.(6.45) diverge because of poles in the - functions:

  n
4

 4
nn  2

2
4  n    On  4,

 1  n
2

 4
2  n

2
4  n    On  4,

 2  n
2

 2
4  n    On  4.

6.46

Denoting these first three terms by L;div
 x


, we have

L;div
 x




4n/2 1
n  4

 1
2

  ln m2

2

4m4a0x;
nn  2

 2m2a1x;
n  2

 a2x;


.
6.47

The functions a0x;,a1x; and a2x; are given by taking the coincidence limits of
(6.9)-(6.10)

a0
x;  1,

a1
x; 

1
6
  R,

a2
x; 

1
180

R
 x,Rx,


 1

180
Rx,R

 x,



 1
6

1
5
  Rx, 

1
2

1
6
  R2x,


.

6.48

Finally one obtains

L;ren
 x   1

642 
0



ids lnis 3

is3


x,x; iseism
2



. 6.49

Special interest attaches to field theories in distributional spasetime in which the
classical action S is invariant under distributional conformal transformations,i.e.,

gx,  
2xgx,  g  x,. 6.50



From the definitions one has

Sg  x,  Sg x,   dnx Sg  x,
g x,

g x,


. 6.51

From Eq.(6.51) one obtains

T
 g x,,   

2x

gx,
1
2

Sg  x,
x

 1

, 6.52

and it is clear that if the classical action is invariant under the conformal transformations
(6.50), then the classical stress-tensor is traceless.Because conformal transformations
are essentially a rescaling of lengths at each spacetime point x, the presence of a mass
and hence a fixed length scale in the theory will always break the conformal invariance.
Therefore we are led to the massless limit of the regularization and renormalization
procedures used in the previous section. Although all the higher order j  2 terms in
the DeWitt-Schwinger expansion of the effective Lagrangian (6.45) are infrared divergent
at n  4 as m  0, we can still use this expansion to yield the ultraviolet divergent terms
arising from j  0,1, and 2 in the four-dimensional case. We may put m  0
immediately in the j  0 and 1 terms in the expansion, because they are of positive
power for n  4. These terms therefore vanish. The only nonvanishing potentially
ultraviolet divergent term is therefore j  2 :

214n/2 m


n4
a2x, 2  n

2
, 6.53

which must be handled carefully. Substituting for a2x with   n from (6.48), and
rearranging terms, we may write the divergent term in the effective action arising from
(6.53) as follows

W,div
 


 214n/2 m


n4
 2  n

2  dnxgx, 1
2 a2x,




214n/2 m


n4
 2  n

2  dnxgx, 1
2 

x  G
x


 On  4

6.54

where

x  Rx,R
 x,


 2Rx,R

 x,

 1

3
R2x,


,

G
x  Rx,R

 x,


6.55

and

  1
120

,   1
360

. 6.56

Finally one obtains

T
x,ren  1/28802  x  2

3 R
x,


 G

x 

1/28802 R
 x,Rx,


 R

 x,Rx,

 Rx, .

6.57

Note that from Eq.(3.42) for r  2m follows that

RR  r  2m2  2
1


 42m4. 6.58

Thus for the case of the distributional Schwarzchild spesetime given by the distributional
metric (3.40) using Eq.(6.57) and Eq.(6.58) for r  2m one obtains



T
x,ren  288021 r  2m2  2

1


 42m4 . 6.59

This result in a good agreement with Eq.(5.14)-Eq.(5.16).
.

7.Novel explanation of the Active Galactic Nuclei.The
Power Source of Quasars as a result of vacuum
polarization by the gravitational singularities on BHs
horizon.

7.1. The current paradigm for Active Galactic Nuclei.High
energy emission from galactic jets.
Accretion of gas onto the supermassive Kerr black holes lurking at the center of active

galactic nuclei (AGN) gives rise to powerful relativistic jets.

Fig.7.1.Jet from Black Hole in a Galaxy Pictor A

The active galaxy Pictor A lies nearly 500 million

light-years from Earth and contains a

supermassive black hole at its centre.

