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Abstract 

The electron-proton scattering experiment by the PRad (proton radius) team at Jefferson Lab measured 

the root mean square (rms) charge radius of the proton as rp = 0.831 ± 0.007stat ± 0.012syst fm.1 We offer 

a theoretical explanation of the new measurement based on a ring current model of a proton. This 

model further builds on older ring current and/or Zitterbewegung models for an electron and, hence, we 

will also highlight those results when relevant. We obtain a theoretical radius that is equal to four times 

the range parameter (ħ/mpc) in Yukawa’s formula: 

rp = 4ħ/mpc  0.841 fm  

The 1/4 factor stems from the energy equipartition theorem: using Wheeler’s ‘mass without mass’ idea, 

we effectively assume half of the energy of a proton is explained by the electromagnetic, while the other 

half is attributed to the strong force, which we do not model but isolate from the analysis using the 

energy equipartition theorem.  

As for the small difference between the theoretical and measured radius, we attribute this to the 

mathematical idealizations that underpin ring current models. While useful and necessary as a concept, 

we think pointlike electric charges with zero rest mass and/or zero dimension that, therefore, move at 

lightspeed, do not exist: they must have some (very) small dimension which explains the anomaly. We 

think mathematical idealization also explains the anomalous magnetic moment of an electron. 

We think the calculations may offer a model of matter-particles in general. 

  

 
1 https://www.jlab.org/prad/collaboration.html 

mailto:jeanlouisvanbelle@outlook.com
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1. The recommended CODATA values for the magnetic moment (mm) and the mass of a proton are the 

following: 

μ = 1.4106067973610−26 J·T−1  0.00000000060 J·T−1 

m = 1.6726219236910−27 kg  0.0000000005110−27 kg  

We also have the following defined (or exact) values for the elementary charge, the velocity of light and 

Planck’s constant2: 

qe = 1.60217663410−19 C 

c = 299 792 458 m/s 

h = 6.62607015 J·s 

From a mathematical point of view, we have a set of exact values (the physical constants) and a set of 

variables (mass, magnetic moment, radius, angular momentum of a proton, etcetera) that depend on 

them. The constants are related to the variables through a number of physical laws and theorems we 

accept to be valid.3 The laws and theorems that we will use in this article are: 

• The energy equipartition theorem 

• The Planck-Einstein relation: E = h·f = ħ·ω 

• The principle of relativity and the energy-mass equivalence relation: E = m·c2 

• The force law, which states that a force acts upon a charge and changes its state of motion 

• Maxwell’s laws of electromagnetism 

The system is completely determined – possible over-determined – and, hence, it is easy to derive the  

relations we seek: from the energy (or equivalent mass) of the particle (electron or proton), we can 

 
2 As part of the 2019 revision of SI units, exact numerical values were set for Planck’s constant (h), the elementary 
electric charge (qe), the Boltzmann constant (kB), and Avogadro’s constant (NA). The fine-structure constant has 
now also been defined as: 

α =
qe

2

4πε0ℏ𝑐
 

Its value still has an uncertainty of 1.510−19 on it, which it shares with the electric and magnetic constants 
because of the c2 = 1/ε0μ0 relation. 
3 We adhere to a Popperian view here: we accept them to be valid because they have resisted falsification (Popper, 
1959). 
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calculate all other observables using the three above-mentioned constants (Planck’s quantum of action, 

the elementary charge and the speed of light). 

2. We believe a realist interpretation of quantum mechanics is possible, which means the structure of 

the laws and theorems should not only reflect some structure in our mind, but in Nature as well. We, 

therefore, imagine the magnetic moment of a proton to be created by a circular current of the 

elementary charge. It is, therefore, equal to the current times the area of the loop: 

μ = Iπ𝑎2 = qe𝑓π𝑎2 =
qeω𝑎2

2
⟺ 𝑎 = √

2μ

qeω
 

The frequency is equal to the velocity of the charge (v) divided by the circumference of the loop (2πa). 

