
ON THE NUMBER OF MONIC ADMISSIBLE POLYNOMIALS IN

THE RING Z[x]

Abstract. In this paper we study admissible polynomials. We establish an

estimate for the number of admissible polynomials of degree n with coeffients
ai satisfying 0 ≤ ai ≤ H for a fixed H, for i = 0, 1, 2, . . . , n− 1. In particular,

letting N (H) denotes the number of monic admissible polynomials of degree

n ≥ 3 with coefficients satisfying the inequality 0 ≤ ai ≤ H, we show that

Hn−1

(n− 1)!
+ O(Hn−2) ≤ N (H) ≤

nn−1Hn−1

(n− 1)!
+ O(Hn−2).

Also letting A(H) denotes the number of monic irreducible admissible poly-

nomials, with coefficients satisfying the same condition , we show that

A(H) ≥
Hn−1

(n− 1)!
+ O

(
Hn−4/3(logH)2/3

)
.

1. Introduction and problem statement

Let us consider the polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

of degree n in the ring R[x]. Then f(x) is said to be admissible if

n! =
n∑
i=0

ai = a0 + a1 + · · ·+ an−1 + an.

Let an = 1 and let N (H) denotes the number of admissible monic polynomials
belonging to the ring Z[x]. Interest is on the number of such monic irreducible
polynomial of a given degree under certain constraint. Admissible polynomials, by
their nature, form an important class of polynomials. In some sense admissible
polynomials gives us much information about the distribution of the coefficients.
These polynomials becomes very useful in practice, because it allows us to recover
with some precision the possible coefficients of any such polynomials. Through out
this paper, using a sieve theoritical technique, we will be concerned with the model
problem of estimating the number of monic irreducible admissible polynomials that
can be formed from any given constraint on the coefficients. Letting A(H) denotes
the number of irreducible admissible polynomials

a0 + a1x+ · · ·+ an−1x
n−1 + xn

with 0 ≤ ai ≤ H for i = 0, 1, . . . , n − 1 and ai ∈ Z[x], we ask the question of how
small can this quantity be? This paper will be concerned with addressing such a
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problem. But before then, we seek to find the counting function for the number
admissible monic polynomials in Z[x]. We obtain a lower bound in the following
sequel.

2. Notations

Through out this paper a prime number will either be denoted by p or q. Any
other letter will be clarified. The quantity Ap := {an : an ≡ 0 (mod p)} for
A = (an), and S(A, ρ, z) := #(A \ ∪p|P (z)Ap), where ρ is the set of all primes.
The inequality |k(n)| ≤ Mp(n) for sufficiently large values of n will be compactly
written as k(n)� p(n) or k(n) = O(p(n)). Similarly the inequality |k(n)| ≥Mp(n)
for sufficiently large values of n will be represented by k(n) � p(n). The limit

lim
n−→∞

k(n)
p(n) = 0 will be represented in a compact form as k(n) = o(p(n)) as n −→∞.

Also by k(n) � p(n), we mean there exist some constant c1, c2 > 0 such that
c1p(n) ≤ k(n) ≤ c2p(n). The quantity δ or any of it subscripts are positive numbers
that are taken to be small.

3. Preliminary results

Theorem 3.1. (Chebychev) Let π(z) :=
∑
p≤z

1, then there exist some constants

c1, c2 > 0 such that

c1
z

log z
≤ π(z) ≤ c2

z

log z
.

Proof. For a proof, see for instance [2]. �

Remark 3.2. Now we state a very classical theorem concerning the distribution of
irreducible monic polynomials in the ring Fp[x], which will play a crucial role in
our subsequent works. It comes in the following sequel.

Theorem 3.3. Let Nn denotes the number of monic irreducible polynomials of
degree n in Fp[x]. Then

Nn =
pn

n
+O(pn/2).

Proof. For a proof, See for instance [1]. �

Remark 3.4. Next we state a sifting technology due to Turán, which will play a
crucial role in obtaining an estimate for the number monic irreducible polynomials
with coefficient that can be controlled.