This is a composite radio and X-ray image.

We remind that in the standard theory of an accretion disk around a black hole it is
assumed that there is no coupling between the disk and the central black hole [51].
However, in the presence of a magnetic field, a magnetic coupling between the disk and
the black hole could exist and play an important role in the balance and transportation of
energy and angular momentum.In the absence of the magnetic coupling, the energy
source for the radiation of the disk is the gravitational energy of the disk (i.e., the
gravitational binding energy between the disk and the black hole). But, if the magnetic
coupling exists and the black hole is rotating, the rotational energy of the black hole
provides an additional energy source for the radiation of the disk.With the magnetic
coupling, the black hole exerts a torque on the disk, which transfers energy and angular
momentum between the black hole and the disk. If the black hole rotates faster than the
disk, energy and angular momentum are extracted from the black hole and transfered to
the disk. The energy deposited into the disk is eventually radiated away by the



disk,which will increase the efficiency of the disk and make the disk brighter than usual.
If the black hole rotates slower than the disk, energy and angular momentum are
transfered from the disk to the black hole, which will lower the efficiency of the disk and
make the disk dimmer than usual. Therefore, the magnetic coupling between the black
hole and the disk has important effects on the radiation properties of the disk [52]-[53].
The current paradigm for AGN is that their radio emission is explained by synchrotron

radiation from relativistic electrons that are Doppler boosted through bulk motion. In this
model, the intrinsic brightness temperatures cannot exceed 1011 to 1012 K [55]. Typical
Doppler boosting is expected to be able to raise this temperature by a factor of 10.

Fig.7.2.Fourier coverage (uv-coverage) of the fringe fitted data

(i.e.,reliable fringe detections) of the Radio Astron observations

of BL Lac on 2013 November 10-11at 22 GHz.

Color marks the lower limit of observed brightness temperature

obtained from visibility amplitudes. Adapted from [54].

The observed brightness temperature of the most compact structures in BL Lac,
constrained by baselines longer than 5.3G, must indeed exceed 2  1013K and can
reach as high as ~ 3  1014K [55]. As follows from Fig. 7.2, these visibilities correspond to
the structural scales of 30  40 as oriented along position angles of 25  30.These
values are indeed close to the width of the inner jet and the normal to its direction.The
observed, Tb,obs, and intrinsic, Tb,int, brightness temperatures are related by

Tb,obs  1  z1Tb,int 7.1. 1

with   7.2.The estimeted by (7.1.1) a lower limit of the intrinsic brightness temperature
in the core component of our Radio Astron observations of Tb,int  2.91012 K. It is
commonly considered that inverse Compton losses limit the intrinsic brightness
temperature for incoherent synchrotron sources, such as AGN, to about 1012K [1].In
case of a strong flare, the "Compton catastrophe" is calculated to take about one day to
drive the brightness temperature below 1012K [1]. The estimated lower limit for the
intrinsic brightness temperature of the core in the Radio Astron image of Tb,int  2.91012K
is therefore more than an order of magnitude larger than the equipartition brightness
temperature limit established in [55] and at least several times larger than the limit
established by inverse Compton cooling.
Remark 4.1.1. Note that if the estimate of the maximum brightness temperature given

in
[53], is closer to actual values, it would imply Tb;int5  1013K. This is difficult to reconcile



with current incoherent synchrotron emission models from relativistic electrons,
requiring
alternative models such as emission from relativistic protons.
Remark 4.1.2. However the proton, as we know, is 1836 times heavier than an

electron
and absolutely huge energy is required to accelerated it to sublight speed.
Remark 4.1.3.These alternative models such as emission from relativistic protons
can be suported by semiclassical gravity effect finds its roots in the singular behavior

of
quantum fields on curved distributional spacetimes presented by rotating gravitational
singularities.

