
COMPARING LISP, PROLOG AND OPS-5 LANGUAGES
WITH THE LANGUAGE JULIA

Edimar Veríssimo da Silva

INPE, ARTIFICIAL INTELLIGENCE - CAP-354
São José dos Campos, SP
yugi386@yahoo.com.br

May, 2017

ABSTRACT

This article presents LISP, PROLOG, OPS-5 and Julia as tools that can facilitate the development of
applications with artificial intelligence, especially expert systems.

Key words: expert systems, lisp, prolog, ops-5, julia, artificial intelligence.

I. INTRODUCTION

In this work we present LISP, PROLOG, OPS-5 and
Julia as languages indicated to create expert systems. We
start with the presentation of the LISP language, based on
the functional paradigm. Next we present the PROLOG
language that fits the logical and declarative paradigm.
Then we talk about OPS-5 and Julia, the first one based on
rules or production systems and the last one is a modern
language, created in 2012, multi-paradigm and focused on
high performance scientific applications.

II. LISP LANGUAGE

LISP is a programming language created by John
McCarthy in 1959 for symbolic processing, widely used in
artificial intelligence [6]. McCarthy's motivation came from
the idea of developing an algebraic language for list
processing for AI (artificial intelligence) work [11]. It uses
the functional programming paradigm although it supports
many of the imperative language structures.

"LISP is the second oldest high-level
programming language after Fortran and has
changed a lot since its early days, and a
number of dialects have existed throughout its
history" [9].

LISP is the acronym for List Processor and was
originally conceived to be interpreted although currently a
code written in LISP can be compiled thus bringing more
performance in the execution of applications [8].

"The LISP language was inspired by the
Lambda Calculus, a formalism developed in

the 1930s by Alonzo Church. The Lambda
Calculus can be considered as an abstract
programming language, where the concept of
Computing, that is, the ways in which
functions can be combined to form other
functions, appear in all its generality and in
a pure form, without syntactic
complications". [11]

John McCarthy, its creator, recognized some
difficulties encountered in language in those early years of
development:

"As a programming language, the LISP had
many limitations. Some of the most evident in
the early 1960s were ultra-long numerical
computation, the inability to represent
objects by blocks of records (...) and the lack
of a good system for input-output of symbolic
expressions in conventional notations. All
these problems and others should be
corrected in the LISP 2. However, we had to
make do with the LISP 1.5 developed at MIT,
which corrected only the most flagrant
deficiencies". [10]

The basic types of data in LISP are atoms and lists.
Atoms can be numbers, characters or symbols. A list is a
sequence of atoms and/or other lists. Through atoms and
lists it is possible to create very interesting applications that
make use of artificial intelligence.

The software MYCIN, a pioneering system for
medical diagnostics, was one of the precursors of expert
systems [12] and was written in LISP language.

One of the best known applications developed with
the LISP language was the software ELIZA, created by

Joseph Weizenbaum, which was the first natural language
processing program in history [12]. The program shows the
simulation of the conversation between a patient and his
psychologist, and the software plays the role of the latter.

An example of dialogue with ELISA:

ELIZA: Please tell me your problem.
USER: I feel alone this Friday.
ELIZA: Do you often feel lonely on Friday?
USER: No. I think it might be work fatigue.
ELIZA: Aren't you just saying to be negative?
USER: I need to try something different to have fun.
ELIZA: What does trying something different to
have fun mean to you?
USER: I would like to see a play.
ELIZA: Can you talk more about it?
USER: It seems that in the theater people are
happier.
ELIZA: Maybe they are happier.
USER: What do you say about unhappiness?
ELIZA: Does anyone believe I told you?
USER: No. Actually I am here to understand myself
better.
ELIZA: Why not?
USER: I'm afraid of the future.
ELIZA: Do you like being afraid of the future?

Figure 1: A version of ELIZA with a modern layout can be
accessed at http://www.masswerk.at/eliza/.

Although not perfect, ELIZA is impressed by the
logical way in which the dialogue was conducted and the
impressive fact that the software was built in the mid
19601's in the early days of natural language processing.
The LISP language certainly contributed a lot to the
development of this software at that time.