However, for a reason the reader will readily understand after reading this article, we prefer to use the 

Planck-Einstein relation for the frequency. We believe the Planck-Einstein relation (E = h·f = ħ·ω) reflects 

a fundamental cycle in Nature. It, therefore, makes sense to also apply it to the ring current idea of a 

proton.4 Hence, we write: 

𝑎 = √
2μ

qeω
= √

2μℏ

qeE
 

3. When applying this formula to an electron, we get the Compton radius of an electron (a = ħ/mc).5 

When applying the a = ħ/mc radius formula to a proton, we get a value which is about 1/4 of the 

measured proton radius. We, therefore, need to consider using the same fraction of the proton energy 

to calculate the frequency:  

ω =
1

4

E

ℏ
 

We should motivate the 1/4 factor, of course. We think the huge value of the proton mass and its tiny 

size – as compared to the mass and size of an electron – lend credibility to the assumption of another 

force (or another charge) inside of the proton.6 Hence, the 1/4 factor combines (1) the energy 

 
4 There is a long tradition of thinking of an electron in terms of a current ring. We may refer to Parson (1915), 
Schrödinger (1930) and, more recently, Hestenes (1990). It has been suggested it may also apply to protons 
(Consa, 2018) but, based on quick feedback from sympathetic researchers, we think this paper may be the first 
fully consistent theory in this regard. Alexander Burinskii, whose work on an integrated theory of the electron we 
admire greatly, drew our attention to earlier work of M.E. Shulman but Shulman’s work seems to focus on leptons 
only (https://www.scirp.org/journal/paperinformation.aspx?paperid=78086). Giorgio Vassallo also sent useful 
references we will further examine over the coming months. We thank both for their quick feedback on our ‘back-
of-the-envelope’ calculations.  
5 The reader who is not familiar with ring current and/or Zitterbewegung models of an electron may also not be 
familiar with the concept of a Compton radius. It is, of course, the reduced form of the Compton wavelength. We 
think of it as an actual (electric) charge radius (see Annex I and II). 
6 We use a model explaining mass as the equivalent mass of energy here, i.e. Wheeler’s idea of “mass without 
mass”. Energy is force over a distance and, hence, we can distinguish between electromagnetic energy (and the 
equivalent mass) and some new strong energy or mass, which is defined in terms of some strong force and the 
related strong charge. Our interpretation of Wheeler’s “mass without mass” theory is explained in a previous 
paper (https://vixra.org/abs/2001.0453). 

https://www.scirp.org/journal/paperinformation.aspx?paperid=78086
https://vixra.org/abs/2001.0453
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equipartition theorem (half of the energy or mass of the electron is to be explained by the strong force) 

and (2) Hestenes’ interpretation of Schrödinger’s Zitterbewegung interpretation of an electron.7 We can, 

finally, do an actual calculation now: 

𝑎 = √
2μ

qeω
= √

4 ∙ 2μℏ

qeE
= 2 ∙ √

2μℏ

qem𝑐2
≈ 2 ∙ 0.35146…× 10−15 ≈ 0.703 fm 

The gap between the 0.831 and 0.703 values suggests we are missing a 2 factor: 

𝑎 = √
√2 ∙ 2μ

qeω
= 2 ∙ √

2√2μℏ

qeE
≈ 0.8359278 fm 

The difference between this calculated value (which used all of the precision of the CODATA values) and 

the PRad result is only about 0.005 fm8, which is well within the statistical standard error of the 

measurement. Hence, it is a good result. 

4. We now need to motivate the insertion of the 2 factor. We think there is some real magnetic 

moment here, which we denote as μL: 

μL = 2·(1.4106067973610−26 J·T−1)  1.99510−26 J·T−1  

The subscript L in the μL notation stands for (orbital) angular momentum. A magnetic dipole will precess 

when placed in a magnetic field⎯which is what is being done when measuring the magnetic moment of 

a proton. We refer to Feynman9 for an easy and very meaningful explanation of the relation between 

the magnitude of the actual – or imagined?10 – angular momentum of a precessing magnet (L) and Lz 

(the measured quantum value) as: 

𝐿

𝐿𝑧
=

√𝑗(𝑗 + 1) ∙ ℏ

𝑗 ∙ ℏ
=

√𝑗(𝑗 + 1)

𝑗
 

For j = ½, we get: 

=
√1/2(1/2 + 1)