7.2.The Colombeau distributional Kerr spacetime in Boyer-
Lindquist form.
The classical Kerr metric in Boyer-Lindquist form reads

ds2  r,dt2  4mra sin2
2 dtd 

2

a
dr2  2d2 

r2  a2  2mra2 sin2
2 sin2d2,

7.2. 1

where

2  r2  a2 cos2,a  r2  2mr  a2,

r,  1  2mr
2  r2  2mr  a2 cos2

2 .
7.2. 2

Remark 7.2.1.Note that For small values of the parameter a, where we may neglect
terms
of the order of a2, we get from (7.2.1) the Lense-Thirring metric with Jz  ma

ds2   1  2m
r dt2  1  2m

r
1
dr2  r2d2  sin2d2  4ma sin2

r dtd. 7.2. 3

I.Slow Kerr gravitational singularity: a  m.
Note that

r,  r2  2mr  a2 cos2
2 

r  rEr  rE_ 
2 , 7.2. 4

where rE  m  m2  a2 cos2 and a  r2  2mr  a2  r  rr  r, where
r  m  m2  a2 .
Remark 7.2.2.Let  be a submanifold given by equation   const, then metric

(7.2.1)
restricted on submanifold   reads

ds2  r,dt2  2

a
dr2  2d2. 7.2. 5

Note that: (i) the metric (7.2.5) is degenerate on outer ergosurfaces r  rE and
inner
ergosurfaces r  rE_ , (ii) the metric (7.2.5) is singular on horizon r  r, (iii) the



metric
(7.2.5) is singular on submanifold given by equation r  r.
Remark 7.2.3.Note that we will be consider the distributional Kerr spacetime not as full
distributionel BH with Colombeau generalized metric (7.2.7), but only as gravitational
singularity located on submanifold   which coincide with outer ergosurface of
classical Kerr spacetime. In accordance with Eq.(7.2.11),Eq.(7.2.19) and Eq.(7.2.20)
submanifold   presented the singular boundary of distributional spacetime
presented by Colombeau generalized metric (7.2.7).
We introduce now the following regularized (above ergosurface r  rE) quantity


r, 

r  rE_  r  rE2  2


2r

,

a,  r2  2mr  a2,

7.2. 6

where 
2  

2r  r2  a2 cos2,  0,, r  rE  r.Thus Colombeau
generalized metric (above ergosurface r  rE) corresponding to classical Kerr

metric
(7.2.1) reads

ds2  r, dt
2  4mra sin2


2



dtd 


2

a, 

dr2   
2d

2 

r2  a2  2mra2 sin2


2


sin2d2.

7.2. 7

Remark 7.2.4.Let  be a submanifold given by equation   const, then
Colombeau
generalized metric (7.2.7) restricted on  reads

ds2  r, dt
2 


2

a, 

dr2   
2 d

2. 7.2. 8

Note that Colombeau generalized metric (7.2.7) nondegenerate on outer ergosurfaces
r  rE,see Pic.7.1.

Remark 7.2.4.Note that for small values of the parameter a, where we may neglect
terms
of the order of a2, we get from (7.2.7) effectively the following Colombeau generalized
metric

ds2   1  rE
r

dt2  1  rE
r

1

dr2  

r2 d
2  sin2d2  4ma sin2

r
dtd,

7.2. 9

where rE  m  m2  a2 cos2 .
Remark 7.2.5. Note that Colombeau generalized metric (7.2.9) restricted on 

reads



ds2   1  rE
r

dt2  1  rE
r

1

dr2   r
2 d

2 7.2. 10

(I)Let Ra1r, be Colombeau generalized curvature scalar Rr,
corresponding
to the metric (7.2.10) with a  1. Main singular part sing Ra1r, of the

Colombeau
generalized curvature scalar Ra1r,corresponding to the metric (7.2.10) reads

sing Ra1r, 


2

rE r  rE2  2
3/2



, 7.2. 11

where clr   rE,see Appendix Eq.(A.12).

