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THE PRIME INDEX FUNCTION

THEOPHILUS AGAMA

Abstract. In this paper we introduce the prime index function

ι(n) = (−1)π(n),

where π(n) is the prime counting function. We study some elementary prop-

erties and theories associated with the partial sums of this function given by

ξ(x) :=
∑
n≤x

ι(n).

1. Introduction and motivation

The prime counting function is a very important and useful function in number

theory and the whole of mathematics. It is connected to many open problems

in mathematics, such as the Riemman hypothesis [2]. In the following sequel we

introduce the prime index function ι(n), an arithmetic function which is neither

additive nor multiplication. It can be considered to be of the same class with the

Liouville λ(n) function. Rather like the Liouville function defined on the prime

factors of the integers, the prime index function is defined on the number of prime

less than a fixed integer. It is given by

ι(n) = (−1)π(n),

where π(n) is the prime counting function. Given the chaotic behaviour of the prime

index-function makes it an intractable function to study. Hence we introduce as

well the second prime-index function given by

ξ(x) :=
∑
n≤x

ι(n).

By introducing the concept of oscillation on the second prime-index function ξ, we

relate results of primes in short and long intervals to oscillations. It turns out that

the following, which can be considered as a sibling of Bertrand’s postulate, is true:

Theorem 1.1. Let x, y ∈ R. If ξ(x) = ξ(y), then there exist at least a prime in

the interval (x, y].

In the spirit of understanding the twin prime conjecture, we obtain the following

weaker result:
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Theorem 1.2. There are infinitely many points y ∈ R such that ξ(y−s) = ξ(y+s)

for some s ∈ N. In particular, there are infinitely many points of oscillations with

period s.

2. The prime index function

Definition 2.1. Let n ≥ 1, then we set

ι(n) = (−1)π(n),

where π(n) is the prime counting function.

The prime index function is an extremely usefull function. It is basically the se-

quence

ι : N −→ {1,−1}.
It is somewhat an intractable but very interesting function when we take their

partial sums. Below is a table for the distribution of the prime-index function:

Table 1

V alues ofn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ι(n) 1 −1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 1 1 −1 −1

Definition 2.2. Let x ≥ 1, then we set

ξ(x) :=
∑
n≤x

ι(n).

Next we make a leap by understanding the distribution of the partial sums of the

prime index function ξ(x). Below is a table that gives the distribution of the first

eighteen values of ξ(x).

3. Distribution of the second prime index function ξ(x)

In this section we give the distribution of the second prime-index function for the

first eighteen values of the integers. We also establish a relationship between the

values of this function and the theory of gaps between primes.

Table 2

V alues ofx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ξ(x) 1 0 1 2 1 0 1 2 3 4 3 2 3 4 5 6 5 4

By observing critically the table of distribution of the prime-index function, we ob-

serve that the second prime index function can be very high in absolute terms. This



THE PRIME INDEX FUNCTION 3

is due to the fact that there are arbitrarily large gap between primes. Ocassionally

it could return to zero, which is the smallest it can be in absolute terms, unless it

is rescued by some prime. Despite this, we believe the following to be true:

Conjecture 1. Let x ∈ R, then there exist some N0 > 0 such that

supx≥1

{∑
n≤x

(−1)π(n)
}
≥ N

for N ≥ N0.

Overall the second prime-index function is neither decreasing nor increasing. How-

ever we could be certain about the monotonicity behaviour of the second prime-

index function if we restrict to the subsequence of the integers such as the primes.

We ask the following question in that direction.

Question 1. Are there infinitely many primes p, q with p < q such that ξ(p) ≤ ξ(q)?

Again by observing the distribution of the second prime-index function ξ, we notice

that ocassionally it behaves on some points like ξ(x) ≈ π(x)
2 . So we ask the broader

question as follows:

Question 2. Are there infinitely many real numbers x such that

ξ(x) ≈ π(x)

2
?

4. Relationship with the theory of prime gaps

In the spirit of relating the second prime-index function to the theory of prime

gaps, we introduce the notion of oscillation on ξ.

Definition 4.1. Let y ≥ 2, then we say ξ oscillates at y with period M if there

exist some ri ∈ R+ such that

ξ(x− ri) = ξ(x+ ri),

where M = min{ri}.

Geometrically, we could think of the notion of oscillation of ξ at a point x with

period t as the change in the gradient of ξ of the line connecting the points (x, ξ(x),

(x− t, ξ(x− t)) and (x, ξ(x)), (x + t, ξ(x + t)) upto signs. Suppose x is a point of

oscillation of ξ with period t. Then it follows that ξ(x − t) = ξ(x + t). Thus we

observe that the gradient of the line joining the point (x, ξ(x)) and (x+ t, ξ(x+ t))

is given by

Gx,x+t =
ξ(x+ t)− ξ(x)

t
.
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Similarly the gradient of the line joining the point (x, ξ(x)) and (x− t, ξ(x− t)) is

given by

Gx−t,x =
ξ(x)− ξ(x− t)

t

=
ξ(x)− ξ(x+ t)

t

= −
(
ξ(x+ t)− ξ(x)

t

)
= −Gx,x+t.