1/2
= 2 ∙ √

3

4
= √3 

 
7 Hestenes summarizes his various papers as follows: “The electron is nature's most fundamental superconducting 
current loop. Electron spin designates the orientation of the loop in space. The electron loop is a superconducting 
LC circuit. The mass of the electron is the energy in the electron's electromagnetic field. Half of it is magnetic 
(potential) energy and half is kinetic.” (email from Dr. David Hestenes to the author dated 17 March 2019)  
8 0.831 − 0.836 = 0.005. We showed a result with seven digits to show the difference between this calculation and 
another value we will get out of another calculation (see Section 5). 
9 See: https://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S7 
10 The difference between actual and imagined here depends on one’s interpretation of quantum-mechanical laws. 
From what we present in this article, it should be obvious to the reader that we like to think this magnitude is 
something real. However, such metaphysical questions should not be the concern of the reader: he or she should 
just check our calculations so as to verify them. The interpretation of the results is a different matter. 

https://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S7
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We need a 2 factor. Hence, the spin number must be one: 

𝐿

𝐿𝑧
=

√𝑗(𝑗 + 1) ∙ ℏ

𝑗 ∙ ℏ
=

√1(1 + 1)

1
= √2 

We know this assumption relates to the theoretical distinction between fermions and bosons. However, 

we will show the j = 1 assumption makes sense. 

5. Because of the apparent randomness of this 2 factor, we must try the simpler approach to 

calculating the magnetic moment, which calculates the frequency from the f = c/2πa formula: 

μL = Iπ𝑎2 = qe𝑓π𝑎2 = qe

𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 

⟺ 𝑎 =
2μL

qe𝑐
= √2 ∙

2μ

qe𝑐
= √2 ∙ 0.587 × 10−15 ≈ 0.83065344… fm 

The result differs – slightly but significantly – from the result we obtained from using the Planck-Einstein 

relation for the frequency calculation (see Section 3). It is a very small difference. To be precise, it is, 

again, of the order of 0.005 fm. At the same time, this result is closer to the 0.831 PRad value: the 

difference is 0.000346656… fm only, which is less than 5% of the standard error of the PRad point 

estimate (0.007 fm). 

6. In our calculations, we used the CODATA value for the magnetic moment of a proton in two different 

formulas for the radius, and we found the result is slightly different. While the two values do not differ 

significantly from the experimentally measured value for the proton radius – and, thereby, may be seen 

as a confirmation of the relevance of the PRad experiment – the two different values suggest we may 

think of some unique or absolute theoretical value for the magnetic moment. Indeed, because we have 

two equations for the radius a – and both of them involve μL – we can just equate them: 

𝑎 = 2 ∙ √
2μLℏ

qeE
=

2μL

qe𝑐
⟺ √

2μLℏ ∙ qe
2𝑐2

qeE ∙ μL
2 = 1 

⟺ μL =
2qe

m
ℏ  2.02035 × 10−26 J · T−1  

We get a value that is almost 2, but not quite. We think of this as a coincidence. We can now calculate 

an exact theoretical value for the proton radius: 

𝑎 =
2μL

qe𝑐
=

2

qe𝑐
∙
2qeℏ

m
= 4 ∙

ℏ

m𝑐
≈ 4 ∙ (0.21… fm) ≈ 0.8413564…  fm  

This value is not within the 0.831  0.007 fm interval, but it is well within the wider 

rp = 0.831 ± 0.007stat ± 0.012syst fm interval.11  

 
11 We readily admit the insertion of the 2 factor needs further examination. We have a μL = 2qeħ/mp  2.02… J/T 

value for the magnetic proton which, we argue, differs from the CODATA value with a 2 factor because of 

precession. In contrast, the formula for the magnetic moment of an electron (μe = qeħ/2me  9.274 J/T) gives us the 
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It may be noted that the ħ/mpc factor is equal to the range parameter in Yukawa’s formula for the 

nuclear potential.12 As such, it is equivalent to the concept of the Compton radius for an electron. 

7. We will now come back to the question of the spin number. Quantum-mechanical spin is expressed 

in units of ħ/2 and, according to the Copenhagen interpretation of quantum mechanics, we should not 

try to think of it as a classical property⎯as something that has some physical meaning. We obviously 

disagree with this point of view. We think we can just use the classical L = I·ω expression and substitute I 

and ω for the angular mass and the angular frequency.13 To calculate the angular mass, one must 

assume some form factor: a hoop, a disk, a sphere or a shell are associated with different form factors. 