(II) Let Ra1r,R
a1r,


be Colombeau generalized quadratic scalar

Rr,Rr, corresponding to the metric (7.2.10) with a  1. From

Eq.(7.2.10)
and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing Ra1r,R
a1r,



of the quadratic scalar Ra1r,R
a1r,


reads:

sing Ra1r,R
a1r,





4

4rE
4 2  r  2m2

3



. 7.2. 12

(III) Let Ra1r,R
a1r,


be Colombeau generalized quadratic

scalar Rr,Rr, corresponding to the metric (7.2.10) with a  1. From

Eq.(7.2.10) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing Ra1r,R
a1r,



of the Colombeau generalized quadratic scalar Ra1r,R
a1r,


reads

sing Ra1r,R
a1r,





4

4rE
4 2  r  2m2

3



. 7.2. 13

Remark 7.2.6.Note that from Eq.(7.2.11)-Eq.(7.2.13) at outer ergosurfaces
r  rE, (see Pic.7.1) follows that

sing Ra1r, r rE


rE
1 1  . 7.2. 14

and

sing Ra1r,R
a1r,

 r rE


rE
4 2  ,

sing Ra1r,R
a1r,

 r rE


rE
4 2  .

7.2. 15

Let Ramr, be Colombeau generalized curvature scalar Ramr,
corresponding to the metric (7.2.8) with a  m. We let now that

  AB  C  A
2a,

1 ,Br2  
2,B  C  

2a,
1 ,A  

r,,D  0. 7.2. 16

From Eq.(7.2.8),Eq.(7.2.16) and Eq.(A.1)-Eq.(A.2) we obtain



Ramr, 
A



2
r 2 A



A
 3 B



B
 




 2

r2
C

B
 A



A
 2 B



B

 1
2

B


B

2

 2 A
B



AB
 1

2
A


A
 B



B









a,


2

2
r 2 A



A
 3 B



B
 




 2

r2
C

B
 A



A
 2 B



B

 1
2

B


B

2

 2 A
B



AB
 1

2
A


A
 B



B







.

7.2. 17

Note that


r

r  rE2  2 
r  rE

r  rE2  2

2

r2
r  rE 2  2  2

r  rE 2  2
3
2

.
7.2. 18

From Eq.(7.2.17) and Eq.(7.2.18) one obtains that main singular part
singRamr,  of the Colombeau generalized curvature scalar Ramr,
corresponding to the metric (7.2.8) (mod nonsingular multiplier) reads

singRamr,  
2

r  rE2  2
2



. 7.2. 19

Remark 7.2.7.(I) Let Ramr,R
amr,


be Colombeau generalized

quadratic
scalar Rr,Rr, corresponding to the metric (7.2.8) with a  m. From

Eq.(7.2.8)-Eq.(7.2.16) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing Ramr,R
amr,



of the Colombeau generalized quadratic scalar Ramr,R
amr,


reads

sing Ramr,R
amr,





4

4rE
4 2  r  2m2

3



. 7.2. 20

(II) Let Ramr,R
amr,


be Colombeau generalized quadratic

scalar Rr,Rr, corresponding to the metric (7.2.8) with a  m. From

Eq.(7.2.8), Eq.(7.2.16) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing Ramr,R
amr,



of the Colombeau generalized quadratic scalar Ramr,R
amr,


reads

sing Ramr,R
amr,





4

4rE
4 2  r  2m2

3



. 7.2. 21



Pic.7.Ergosurface,horizon,and singularity for slow

Kerr black hole.

II.Critical Kerr gravitational singularity: a  m.
Note that in contrast with full distributional Kerr spacetime the case of the critical Kerr

gravitational singularity considered in this subsection (see Remark 7.2.3) not principal
different in comparison with a case of the slow Kerr gravitational singularity considered
above. In particular the Eqs.(7.2.19)-(7.2.21) holds with rE given by Eq.(7.2.22)

rE  m  m2  a2 cos2  m1  sin2. 7.2. 22

Pic.8.Ergosurface,horizon,and singularity for

critical Kerr black hole.

III.Fast Kerr gravitational singularity: a  m.



Pic.9.Ergosurface,horizon,and singularity for fast

Kerr black hole.