III. PROLOG LANGUAGE

The PROLOG language was created in 1972 by
Colmerauer and Roussel [1] and since then it has been used
in specialist systems, understanding natural language,
symbolic computing applications, project automation,
analysis of biochemical structures and in other areas [3].

The name of the language comes from
PROgramming in LOGic and is a specific language for
the development of artificial intelligence systems as well as
the LISP language [2].

"PROLOG is a declarative language, that is,
instead of the program stipulating the way to

reach the solution step by step, as it happens
in procedural or object-oriented languages,
it provides a description of the problem to be
computed using a collection of facts and
rules (logic) that indicate how the proposed
problem should be solved". [3]

The PROLOG language is based on a structure that
basically involves 3 concepts:

1. Facts: represent the information that forms the
knowledge base. They are the "axioms" of the
system. A fact can be any information like: "17 is a
prime number" or "the sum of the inner angles of a
triangle is 180º" or "Mary is Julia's sister". A fact is
always true.

2. Rules: They define the conditions that must be
met for a certain statement to be considered true [4].
A rule is divided into two parts: on the left we have
the conclusion and on the right we have the
condition for the conclusion to be true [2]. Rules
specify something that "can be true if some
conditions are met" [4].

3. Questions or Queries: Allow you to search the
knowledge base for answers among all possible
solutions [2]. "The PROLOG system accepts the
facts and rules as a set of axioms and the user's
query as a theorem to be proved". [4]

"The main motivation for using logical
programming is to allow programmers to
describe what they want separately from how to
achieve this goal. This is based on the premise that
any algorithm consists of two parts: a logical
specification, the logic, and a description of how to
execute this specification, the control". [5]

IV. OPS-5 LANGUAGE

The OPS-5 language was created by Charles Forgy
in 1981 with the primary objective of enabling the
development of expert systems [13]. Because it is a rules-
based language it obeys the production system containing a
working memory (set of data to search for a solution), a
production memory (set of rules in the form SE... THEN)
and a rule interpreter that performs a comparative operation
to determine which rule will be used in a given processing
cycle [14].

"The rules of OPS-5 are completely
independent of each other. They can be
placed in production memory in any order. If
the data in the work memory corresponds to
the conditions of a rule in the production
memory, the actions of the rule occur.
Possible actions include changing the
contents of the work memory (which can then

correspond to the conditions of another rule),
reading information from a file, displaying
information on the screen, and calling up
external programs. In some versions of the
language, the actions of a rule can cause a
new rule to be created, allowing systems to
develop that learn". [15]

Among the main characteristics of language are
efficiency, generality and powerful mechanisms of pattern
marriages [13]. The expert system is usually characterized
by a search process with the help of rules since the latter,
alone, do not solve the problem.

The internal inference mechanism of OPS-5 starts
from a set of data in the working memory and causes a
sequence of rules to be applied until a goal is satisfied. The
other prominent inference procedure of the expert system is
the backward chaining in which a goal to be achieved
causes the sub-objectives to be satisfied until a problem
solution is found. Backward chaining can be implemented
in OPS-5 with some work [15].

"OPS-5 has been used successfully in
numerous applications. The most famous of
these is the R1 expert system for configuring
VAX computers (McDermott 1980). OPS-5
has also been used for image analysis
(McKeown et al. 1985)". [13]

Currently it seems that language is a little forgotten
in view of the emergence of new languages, but there are
still some references about it1.

V. JULIA LANGUAGE

The Julia language was first created in 2009 by Jeff
Bezanson, Stefan Karpinski, Viral B. Shah and Alan
Edelman and the first version appeared in 2012. It is a
multiparadigm language (functional, imperative, object
oriented) and was influenced by languages like MATLAB,
LISP, Ruby, Python, among others. The language was
thought for scientific computation, fast like C or Fortran,
but of simple use with the objective of facilitating
computational modeling [16].

Among Julia's main characteristics we have:
multiple dispatch (allows defining different behaviors for
the same function from different combinations of the types
of its arguments), macros similar to LISP, it is possible to
call libraries of Python and C, parallelism and distributed
computing, user-defined types as fast as native ones,
excellent performance, agility to develop programs [17].