Our electron model14 assumes that the effective mass of the electron is spread over a circular disk. We 

can, therefore, calculate the angular momentum as: 

L = 𝐼 ∙ ω =
m𝑎2

2

𝑐

𝑎
=

m𝑐

2
∙ 𝑎 =

𝑚𝑐

2
∙

ℏ

𝑚𝑐
=

ℏ

2
 

Hence, we may effectively refer to an electron as a spin-1/2 particle. However, we do not think of this 

property as some obscure ‘intrinsic’ property of an equally obscure ‘pointlike’ particle: we think of the 

electron as an actual disk-like structure with some torque on it. Its angular momentum is, therefore, 

real.15 Likewise, we think of the magnetic moment as being equally real16: 

μ = I ∙ π𝑎2 =
qe𝑐 ∙ π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ ≈ 9.274 × 10−24 J · T−1  

We think there is a confusion in regard to spin numbers and g-factors because we cannot directly 

measure the angular momentum: in real-life experiments, we measure the magnetic moment. Having 

 
CODATA value (apart from the anomaly, of course) without the need for any correction factor because of 
precession. If an electron is some ring current as well, then it must precess as well. We looked on the NIST site, but 
could not find much in terms of methodology. We sent an email to the NIST Public Affairs section with a request to 
guide us to the necessary materials in this regard. Annex I offers a full discussion of the perceived issue. 
12 We calculated this range parameter in previous papers. See, for example, our Metaphysics of Physics paper 
(https://vixra.org/abs/2001.0453). 
13 The reader should not confuse the I and I symbols. The first (I in italics) stands for angular mass (expressed in 
kg·m2), while the second (I, normal type) is the symbol for current (expressed in C/s). We could have used different 
symbols, but we wanted to stick to the usual conventions. The reader will, of course, also not confuse the concepts 
of angular mass (I), also known as the moment of inertia, and angular momentum (L). 
14 See: https://vixra.org/abs/1905.0521. 
15 We will not engage in philosophical discussions here. We hope the reader understands what we want him/her to 
understand. 
16 The CODATA value for the magnetic moment includes the anomaly and is, therefore, slightly different from the 

theoretical value: μe  9.285 J/T. We think the difference between the theoretical and measured value is to be 
explained by a form factor: the circular point charge must have some (tiny) dimension and/or must have some 
(very tiny) non-zero rest mass. We believe the two letters of Gregory Breit to Gregory Breit to Isaac Rabi can easily 
be interpreted as Breit defending the idea that an intrinsic magnetic moment “of the order of αμB” is not 
anomalous at all. For more details on this conversation, see: Silvan S. Schweber, QED and the Men Who Made It: 
Dyson, Feynman, Schwinger, and Tomonaga , p. 222-223.   

https://vixra.org/abs/2001.0453
https://vixra.org/abs/1905.0521
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said that, it is true we can combine the two formulas to get the g-factor that is usually associated with 

the spin of an electron17: 

𝛍 = −g(
qe

2m
)𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ g = 2 

We should now apply these ideas to the proton. The idea of a current ring – and the idea of precession, 

of course – strongly suggests we should, once again, think of the proton as a disk-like structure. 

However, not all of the mass is in the electromagnetic oscillation: we think half of it remains to be 

explained by what is referred to as the strong force (or, what amounts to the same, the idea of a strong 

charge).18 We will, therefore, use a 1/4 rather than a 1/2 factor in the angular mass formula. This yields 

the following result: 

Lp = 𝐼p ∙ ω =
mp𝑟p

2

4
∙
𝑐

𝑟p
=

mp𝑐

4
∙ 𝑟p =

mp𝑐

4
∙

4ℏ

mp𝑐
= ℏ 

Hence, our ‘spin number’ is equal to one. Most academics will cry wolf here: we cannot possibly believe 

a proton is a spin-one particle, can we? We think we can. We think there is no need for the concept of a 

spin number and a g-factor in a realist interpretation of quantum mechanics. We think of the angular 

momentum and the magnetic moment as being real and, hence, whatever else is being calculated – be it 

a spin number or a g-factor – is not very relevant. Worse, we think it confuses rather than clarifies the 

analysis. We, therefore, think our calculation of Lp is consistent. We also think it is consistent with the 

use of the 2 factor – as opposed to a 3 factor – to calculate what we think of as a real magnetic 

moment of a proton (μp). 