Let  be a submanifold given by equations (i)   const and (ii)
m2  a2 cos2  0, i.e.

cos2  m2

a2  . 7.2. 23

Let  be a set   |cos2   and let , be the indicator function of the set
,i.e. , is the function defined to be identically 1 on , and is 0 elsewhere.
We introduce now the following regularized (above ergosurface r  rE,  )
quantity


r,, 

,r  rE_  r  rE2  2


2r

, 7.2. 25

where 
2  

2r  r2  a2 cos2,  0,, r  rE  0.Thus Colombeau
generalized metric (above ergosurface r  rE) corresponding to classical Kerr

metric
(7.2.1) reads

ds2  ,r,, dt
2  4mra sin2


2



dtd 


2

a, 

dr2   
2d

2 

r2  a2  2mra2 sin2


2


sin2d2.

7.2. 26

Remark 7.2.8.Note that we will be consider the distributional Kerr spacetime not as full
distributionel BH with Colombeau generalized metric (7.2.7), but only as gravitational
singularity located on submanifold   which coincide with an part of the outer
ergosurface of classical Kerr spacetime. In accordance with Eq.(7.2.11),Eq.(7.2.19)

and
Eq.(7.2.20) submanifold   presented the singular boundary of distributional
spacetime with Colombeau generalized metric (7.2.26).

Remark 7.2.9.Let  be a submanifold given by equations (i)   const and (ii)
cos2  , then Colombeau generalized metric (7.2.26) restricted on submanifold

  reads



ds2  ,r,, dt
2 


2

a, 

dr2   
2 d

2. 7.2. 27

Note that Colombeau generalized metric (7.2.27) nondegenerate on outer
ergosurfaces
r  rE,see Pic.7.3.
From Eq.(7.2.27) and and Eq.(A.1)-Eq.(A.2) one obtains that main singular part
singRamr,  of the Colombeau generalized curvature scalar Ramr,
corresponding to the metric (7.2.27) (mod nonsingular multiplier) reads

singRamr,  
,2

r  rE2  2
2



. 7.2. 28

Remark 7.2.10.(I) Let Ramr,R
amr,


be Colombeau generalized

quadratic
scalar Rr,Rr, corresponding to the metric (7.2.27) with a  m. From

Eq.(7.2.27) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing Ramr,R
amr,



of the Colombeau generalized quadratic scalar Ramr,R
amr,


reads

sing Ramr,R
amr,





,4

4rE
4 2  r  2m2

3


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(II) Let Ramr,R
amr,


be Colombeau generalized quadratic

scalar Rr,Rr, corresponding to the metric (7.2.27) with a  m. From

Eq.(7.2.27) and Eq.(A.1)-Eq.(A.2) one obtains that main singular part

sing Ramr,R
amr,



of the Colombeau generalized quadratic scalar Ramr,R
amr,


reads

sing Ramr,R
amr,





,4

4rE
4 2  r  2m2

3



. 7.2. 30

8. Conclusions and remarks.
This paper dealing with an extension of the Einstein field equations using apparatus of

contemporary generalization of the classical Lorentzian geometry named in literature
Colombeau distributional geometry,see for example [1]-[2],[5]-[7] and [14]-[15].The
regularizations of singularities present in some solutions of the Einstein equations is an
important part of this approach. Any singularities present in some solutions of the
Einstein equations recognized only in the sense of Colombeau generalized functions
[1]-[2] and not classically.
In this paper essentially new class Colombeau solutions to Einstein fild equations is

obtained. We have shown that a succesfull approach for dealing with curvature tensor
valued distribution is to first impose admisible the nondegeneracy conditions on the
metric tensor, and then take its derivatives in the sense of classical distributions in space



2m
 3.
The distributional meaning is then equivalent to the junction condition formalism.