Remark 4.2. Next we prove a result that suggests that there are infinitely many

points of oscillations of the second prime-index function.

Theorem 4.3. There are infinitely many points y ∈ R such that ξ(y−s) = ξ(y+s)

for some s ∈ N. In particular, there are infinitely many points of oscillations.

Proof. Suppose on the contrary that there are finitely many points of oscillations

of ξ. Name them y1 < y2 < · · · < yn. It follows that there exist some least s ∈ N
such that ξ(yn − s) = ξ(yn + s). Without loss of generality, let ξ(yn) < ξ(yn + s).

Since any infinite sequence of the form yr < yr+1 < yr+2 < · · · for r > n are not

points of oscillation of ξ, it follows that ξ(yn + s) < ξ(yn + s+ 1) < ξ(yn + s+ 2) <

ξ(yn + s + 3) < · · · . It follows that π(yn + s) = π(yn + s + 1) = π(yn + s + 2) =

π(yn + s + 3) = · · ·π(yn + j) = · · · . This contradicts the infinitude of primes,

thereby ending the proof. �

Remark 4.4. Next we prove a result that is redolent of Betrand’s postulate [3],

which asserts that we can find at least one prime in any interval of the form (x, 2x]

for any x ≥ 1. The result below can be seen as a variant and a strengthning of the

postulate.

Theorem 4.5. Let x, y ∈ R with x < y. If ξ(x) = ξ(y), then there exist at least a

prime in the interval (x, y].

Proof. Suppose x, y ∈ R and let ξ(x) = ξ(y). Then it follows that∑
x<n≤y

(−1)π(n) = 0.

It follows that the sequence {1,−1} are evenly distributed for points on (x, y] and,

hence the parity of the prime counting function π(n) for points in (x, y] are equidis-

tributed. The result follows immediately from this fact. �

Proposition 4.1. Let x be a point of oscillation of ξ with period t ≥ 1. If the

interval (x− t, x+ t) contains no prime, then x+ t must neccessarily be prime.

Proof. Let x be a point of oscillation of ξ with period t. Then it follows from

Definition 4.1 that ξ(x − t) = ξ(x + t). Then it follows by Theorem 4.5 that the

interval (x − t, x + t] contains at least one prime. Since the interval (x − t, x +

t) contains no prime, it follows that x + t must be prime and the result follows

immediately. �
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Remark 4.6. Next we strengthened Theorem 4.5 by imposing some extra conditions

for points of coincidences of the second prime-index function ξ.

Theorem 4.7. Let [a, b] ⊂ R. If there exist finitely many points x1, x2, . . . , xn ∈
[a, b] such that ξ(x1) = ξ(x2) = . . . = ξ(xn), then the interval [a, b] contains finitely

many primes.

Proof. Let [a, b] ⊂ R. Suppose x1, x2, . . . xn ∈ [a, b] and x1 < x2 < . . . < xn such

that ξ(x1) = ξ(x2) = . . . = ξ(xn). Then it follows from Theorem 4.5 that there

is at least a prime in each of the intrevals (x1, x2], (x2, x3], . . . (xn−1, xn], and the

result follows immediately. �

We highlight the next result, which reinforces the very fact that more and more

coincidences of the primes on the second prime-index function has a profound con-

nection with primes in an arithmetic progression.

Lemma 4.8. Let p1 < p2 < . . . < pn be a sequence of consecutive primes. If

ξ(p1) = ξ(p2) = . . . = ξ(pn), then p1 < p2 < . . . < pn must be an arithmetic

progression of common difference 2.

Proof. Consider the sequence of consecutive primes p1 < p2 < . . . pn such that

ξ(p1) = ξ(p2) = . . . = ξ(pn). Then it follows from Theorem 4.5 that the intervals

(p1, p2], (p2, p3], . . . (pn−1, pn] each contains at least one prime. Since p1 < p2 <

· · · < pn are consecutive primes, it follows that there are no primes in each of the

open intervals (p1, p2), (p2, p3), . . . (pn−1, pn). Since ξ(p1) = ξ(p2) = . . . = ξ(pn), it

follows that |p1 − p2| = |p2 − p3| = · · · = |pn−1 − pn| = 2 and the result follows

immediately. �

Remark 4.9. Lemma 4.8 tells us that a good way to search for twin primes is to

seek out for sequence of consecutive primes whose value on the second prime-index

function coincides.