We should, of course, relate this to the usual conventions. We will, therefore, do some calculations 

involving a g-factor. Instead of the Bohr magneton μB = qeħ/2me, we should use the nuclear magneton 

μN = qeħ/2mp. We get the following result: 

𝛍𝐋 = g(
qe

2mp
)𝐋 ⇔

2qe

mp
ℏ = g

qe

2mp
ℏ ⇔ g = 4 

That is, of course, a strange number: the CODATA value is about 5.5857. However, this result depends 

on the use of a theoretical ħ/2 value for the angular momentum. It also uses the CODATA value for the 

magnetic moment⎯as opposed to our μL value, which is the CODATA value corrected for precession. 

Hence, the CODATA calculation of the g-factor is this: 

μp = gp

qe

2mp

ℏ

2
⟺ gp =

4μpmp

ℏqe
= 5.58569… 

We get a slightly different value when we insert our newly found theoretical value for the magnetic 

moment: 

 
17 We used vector notation (boldface) to draw attention, once again, to our physical interpretation of what might 

be going on: the minus sign (−) is there because, in the case of an electron, the magnetic moment and angular 
momentum vectors have opposite directions.  
18 See our paper on the idea of a strong force and/or a strong charge: https://vixra.org/abs/2001.0453. 

https://vixra.org/abs/2001.0453
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μp = gp

qe

2mp

ℏ

2
⟺ gp =

4μpmp

ℏqe
=

4

√2
∙
μLmp

ℏqe
=

4

√2
∙
2qeℏ

mp
∙
mp

ℏqe
=

8

√2
= 5.65685… 

How can we explain the difference? 

8. The difference of about 0.071 (about 1.2%) is not surprising: the difference is of the same order of 

magnitude as the difference between our theoretical value for the radius – which is based on the 

assumption of a pointlike charge – and the actually measured radius. We think this difference confirms 

both the theory as well as the PRad measurement. We anticipate theorists and experimenters to argue 

about the next digit of the anomalous magnetic moment of a proton in pretty much the same way as 

they have been arguing about the anomalous magnetic moment of an electron. We think both 

‘anomalies’ are there because of the mathematical idealization in our assumptions: the pointlike charge 

may have zero rest mass (or some value very close to zero), but we should not assume it has no 

dimension whatsoever.19 

Why not? We can only give a philosophical answer here: something that has no dimension whatsoever 

probably exists in our mind only. Something real – like a charge – must have some dimension.  

From what we write above, the reader will understand that we think some of the generalizations in 

quantum physics – most notably, the concept of bosons – are not necessary to understand Nature. 

Jean Louis Van Belle, 4 February 2020 

  

 
19 See our paper on Consa’s calculations of the anomalous magnetic moment (https://vixra.org/abs/2001.0264), 
which also references our approach to the matter (https://vixra.org/abs/1906.0007). 

https://vixra.org/abs/2001.0264
https://vixra.org/abs/1906.0007
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Annex I: Precession of electrons and protons 

When inserting the CODATA value for the magnetic moment of an electron in the two formulas that we 

have used to calculate the theoretical magnetic moment of a proton, we get the electron’s Compton 

radius. Calculating the frequency using the geometric formula (f = c/2πa), we get: 

μe = Iπ𝑎2 = qe𝑓π𝑎2 = qe

𝑐

2π𝑎
π𝑎2 =

qe𝑐

2
𝑎 ⟺ 𝑎 =

2μe

qe𝑐
≈ 0.3866607…pm 

Calculating the frequency using the Planck-Einstein relation (f = E/h), we get the same value: 

μe = Iπ𝑎2 = qe𝑓π𝑎2 =
qeω𝑎2

2
⟺ 𝑎 = √

2μe

qeω
= √

2μeℏ

qeE
≈ 0.3863831…pm 

There is, once again, a small difference between the two values and we can, therefore, equate the two 

formulas to calculate a theoretical value for the magnetic moment of an electron20: 

𝑎 = √
2μeℏ

qem𝑐2
=

2μe

qe𝑐
⟺ √

μeℏ ∙ qe
2𝑐2

2qem𝑐2 ∙ μe
2 = 1 

⟺ μe =
qe

2m
ℏ  9.274…× 10−24 J · T−1 

The reader should note this differs slightly from the CODATA recommended value – which is equal to 

about 9.284 J·T−1, which is based on experimental measurement. Again, we think this difference 

confirms both the theory as well as the measurement: we think the ‘anomaly’ is there because of the 

mathematical idealization in our assumptions: the pointlike charge may have zero rest mass (or some 

value very close to zero), but we should not assume it has no dimension whatsoever. We may also 

assume its velocity is, perhaps, nearly lightspeed but not quite. We, therefore, think it can be explained 

using classical physics. 