Afterwards, through appropiate limiting procedures, it is then possible to obtain well
behaved distributional tensors with support on submanifolds of d  3, as we have shown
for the energy-momentum tensors associated with the Schwarzschild spacetimes. The
above procedure provides us with what is expected on physical grounds. However, it
should be mentioned that the use of new supergeneralized functions (supergeneralized
Colombeau algebras  3,). in order to obtain superdistributional curvatures, may
renders a more rigorous setting for discussing situations like the ones considered in this
paper.
The vacuum energy density of free scalar quantum field  with a distributional

background spacetime also is considered.It has been widely believed that, except in very
extreme situations, the influence of gravity on quantum fields should amount to just
small, sub-dominant contributions. Here we argue that this belief is false by showing that
there exist well-behaved spacetime evolutions where the vacuum energy density of free
quantum fields is forced, by the very same background distributional spacetime such
BHs, to become dominant over any classical energy density component. This
semiclassical gravity effect finds its roots in the singular behavior of quantum fields on
curved spacetimes. In particular we obtain that the vacuum fluctuations 2  has a
singular behavior on BHs horizon r: 2r~|r  r |2.We argue that this vacuum
dominance may bear importent astrophysical implications.
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Appendix A.
Expressions for the Colombeau quantities R, , R

, R,  and

R, R,  
in terms of A, B, C and D,  0,1:

Let us introduce now Colombeau generalized metric which has the form

ds2  Ardx02  2Drdx0dr  Br  Crdr2

Brr2d2  sin2d2  r  clr   .
A. 1

The Colombeau scalars R, R
R and R

R, in terms of

Colombeau generalized functions Ar, Br, Cr, Dr is expressed as



R 
A



2
r 2 A



A
 3

B


B





 2

r2
AC  D

2

AB
 A



A
 2

B


B

 1
2

B


B

2

 2
A
B



AB
 1

2
A


A


B


B







,

RR 
A

2


2

1
2
A


A
 1

4
A




A
 1

2
A
B



AB
 1

r
A


A

2





2
A

2


2

1
r

1
2




 A



A
 2

B


B
 1

r2
AC  D

2

AB
 1

2
A
B



AB


 1
2
B


B
 1

4
B




B

2





A
2


2

1
2
A


A
 1

4
A




A
 1

2
A
B



AB


B


B
 1

2
B


B

2

 1
2
B




B
 1

r
A


A
 




 2

B


B

2



,

RR 

A
2


2

A


A
 1

2
A




A

2

 2
A

2


2

1
r
A


A
 1

2
A
B



AB

2

4
A

2


2

1
r
B


B
 1

r2
AC  D

2

AB
 1

4
B


B

2 2



2 A
2


2

1
r

A


A
 2

B


B
 




 1

2
A
B



AB


B


B

 1
2

B


B

2

 1
2
B




B

2



.

A. 2

Here

  ArBr  Cr  D
2r. A. 3

Assume that

r  1, Br  1, Dr  0. A. 4

From Eq.(A.2)-Eq.(A.4) one obtains

R   4A


r  2AC

r2
 A




,

RR  2 1
2
A
  1

r A


2


 2  A



r  AC

r2

2



,

RR  A
2  4

A


r

2

 4
AC

2

r4 

.

A. 5

We choose now

Br  1,Cr  1  A
1r,Dr  0, A. 6

and rewrite Colombeau generalized object corresponding to Schwarzschild metric above
horizon in the following form



ds2  Ardt2  A
1rdr2  r

2d2, A. 7

where Ar

Ar  r1 r  2m2  2 , r  2m. A. 8

By differentiation we obtain

  AB  C  1,
  0,

A
 r 

2mr  2m

r2 r  2m2  2
,

A
r 

2m16m3  24m2r  12mr2  4m2  2r3  r2

r3 r  2m2  2
3/2



4mr  2m3  r  4m2

r3 r  2m2  2
3/2

.

A. 9

From Eqs.(A.2)-(A.5) and Eq.(A.9) we obtain

Rr, 
A



2
r 2 A



A
 3 B



B
 




 2

r2
AC  D

2

AB
 A



A
 2 B



B

 1
2

B


B

2

 2 A
B



AB
 1

2
A


A
 B



B









A
2
r 2 A



A


2A1  A
1

r2
 A



A 



 4A


r  2A

r2
 2

r2
 A







8mr  2m

r3 r  2m2  2


 2r3 r  2m2  2

 2
r2




2m16m3  24m2r  12mr2  4m2  2r3  r2

r3 r  2m2  2
3/2



.