Jeff Bezanson and the team explained why they
created a new language:

"We're greedy: we want more. We want a
language that is open source, with a liberal
license. We want the speed of C with the
dynamism of Ruby. We want a language that
has homoiconicity, with real macros like
Lisp, but with obvious and familiar

1 http://www.paxmondeo.com/Products/OPS-5.

mathematical notation like Matlab. We want
something as useful for general
programming as Python; as easy for
statistics as R; as natural for string
processing as Perl; and as powerful for
linear algebra as Matlab... Something that's
pretty simple to learn, but still satisfies the
most serious hackers. We want it to be
interactive and easily compiled." [18]

According to its creators, Julia's just-in-time
compiler allows the language to match the C language in
terms of performance in various scenarios. It also has an
expressive amount of additional packages to increase the
language's resources such as packages for modeling and
emulating circuits, packages for generating graphs, solving
differential algebraic equations, dealing with astronomical
and astrophysical routines, creating executable code instead
of the interpreted program, using stochastic systems and
many others [16]2.

"As long as the language of the developers is
more difficult to understand than the
language of the users, numerical computing
will always be impaired. This is an essential
part of Julia's design philosophy: all basic
functionality should be possible to implement
in Julia - never force the programmer to
resort to the use of C or Fortran. Julia solves
the problem of both languages". [19]

The core of Julia's code is formed by 11,000 lines of
C, 4,000 lines of C++ and 3,500 lines of Scheme. The
language authors argue that it has significantly less low-
level code to maintain than most script languages. The
standard library contains 25,000 lines of code written in
Julia and provides over 300 numerical functions needed in
technical computing environments [20]. Of course, these
figures exclude the additional packages and libraries that
are huge.

Julia has an elegant writing syntax and in fact has
been fast when running its code. It is a promising language
but still too young for more complete evaluations.

VI. LANGUAGE COMPARISON

We will now continue to make a comparison
between LISP, PROLOG, OPS-5 and Julia in some aspects.

MAIN PARADIGM

LISP Functional (also procedural and object-
oriented - Common Lisp).

PROLOG Logical-declaratory.

OPS-5 Based on rules.

JULIA Multiparadigm: functional, procedural, object-
oriented.

Table 1: Main Paradigm

2 See complete list of packages at http://pkg.julialang.org/

http://www.paxmondeo.com/Products/OPS5

EXECUTION MODEL

LISP Interpreted (can be compiled as well).

PROLOG Interpreted (in reality pre-compiled).

OPS-5 Interpreted.

JULIA Interpreted (can be compiled through
additional packages).

Table 2: Execution Model

INFLUENCED BY

LISP Calc lambda.

PROLOG Warren's abstract machine.

OPS-5 Rete algorithm.

JULIA MATLAB, Scheme, Common Lisp, Lisp, C,
Python, Perl, Ruby, R, Lua.

Table 3: Influences

Performance testing

To perform the performance test we decided to
calculate the factorial of 100,000. In the LISP language we
used the following algorithm (The interpreter used was
clisp5 to run the script):

(defun fatorial (n)
(setq x 1)
(loop for counter from 2 to n do

(setq x (* x counter))
)
x

)

In the case of the PROLOG language we use the
SWI-Prolog interpreter. The interpreter pre-compiles the
script (swipl -o fatorial -c fatorial.pl) before it can be used.
Below we see the script that was used:

fatorial(0,1).

fatorial(N,X) :- N1 is N - 1, fatorial(N1,X1), X is N * X1.

Finally for the Julia language we use the Julia
interpreter version 0.5.1 (2017-03-05 13:25 UTC). Follow
the script that was used:

factorial(big(100000))

The experiments were conducted on a notebook with
Intel® processor Core™ i5-3210M CPU @ 2.50GHz × 4,
with 6 GB of RAM, using the Linux Ubuntu 16.04 LTS
operating system.

 Unfortunately we were not able to measure the
performance relative to the OPS-5 language because we
could not find an interpreter compatible with the Linux
operating system.