We can now re-insert the theoretical magnetic moment in our formulas for the radius to calculate the 

theoretical radius of the electron: 

𝑎 = √
2μeℏ

qem𝑐2
= √

2qeℏ
2

2mqem𝑐2
=

2μe

qe𝑐
=

2qeℏ

2mqe𝑐
=

ℏ

m𝑐
≈ 0.3861592…pm 

This is a nice result, but let us explore it some more. Do we assume precession and, if so, what factor 

should we use? The formulas do not suggest so. Our equality no longer holds. Indeed, if we would 

denote the so-called real magnetic moment as μJ = n·μe
21 and then our equality becomes this: 

 
20 We should add a minus sign because of the opposite direction of magnetic moment and angular momentum. 
However, here we are only calculating magnitudes. 
21 We use a J instead of L so as to avoid confusion with the μL symbol which we used for the angular momentum of 
a proton. The physical meaning of μL and μJ is, therefore, exactly the same. Note that n is not necessarily a whole 

number. For example, when inserting j = 3/2 in the formula for the L/Lz or J/Jz ratio, we get √𝑛 = √15 3⁄ .  
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𝑎 = √
2√𝑛μeℏ

qem𝑐2
=

2√𝑛μe

qe𝑐
⟺

√𝑛μeℏ ∙ qe
2𝑐2

2qem𝑐2 ∙ 𝑛μe
2 =

√𝑛qeℏ

2m ∙ 𝑛μe
= 1 ⟺

√𝑛

𝑛
∙
qeℏ

2m
∙
2m

qeℏ
= 1 ⟺ √𝑛 = 𝑛 

This equality only holds for n = 1. It is very puzzling: should we assume that the CODATA value for the 

magnetic moment of an electron has already been corrected to include the idea of precession? 

While contemplating this possibility, we should also note we did not use a 1/2 factor in our f = E/h 

formula. If we used such factor for our proton calculations – arguing half of the energy is kinetic and the 

other half is electromagnetic – then we should use such factor for our electron calculations as well. Let 

us see if this gets us anywhere. Substituting ω for E/2ħ instead of E/ħ, we get this formula for the 

electron radius: 

μ = Iπ𝑎2 = q𝑓π𝑎2 =
qω𝑎2

2
⟺ 𝑎 = √

2μ

qω
= √

4μℏ

qE
= 2 ∙ √

μℏ

qE
 

The other way to calculate μ was like this: 

μ = Iπ𝑎2 = q𝑓π𝑎2 = q
𝑐

2π𝑎
π𝑎2 =

q𝑐

2
𝑎 ⟺ 𝑎 =

2μ

q𝑐
 

Equating both equations for a gives us this: 

𝑎 = 2 ∙ √
μℏ

qm𝑐2
=

2μ

q𝑐
⟺ √

μℏ

qm𝑐2
∙
q2𝑐2

μ2
= 1 ⟺ μ =

q

m
ℏ  18.548 × 10−24 J · T−1  

This is, unsurprisingly, twice the CODATA value for the magnetic moment. The corresponding radius is, 

unsurprisingly, twice the Compton radius: 

𝑎 = 2 ∙ √
μℏ

qm𝑐2
= 2 ∙ √

qℏ2

qm2𝑐2
= 2

ℏ

m𝑐
=

2μ

q𝑐
=

2qℏ

qm𝑐
= 2

ℏ

m𝑐
 

This is very weird, of course, even if the math here are very simple.22 Let us quickly examine if this 

strange result respects conventional wisdom in regard to spin numbers and g-factors. The formula to be 

used depends, once again, on our assumption in regard to the form factor: 

𝛍 = −g(
qe

2m
)𝐋 

Do we think of the electron as a loop or a hoop, or do we think its mass is effectively spread out over a 

disk? The formulas below show that we only get the conventional g-factor (g = 2) if we assume, once 

 
22 It is especially weird because most Zitterbewegung theorists, including Hestenes (1990), Burinskii (2008, 2016) 
and Gauthier (2019), etcetera arrive at the conclusion that the radius of the oscillation must be equal to half the 
Compton radius. Oliver Consa (2018) is one of the few physicists who also equate the electron radius with the 
reduced Compton wavelength. As for the math, one should note that the current is inversely proportional to the 
radius (f = c/2πa) but that the surface of the loop (πa2) is proportional to the square of the radius. The magnetic 
moment (μ)is the product of both. Hence, the radius (a) will be proportional to μ.  
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again, that the mass of the electron is spread out over a disk, which allows us to insert the necessary ½ 

factor 23:   