Theorem 3.5. (Turán) Let us set

U(z) :=
∑
p|P (z)

δp,

where 0 ≤ δp < 1. Then

S(A, ρ, z) ≤ |A|
U(z)

+
2

U(z)

∑
p|P (z)

|Rp|+
1

U2(z)

∑
p,q|P (z)

|Rp,q|,

where

P (z) =
∏
p<z
p∈ρ

p, |Ap| = δp|A|+Rp.
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Proof. For a proof, See for instance [1]. �

4. Main results

Theorem 4.1. Let N (H) denotes the number of polynomials xn + an−1x
n−1 +

· · · + a0 in Z[x], satisfying a0 + a1 + · · · + an−1 = n! − 1 and 0 ≤ ai ≤ H for
i = 0, 1, . . . n− 1. Then

Hn−1

(n− 1)!
+O(Hn−2) ≤ N (H) ≤ nn−1Hn−1

(n− 1)!
+O(Hn−2).

In particular, there exist some constant 1
(n−1)! < c < nn−1

(n−1)! , such that

N (H) = (1 + o(1))cHn−1,

as H −→∞.

Proof. Consider the polynomial xn+an−1x
n−1+· · ·+a0, with coefficients satisfying

the conditions 0 ≤ ai ≤ H and

1 + an−1 + an−2 + · · ·+ a0 = n!.

We let each of this polynomials corresponds to elements of the set

M = {(a0, a1, . . . , an−1)|a0 + a1 + · · ·+ an−1 = n!− 1, 0 ≤ ai ≤ H}.

We remark that N (H) is the number of elements of the set M. To obtain these
bounds for the counting function N (H), we first observe that H ≤ n!. For suppose
H > n!, then we find that H > n! > n! − 1 = a0 + a1 + a2 + · · · an−1. This
contradicts the inequality a0 + a1 + a2 + · · · an−1 ≤ Hn, since n ≥ 3. Thus the
inequality

bHc − 1 ≤ n!− 1 = a0 + a1 + . . .+ an−1 ≤ bHnc+ 1

is valid. The lower bound is obtained by finding the number of possible represen-
tations of the form

a0 + a1 + · · ·+ an−1 = bHc − 1 := K.

Letting Rn(K) denotes the number of such different representations, then we claim
that

Rn(K) =

(
K − 1

n− 1

)
.

To see this, consider the power series

l(z) =

∞∑
K=0

zK

valid in the unit disc |z| < 1. Then it follows that

ln(z) =

∞∑
K=0

Rn(K)zK .
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On the other hand, we observe that

ln(z) =
1

(n− 1)!

dn−1

dzn−1

(
1

1− z

)
=

1

(n− 1)!

dn−1

dzn−1

( ∞∑
K=0

zK
)

=

∞∑
K=n−1

K(K − 1) · · · (K − n+ 2)

(n− 1)!
zK−n+1

=

∞∑
K=n−1

(
K

n− 1

)
zK−n+1

=
∞∑
K=0

(
K + n− 1

n− 1

)
zK .

By comparism and using the fact that Rn(K) = Rn(K − n), the claimed lower
bound follows immediately. The upper bound follows by finding the number of
different representations of the form

a0 + a1 + · · ·+ an−1 = bHnc+ 1,

by adapting the same argument, and the proof of the theorem is complete. �

Remark 4.2. The above result does gives us an order of growth of monic admissible
polynomials with carefully controlled coefficients. The next result highlights this
very fact.

Corollary 1. Let N (H) denotes the number of monic admissible polynomials of
degree n in Z[x], with coefficients satisfying 0 ≤ ai ≤ H for i = 0, 1, . . . , n− 1, then

N (H) � Hn−1.

Proof. The result follows from Theorem 4.1. �

We recall that there are Hn monic polynomials of degree n with coefficients sat-
isfying 0 ≤ ai ≤ H. Corollary 1 also indicates that the number of admissible monic
polynomials of degree n with carefully controlled coefficients as before is of the order
Hn−1. Thus when a polynomial is chosen at random, with coefficients controlled
by the quantity H, the probability that it is admissible must be roughly c

H , where
c = c(n). We state the next result, which gives us a lower bound for the number
monic irreducible admissible polynomials, with carefully controlled coefficients.

Theorem 4.3. Let A(H) denotes the number of monic admissible irreducible poly-
nomials of degree n ≥ 3 in the ring Z[x], with coefficients satisfying the relation
0 ≤ ai ≤ H for i = 0, 1, . . . n− 1 and a fixed H. Then

A(H) ≥ Hn−1

(n− 1)!
+O

(
Hn−4/3(logH)2/3

)
for H ≤ n!, and where the implied constant depends on n.
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1.