It is known that there are infinitely many primes in arithmetic progression [2]. Yet

very little is known concerning their local distribution; that is their distribution in

small intervals. Next we state a result which in essense is a consequence of Theorem

4.8.

Corollary 1. Let [a, b] ⊂ R. If [a, b] contains finitely many consecutive primes

p1 < p2 < . . . < pn such that ξ(p1) = ξ(p2) = . . . = ξ(pn), then [a, b] contains

primes in an arithmetic progression.

Proof. Suppose p1 < p2 < · · · < pn are primes in [a, b] such that ξ(p1) = ξ(p2) =

. . . = ξ(pn). Then then the sequence of prime p1 < p2 < · · · < pn must be an

arithmetic progression, and the result follows immediately. �
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The even Goldbach conjecture is another long-standing problem in mathematics.

It predicts that every even number can be written as a sum of two primes. There

are as many formulations of this problem, including quantitative versions [4]. We

prove a result related to this conjecture, using the notion of oscillation at a point.

Theorem 4.10. Let x ∈ N be a point of oscillation of ξ with period t ∈ N. If

x − t is prime and the open interval (x − t, x + t) contains no prime, then 2x can

be written as a sum of two primes.

Proof. Suppose x ∈ N is a point of oscillation of ξ with period t ∈ N. Then it

follows by Definition 4.1 that ξ(x− t) = ξ(x+ t). Again it follows by Theorem 4.5

that there exist at least one prime in the interval (x− t, x+ t]. Since there are no

primes in the interval (x− t, x+ t), it follows that x+ t must neccessarily be prime.

Since x− t is prime, it follows that the representaion

2x = (x− t) + (x+ t)

is a partition into two primes, thereby ending the proof. �

Remark 4.11. Next we prove a result which tells us that points of oscillations with

with period can never be prime.

Theorem 4.12. Let x be a point of oscillation of ξ with period 1. Then x+1 must

neccesarily be prime.

Proof. Suppose x is a point of oscillation of ξ with period 1. Then it follows by

Definition 4.1 that ξ(x− 1) = ξ(x+ 1). Again it follows by Theorem 4.5 that there

must be at least one prime in the interval (x − 1, x + 1]. The obvious candidates

must be either x or x+1. We claim that x+1 must be prime. Suppose the contrary,

that x is prime. In the case ξ(x − 2) < ξ(x − 1), then by letting ξ(x − 1) = L,

it follows that ξ(x + 1) = L − 2. This contradicts the fact that x is a point of

oscillation of ξ. On the other hand, let us assume ξ(x− 2) > ξ(x− 1) = L. Then it

follows that ξ(x+ 1) = L+ 2, which again is absurd. This completes the proof. �

5. Deviation in oscillations of ξ

In this section we introduce the notion of deviation in oscillations of the second

prime-index function. We relate this concept with the theory of prime gaps.

Definition 5.1. Let x, y ∈ R with x < y. Then by the deviation in oscillation of

ξ at the points x and y, we mean the value

D(ξ(x), ξ(y)) =

∣∣∣∣ ∑
n≥1

xn,xn+1∈N

ξ(xn+1)− ξ(xn)

∣∣∣∣
for xn, xn+1 ∈ (x, y).

Theorem 5.2. There exist some N0 > 0 such that

D(ξ(p), ξ(q)) > N

for all N ≥ N0, where p and q are primes.
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Proof. Using the fact that there are arbitrarily large gaps between primes, choose

p, q ∈ ℘ such that |p − q| = Inf(|p − q|) > δ for δ > 0 sufficiently large. It follows

that for points xn, xn+1 ∈ (p, q), each ξ(xn+1)− ξ(xn) are of the same sign, and so

the discrepancy ∣∣∣∣ ∑
n≥1

xn,xn+1∈N

ξ(xn+1)− ξ(xn)

∣∣∣∣
is large, thereby ending the proof. �

Remark 5.3. Theorem 5.1 roughly speaking tells us that the deviation in oscillations

of ξ at any two points in R can be made arbitrarily large.

6. Final remark

The twin prime conjecture [1] is one of the oldest unsolved problem in mathematics.

Thanks to the recent progress towards the complete resolution of the conjecture.

It states that there are infinitely many prime pairs (p, q) with p 6= q such that

|p − q| = 2. In other words there are infinitely many intervals of length 2 that

contains two primes. In the language of oscillations of ξ, the twin prime conjecture

can be reformulated as

Conjecture 2. There are infinitely many consecutive primes p1 < p2 < · · · pn such

that ξ(p1) = ξ(p2) = . . . = ξ(pn).
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