𝛍 = −g(
qe

2m
)𝐋 ⇔

qe

m
ℏ = g

qe

2m
ℏ ⇔ g = 2 

⇔ L = 𝐼 ∙ ω =
m𝑎2

2

𝑐

𝑎
=

m𝑐

2
∙ 𝑎 =

𝑚𝑐

2
∙
2ℏ

𝑚𝑐
= ℏ 

We are not sure how to make sense of the 1/2 factor and the thorny question of quantum-mechanical 

precession. Perhaps they are related to two different concepts of the radius: while we can calculate the 

radius of a loop of a pointlike charge, our model suggests the electromagnetic field will extend beyond 

the current ring. This may result in an effective charge radius which is larger than the Compton radius. It 

may also explain the 1/2 factor we used for the energy: if we do not include the energy of the magnetic 

field, then we get a radius that is only half the Compton radius. We welcome suggestions as to how to 

improve on this rather sloppy answer. 

As for the methodology used to calculate the CODATA value of the magnetic moment of an electron, we 

have requested NIST to provide us with more details. This may or may not lead to future revisions of 

some of the remarks we presented in this paper. 

  

 
23 This allows us to insert a 1/2 factor in the formula for the angular mass. 
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Annex II: The calculation of the Compton wavelength from scattering 

The reader who is not familiar with ring current and/or Zitterbewegung models of an electron may also 

not be familiar with the concept of a Compton radius. It is, of course, the reduced form of the Compton 

wavelength. From our paper, it is obvious we think of it as an actual (electric) charge radius. However, 

for the convenience of the reader, we remind him how one gets the Compton wavelength from more 

standard (mainstream) calculations.24 The reader should note that the calculations do not involve any 

quantum-mechanical weirdness: the uncertainty principle, for example, is not being invoked. In fact, we 

wanted to add this annex to illustrate how classical basic quantum-mechanical calculations can actually 

be.25 

Compton scattering is referred to as inelastic because the frequency of the incoming and outgoing 

photon are different. We, therefore, suspect an electron first absorbs the photon, before re-emitting a 

new photon and – using the energy difference between the two photons – acquiring some linear 

momentum. Hence, before the photon hits it, the electron is thought of as being stationary. Two 

classical laws govern the process: (1) energy conservation, and (2) momentum conservation.  

1. The energy conservation law tells us that the total (relativistic) energy of the electron (E = mec2) and 

the incoming photon must be equal to the total energy of the outgoing photon and the electron, which 

is now moving and, hence, includes the kinetic energy from its (linear) motion. We use a prime (‘) to 

designate variables measured after the interaction. Hence, Ee’ and Eγ’ are the energy of the moving 

electron (e’) and the outgoing photon (γ’) in the state after the event. We write: 

Ee + Eγ = Ee′ + Eγ′ 

We can now use (i) the mass-energy equivalence relation (E = mc2), (ii) the Planck-Einstein relation for a 

photon (E = h·f) and (iii) the relativistically correct relation (E2 – p2c2 = m2c4) between energy and 

momentum for any particle – charged or non-charged, matter-particles or photons or whatever other 

distinction one would like to make26 – to re-write this as27: 

me𝑐
2 + ℎ𝑓 = √pe′

2 𝑐2 + me
2𝑐4 + ℎ𝑓′ ⟺ pe′

2 𝑐2 = (ℎ𝑓 − ℎ𝑓′ + me
2𝑐4)2 − me

2𝑐4 (1) 

 
24 The presentation in this annex reflects standard analysis, but we relied on Prof. Dr. Barton Zwiebach’s 
introduction to quantum mechanics in MIT’s edX course on quantum mechanics (8.01.1x).  
25 We repeat: the presentation in this annex is mainstream analysis. For a more speculative – but also more 
intuitive – theory of what might actually be going on, we refer to our own classical analysis of Compton scattering 
(https://vixra.org/abs/1912.0251). 
26 This is, once again, a standard textbook equation but – if the reader would require a reminder of how this 
formula comes out of special relativity theory – we may refer him to the online Lectures of Richard Feynman. 
Chapters 15 and 16 offer a concise but comprehensive overview of the basics of relativity theory and section 5 of 
Chapter 6 (https://www.feynmanlectures.caltech.edu/I_16.html#Ch16-S5) gives the reader the formula he needs 
here. It should be noted that we dropped the 0 subscript for the rest mass or energy: m0 = m. The prime symbol (‘) 
takes care of everything here and so you should carefully distinguish between primed and non-primed variables. 
27 We realize we are cutting some corners. We trust the reader will be able to google the various steps in-between. 