The results of this experiment are summarized in
Table 4:

PERFORMANCE FACTORIAL OF 100,000

LISP 33,000 milliseconds
(33 seconds)

PROLOG 130,000 milliseconds
(2 minutes and 10 seconds)

OPS-58 -

JULIA 150 milliseconds
Table 4: Calculating factor of 100,000

VII. CONCLUSION

This work briefly presented the programming
languages LISP, PROLOG, OPS-5 and Julia. The objective
was to know a little about the structure of these languages
and verify their applicability for the construction of expert
systems.

LISP and PROLOG are languages with very good
features to build expert systems. LISP has in its favour the
long "road" time and many successful applications.
PROLOG is a language with a perfect mechanism for
searching a large "disorderly" database and extracting
useful information. The OPS-5 language works with the
rules system and it seems to have been created for very
specific applications and is not suitable for developing
more common applications. We found a source code in
OPS-5 to perform the factorial calculation (experiment
done to test the performance of languages) but we could not
run it due to the absence of an interpreter for Linux.
However, it draws attention to the amount of code to make
this simple calculation. See Annex I. Finally we have the
Julia language which was, by far, the one with the highest
performance in the factor calculation test. Besides having
an elegant and easy syntax, the promises made by their
creators in terms of their performance seem to have been
fulfilled.

An important observation is that there is no better
language than the other, but languages to achieve different
goals. The Julia language was created with the goal of
being as versatile and fast as possible. However, because it
is a very new language, we cannot say whether this
ambitious objective has been or will ever be achieved.

REFERENCES

[1] Silva, Renato Rocha; Lima, Sérgio Muinhos Barroso.
Consultas em Bancos de Dados Utilizando Linguagem
Natural. Faculdade Metodista Granbery. Disponível em:
<http://re.granbery.edu.br/artigos/MjQ0.pdf> Acessado em:
11/05/2017, 21:20h.

[2] Ramos, Carlos. Algoritmia
Avançada/Teórico-Práticas/3ºano/LEI. Instituto Superior de
Engenharia do Porto. Gecad. Disponível em:
<http://www.dei.isep.ipp.pt/~jtavares/ALGAV/downloads/
ALGAV_TP_aula2.pdf> Acessado em: 11/05/2017, 21:05h.

[3] Dantas, Luciano Assis. Descobrindo o PROLOG. Artigo
escrito para o site linha de código. Disponível em:
<http://www.linhadecodigo.com.br/artigo/1697/descobrindo-o-
PROLOG.aspx> Acessado em: 11/05/2017, 21:04h.

http://re.granbery.edu.br/artigos/MjQ0.pdf
http://www.linhadecodigo.com.br/artigo/1697/descobrindo-o-prolog.aspx
http://www.linhadecodigo.com.br/artigo/1697/descobrindo-o-prolog.aspx
http://www.dei.isep.ipp.pt/~jtavares/ALGAV/downloads/ALGAV_TP_aula2.pdf
http://www.dei.isep.ipp.pt/~jtavares/ALGAV/downloads/ALGAV_TP_aula2.pdf

[4] Vicente, André Abe. Apostila PROLOG. Universidade
Estadual do Oeste do Paraná. Curso de Bacharelado em
Informática. Cascavel, Setembro de 2005.
Disponível em:
<http://jeiks.net/wp-content/uploads/2012/05/Apostila_PROLOG.
pdf>
Acessado em: 11/05/2017, 19:34h

[5] Oliveira, George Souza, Silva, Anderson Faustino. PROLOG:
A Linguagem, A Máquina Abstrata de Warren e
Implementações. Universidade Estadual de Maringá.
Disponível em: <https://www.google.com.br/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&v
ed=0ahUKEwjFlNushunTAhWFl5AKHT4iCfwQFghOMAc&url
=http%3A%2F%2Fseer.ufrgs.br%2Frita%2Farticle%2Fdownload
%2Frita_v20_n2_p155WesleyVol20Nr2_214%2F25453&usg=AF
QjCNHddN5TYmph_BUPgLgNwSBKweoLhQ >
Acessado em: 11/05/2017, 21:10h.