A. 10

Finally from Eq.(A.10) one obtains the following expression for the distributional
Colombeau scalar Rr,

Rr, 
8mr  2m

r3 r  2m2  2




2r3  r  2m2  2

 2
r2

 4mr  2m3  r  4m2

r3 r  2m2  2
3/2



.

A. 11

Remark A.1. Note that from Eq.(A.11) follows that: if str  0, i.e.r   2m then

r   2m  Rr,  2  0.

We assume now that clr   2m and therefore from Eq.(A.11) we obtain



Rr, 
4m22

8m3 r  2m2  2
3/2



. A. 12

Remark A.2. Note that from Eq.(A.12) at horizon r 

2m follows that:

Rr, 
4m22

8m32 3/2 

 4m11  . A. 13

Remark A.3. Note that from Eq.(A.11) follows that:

0

w-lim Rr, ~ r  2m. A. 14

Remark A.4. Let r  2m   0, then from Eq.(A.13) we obtain

Rr,  
2

2m r  2m2  2
3/2



. A. 15

From Eqs.(A.2) and Eq.(A.9) we obtain

Rr,Rr, 

2 1
r A

  A  1
r2

2



 2 1
2
A
  1

r A


2




2 1
r3

2  r  2m2  1
r2 

 2 m
r3

r  2m

2  r  2m2

2





2
4mr  2m3  r  4m2

r3 r  2m2  2
3/2

2 m
r3

r  2m

2  r  2m2

2



.

A. 16

Remark A.5. Note that from Eq.(A.16) follows that:if str  0, i.e.r   2m then

r 

2m  Rr,Rr,  Kr,

Kr  12 rs
2

r6
, rs  2m.

A. 17

We assume now that r  2m and therefore from Eq.(A.16) we obtain

Rr,Rr,  Krs  4

4m4 2  r  2m2
3



A. 18

Remark A.6. Note that from Eq.(A.18) at horizon r 

2m follows that:

Rr,Rr, 
1

4m42 


, A. 19

Remark A.7. Let r  2m   0, then from Eq.(A13) and Eq.(A.12) we obtain



Rr,Rr,   Krs  4

4m4 2  r  2m2
3



A. 20

From Eqs.(A.2) and Eq.(A.3) we obtain

Rr,Rr, 

A
2  2 A



r

2



 4 1
r2
1  A

2



 2 A


r

2





A
2  4 A

2

r2 
 4 1

r4
1  A

2




4mr  2m3  r  4m2

r3 r  2m2  2
3/2

2



 8m2r  2m2

r6 r  2m2  2


4
r4

1  r1 r  2m2  2
2
.

A. 21

Remark A.8. Note that from Eq.(C.15) follows that:

r 

2m  Rr,Rr,  Kr, A. 22

see Definition 1.5.2.(i).
We assume now that r  2m and therefore from Eq.(C.10) we obtain

Rr,Rr,  Krs  4

4m4 2  r  2m2
3



. A. 23

Remark A.9. Let r  2m   0, then from Eq.(A.13) and Eq.(A.12) we obtain

Rr,Rr,   Krs  4

4m4 2  r  2m2
3



. A. 24

Remark A.10. Note that from Eq.(A.15) at horizon r  2m follows that:

Rr,Rr,  , A. 25

see Definition 1.5.2.(ii).
Remark A.11. We assume now there exist an fundamental generalized lengh l

l0,  a0,,  1,

l,1  a,
A. 26

such that |r   |  l  a It meant there exist a thickness thhor  l of BH
horizon. We introduce a norm thhor of a thickness thhor by formula

thhor  sup0,|l |  , A. 27

By using (A.20) we get the estimate



Rr,Rr,  Krs  4

4m4 r  2m2  2
3

0,



Krs  1
4m4 r  2m2  2

0,

 2

r  2m2  2
0,



 2

r  2m2  2
0,



Krs  1
4m4a2  12

1
r  2m2  2

0,



Krs  1
4m4a2  12

1
r  2m2 r2m0,

.

A. 28
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