https://vixra.org/abs/1912.0251
https://www.feynmanlectures.caltech.edu/I_16.html#Ch16-S5
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2. This looks rather monstrous but things will fall into place soon enough because we will now derive 

another equation based on the momentum conservation law. Momentum is a vector, and so we have a 

vector equation here28: 

p⃗ γ = p⃗ γ′ + p⃗ e′ ⟺ p⃗ e′ = p⃗ γ − p⃗ γ′ 

For reasons that will be obvious later – it is just the usual thing: ensuring we can combine two equations 

into one, as we did with our formulas for the radius – we square this equation and multiply with 

Einstein’s constant c2 to get this29: 

p⃗ e′
2 = p⃗ γ

2 + p⃗ γ′
2 − 2p⃗ γp⃗ γ′ ⟺ pe′

2 𝑐2 = pγ
2𝑐2 + pγ′

2 𝑐2 − 2(pγ𝑐)(pγ′𝑐) ∙ cosθ 

⟺ pe′
2 𝑐2 = ℎ2𝑓2 + ℎ2𝑓′2 − 2(ℎ𝑓)(ℎ𝑓′) ∙ cosθ (2) 

3. We are now ready for the punch line, as Prof. Dr. Zwiebach refers to it. We can combine equations (1) 

and (2) to get this: 

pe′
2 𝑐2 = (𝐸𝑞. 1) = (𝐸𝑞. 1) =  (ℎ𝑓 − ℎ𝑓′ + me

2𝑐4)2 − me
2𝑐4 = ℎ2𝑓2 + ℎ2𝑓′2 − 2(ℎ𝑓)(ℎ𝑓′) ∙ cosθ 

The reader will be able to do the horrible stuff of actually squaring the expression between the brackets 

and verifying only cross-products remain. We get: 

(ℎ𝑓 − ℎ𝑓′)me𝑐
2 = ℎ(𝑓 − 𝑓′)me𝑐

2 = ℎ2𝑓𝑓′(1 − cosθ) 

Multiplying both sides of the equation by the 1/hmeff’ constant yields the formula we were looking for: 

(𝑓 − 𝑓′)me𝑐

𝑓 ∙ 𝑓′
=

𝑓me𝑐 − 𝑓′me𝑐

𝑓 ∙ 𝑓′
=

ℎ

me𝑐
(1 − cosθ) ⟺

𝑐

𝑓′
−

𝑐

𝑓
= λ′ − λ =

ℎ

me𝑐
(1 − cosθ) 

The factor on the left-hand side of the right-hand side of the equation is, effectively, a wavelength. Not a 

radius. We trust the reader will be able to connect the dots here. If not, we refer him or her to our 

photon model.30 

 
28 We could have used boldface to denote vectors, but the calculations make the arrow notation more convenient 
here. So as to make sure our reader stays awake, we note that the objective of the step from the first to the 
second equation is to derive a formula for the (linear) momentum of the electron after the interaction. As 
mentioned, the linear momentum of the electron before the interaction is zero, because its (linear) velocity is zero: 
pe = 0. 
29 We do not want to sound disrespectful when referring to c2 as Einstein’s constant. It has a deep meaning, in fact. 
Einstein does not have any fundamental constant or unit named after him. Nor does Dirac. We think c2 would be 
an appropriate ‘Einstein constant’. Also, in light of Dirac’s remarks on the nature of the strong force, we would 
suggest naming the unit of the strong charge after him. More to the point, note these steps – finally ! – 
incorporated the directional aspect we needed for the analysis. When everything is said and done, we don’t only 
want some value for the Compton wavelength (λC = h/mc), but for the scattering angle (θ) as well! Note that we 
also use the rather obvious E = pc relation for photons in the transformation of formulas here. 
30 See our classical theory of light: https://vixra.org/abs/2001.0345. 

https://vixra.org/abs/2001.0345