[6] Song, Siang Wun. Uma Aula Prática sobre LISP.
Universidade de São Paulo – IME/USP. MAC 5710 - Estruturas
de Dados – 2008. Disponível em: <https://www.ime.usp.br/~song/
mac5710/slides/10lisp.pdf > Acessado em: 12/05/2017, 19:26h.

[7] Alvarez, Miguel Angel. O que é Lisp? Artifo do site
criarweb.com. Disponível em:
<http://www.criarweb.com/artigos/238.php > Acessado em:
12/05/2017, 19:34h.

[8] Fred, Ana. Introdução ao Lisp. 2002. Disponível em: <http://
users.isr.ist.utl.pt/~lmmc/iasd/Lisp_intro.pdf> Acessado em:
12/05/2017, 19:41h.

[9] Tutorials point. Learn LISP. Copyright 2014 by Tutorials
Point (I) Pvt. Ltd. Disponível em:
<https://www.tutorialspoint.com/lisp/lisp_tutorial.pdf> Acessado
em: 12/05/2017, 19:43h.
[10] McCarthy, John. History of Lisp. Artificial Intelligence
Laboratory Stanford University, 12 February 1979. Disponível
em:
<http://www-formal.stanford.edu/jmc/history/lisp/lisp.html >
Acessado em 12/05/2017, 21:36h.

[11] Araújo, Valéria. Linguagens de programação LISP e
PROLOG. 22/09/2003.
Disponível em: <http://www.zemoleza.com.br/trabalho-
academico/exatas/informatica/linguagens-de-programacao-lisp-e-
prolog/ > Acessado em: 12/05/2017, 21:52h.

[12] Meidanis, João. Paradigmas de programação Lisp.
Copyright 2011 J. Meidanis. Disponível em:
<http://www.ic.unicamp.br/~meidanis/courses/mc336/2011 s2/lisp/
apostila-lisp.pdf > Acessado em: 12/05/2017, 19:53h.

[13] Velasco, Flávio Roberto Dias. Uma implementação da
linguagem OPS-5 para computadores compatíveis com o IBM-
PC. Trabalho submetido para apresentação no 49 Simpósio
Brasileiro de Inteligência Artificial, de 13 a 16 de outubro de
1987, Uberlândia, MG.
Disponível em:
<http://mtc-m12.sid.inpe.br/col/sid.inpe.br/iris@1912/2005/07.19.
01.12.44/doc/INPE%204291.pdf> Acessado em: 13/05/2017,
13:23h.

[14] Gomide, Fernando. Sistemas Baseados em Regras. EA 072
Inteligência Artificial em Aplicações. UNICAMP. Disponível em:

<http://www.dca.fee.unicamp.br/~gomide/courses/EA072/transp/
EA072SistemasBaseadosRegras6.pdf> Acessado em: 13/05/2017,
13:28h.

[15] PCAI. OPS Programming Language. Disponível em:
<http://www.pcai.com/web/ai_info/pcai_ops.html> Acessado em:
13/05/2017, 13:39h

[16] Site oficial. Linguagem Julia. https://julialang.org/.
Acessado em: 13/05/2017, 18:17h

[17] Correia, Allan Lucio; Anjos, Maryklayne Araujo dos. Uma
Breve Análise da Linguagem Julia. Universidade Federal de
Alagoas, Arapiraca-AL, 2015. Disponível em:
<https://www.youtube.com/watch?v=pS0XXKhDMY0>
Acessado em: 13/05/2017, 18:51h.

[18] Ventura, Felipe. A ambiciosa linguagem de programação
que quer substituir Python, R e Matlab. GIZMODO Brasil, 4
de fevereiro de 2014 às 11:00. Disponível em:
<http://gizmodo.uol.com.br/julia-linguagem-programacao/>
Acessado em: 13/05/2017, 19:18h.