Proof. We adopt the traditional technique by way of estimating first the number
of monic admissible irreducible polynomials modulo a prime p. By letting N (H)
denotes the number of monic admissible polynomials in Z[x], we find by Theorem
4.1 that

N (H) ≥
(
bHc − 2

n− 1

)
=

Hn−1

(n− 1)!
+O

(
Hn−2

)
.(4.1)

In particular, by Theorem 4.1, we find that N (H) = cHn−1 + O(Hn−2), for some
c := c(n) > 0. Let z = z(H) be a real number to be chosen later and consider the
polynomial

g(x) := xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x](4.2)

satisfying the condition 1 + an−1 + · · ·+ a0 = n!, for each 0 ≤ ai ≤ H. We let each
of these polynomials corresponds to an element of the set

R = {(an−1, an−2, . . . , a0)|an−1 + an−2 + · · · a0 = n!− 1, 0 ≤ ai ≤ H} .

Let Rp be a set of monic polynomials whose elements corresponds to polynomials
in R whose elements are irreducible modulo p. Now we remark that if a polynomial
is irreducible in Rp for some prime p, then it is irreducible in R. We observe that
the number of polynomials in R that corresponds to each polynomial g(x) (mod p)
in Rp is given by

c

H

(
H

p
+O(1)

)n
+ o(1),

where c = c(n). Letting z2 < H, we can write

c

H

(
H

p
+O(1)

)n
+ o(1) =

cHn−1

pn
+O

(
Hn−2

pn−1

)
.

Appealing to Theorem 3.3, we find that the number of polynomials in R that
correspond to polynomials in Rp is given by

|Rp| =
(
cHn−1

pn
+O

(
Hn−2

pn−1

))(
pn

n
+O(pn/2)

)
=
cHn−1

n
+O

(
Hn−1

pn/2

)
+O(Hn−2p).

We see in relation to Theorem 3.5, that

δp =
1

n
, Rp =

Hn−1

pn/2
+Hn−2p,

and

Rp,q =
Hn−1

pn/2
+
Hn−1

qn/2
+Hn−2pq,(4.3)

1

.
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so that by appealing to Theorem 3.1, we find that

U(z) =
∑
p|P (z)

δp =
∑
p|P (z)

1

n
� z

log z
.

We find that

|R|
U(z)

� Hn−1 log z

z
.(4.4)

Again

2

U(z)

∑
p|P (z)

|Rp| =
2

U(z)

∑
p|P (z)

(
Hn−1

pn/2
+Hn−2p

)

� Hn−1 log z

z

∑
p|P (z)

1

pn/2
+
Hn−2 log z

z

∑
p|P (z)

p

� Hn−1 log z

z
+Hn−2z.

Similarly we find that

1

U2(z)

∑
p|P (z)
q|P (z)

|Rp,q| =
log2 z

z2

∑
p|P (z)
q|P (z)

(
Hn−1

pn/2
+
Hn−1

qn/2
+Hn−2pq

)

=
Hn−1 log2 z

z2

∑
p|P (z)
q|P (z)

1

pn/2
+
Hn−1 log2 z

z2

∑
p|P (z)
q|P (z)

1

qn/2

+
Hn−2 log2 z

z2

∑
p|P (z)
q|P (z)

pq.

Thus, we find that

1

U2(z)

∑
p|P (z)
q|P (z)

Rp,q �
Hn−1 log z

z
+Hn−2z2,

where the implied constant depends on n. It follows, by Theorem 3.5 that

S(R, ρ, z)� Hn−1 log z

z
+Hn−2z2.

By choosing z := H1/3(logH)1/3, it follows that

S(R, ρ, z) = O

(
Hn−4/3(logH)2/3

)
,

and the result follows immediately. �

5. Final remarks

In this paper we have been able to quantify at the very least the number of ad-
missible polynomials in the ring Z[x]; in particular, we have shown that the number
of admissible polynomials with coefficients controlled by the quantity H is of the
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order � Hn−1, and that the number of monic reducible admissible polynomials is
of the order

� Hn−4/3(logH)2/3.

Aside making an improvement to the following quantitative bounds, admissible
polynomials has a property that could be usefull in other areas of research, most
especially in the area of cryptography.
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