[19] Bezanson, Jeff;Edelman, Alan; Karpinski, Stefan; Shah, Viral
B. Julia: A Fresh Approach to Numerical Computing. Society
for Industrial and Applied Mathematics, 2017. Vol. 59, Nº. 1, pp.
65-98.
Disponível em: <https://julialang.org/publications/julia-fresh-
approach-BEKS.pdf > Acessado em: 13/05/2017, 20:11h.

[20] Bezanson, Jeff;Edelman, Alan; Karpinski, Stefan; Shah, Viral
B. Julia: A Fast Dynamic Language for Technical Computing.
September 25, 2012. Disponível em:
<https://arxiv.org/pdf/1209.5145.pdf > Acessado em: Acessado
em: 13/05/2017, 20:12h.

http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
https://arxiv.org/pdf/1209.5145.pdf
https://julialang.org/publications/julia-fresh-approach-BEKS.pdf
https://julialang.org/publications/julia-fresh-approach-BEKS.pdf
http://gizmodo.uol.com.br/julia-linguagem-programacao/
https://www.youtube.com/watch?v=pS0XXKhDMY0
https://julialang.org/
http://www.pcai.com/web/ai_info/pcai_ops.html
http://www.dca.fee.unicamp.br/~gomide/courses/EA072/transp/EA072SistemasBaseadosRegras6.pdf
http://www.dca.fee.unicamp.br/~gomide/courses/EA072/transp/EA072SistemasBaseadosRegras6.pdf
http://mtc-m12.sid.inpe.br/col/sid.inpe.br/iris@1912/2005/07.19.01.12.44/doc/INPE%204291.pdf
http://mtc-m12.sid.inpe.br/col/sid.inpe.br/iris@1912/2005/07.19.01.12.44/doc/INPE%204291.pdf
http://www.ic.unicamp.br/~meidanis/courses/mc336/2011s2/lisp/apostila-lisp.pdf
http://www.ic.unicamp.br/~meidanis/courses/mc336/2011s2/lisp/apostila-lisp.pdf
http://www.ic.unicamp.br/~meidanis/courses/mc336/2011s2/lisp/apostila-lisp.pdf
http://www.zemoleza.com.br/trabalho-academico/exatas/informatica/linguagens-de-programacao-lisp-e-prolog/
http://www.zemoleza.com.br/trabalho-academico/exatas/informatica/linguagens-de-programacao-lisp-e-prolog/
http://www.zemoleza.com.br/trabalho-academico/exatas/informatica/linguagens-de-programacao-lisp-e-prolog/
https://www.tutorialspoint.com/lisp/lisp_tutorial.pdf
http://users.isr.ist.utl.pt/~lmmc/iasd/Lisp_intro.pdf
http://users.isr.ist.utl.pt/~lmmc/iasd/Lisp_intro.pdf
http://www.criarweb.com/artigos/238.php
https://www.ime.usp.br/~song/mac5710/slides/10lisp.pdf
https://www.ime.usp.br/~song/mac5710/slides/10lisp.pdf
https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwjFlNushunTAhWFl5AKHT4iCfwQFghOMAc&url=http%3A%2F%2Fseer.ufrgs.br%2Frita%2Farticle%2Fdownload%2Frita_v20_n2_p155WesleyVol20Nr2_214%2F25453&usg=AFQjCNHddN5TYmph_BUPgLgNwSBKweoLhQ
https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwjFlNushunTAhWFl5AKHT4iCfwQFghOMAc&url=http%3A%2F%2Fseer.ufrgs.br%2Frita%2Farticle%2Fdownload%2Frita_v20_n2_p155WesleyVol20Nr2_214%2F25453&usg=AFQjCNHddN5TYmph_BUPgLgNwSBKweoLhQ
https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwjFlNushunTAhWFl5AKHT4iCfwQFghOMAc&url=http%3A%2F%2Fseer.ufrgs.br%2Frita%2Farticle%2Fdownload%2Frita_v20_n2_p155WesleyVol20Nr2_214%2F25453&usg=AFQjCNHddN5TYmph_BUPgLgNwSBKweoLhQ
http://jeiks.net/wp-content/uploads/2012/05/Apostila_prolog.pdf
http://jeiks.net/wp-content/uploads/2012/05/Apostila_prolog.pdf

