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Abstract

Perturbative solution to Schrödinger equation for N charged par-
ticles is studied. We use an expansion that is equivalent to Fock’s
one. In the case that the zeroth-order approximation is a harmonic
homogeneous polynomial a first-order approximation is found.

1 Introduction

The Schrödinger equation for the purely spatial wave function of N charged
particles can be written in the form

Hψ(r1, r2, . . . , rN) = Eψ(r1, r2, . . . , rN), (1)

H = −1

2
∆ + V (r1, r2, . . . , rN). (2)

Here ri = (xi1, xi2, xi3) is the three-dimensional position vector of the i-th
particle in cartesian coordinates, ∆ is the Laplace operator in the configura-
tion space of 3N variables, V is the Coulomb potential,

V =
N∑
i=1

qi
ri

+
N∑

i<j=1

qij
rij
, (3)

ri = |ri|, rij = |ri − rj|, qi and qij are constants.
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In order to find a perturbative solution to eq. (1) we use an expansion
that in hyperspherical coordinates [1] is equivalent to Fock’s one [2]. Let S
denote the set of functions of the form

f lnm h (4)

where f and h are homogeneous functions of (x1α1 , x2α2 , . . . , xNαN
), αi = 1, 2, 3,

i = 1, 2, . . . , N, h > 0, m = 0, 1, . . . . Function (4) in hyperspherical coordi-
nates can be written in the form of Fock’s expansion

f lnm h = rk
m∑
p=0

ap(ln r)
p. (5)

Here r =
√
r21 + r22 + · · ·+ r2N , k = deg f, ap are certain functions of the

spherical angles, and the subscript p takes on integer values.
The degree n is prescribed for the function (5) if f is homogeneous of

degree n,
deg (f lnm h) = n.

The set S splits as

S =
⋃
n

Sn

with deg X = n for X ∈ Sn. Let Vn be the span of Sn. For any X ∈ Vn we
define

deg X = n.

This means that for arbitrary homogeneous functions f1, f2, . . . , fk of degree
n

deg (f1 lnm1 h1 + f2 lnm2 h2 + · · ·+ fk lnmk hk) = n.

We shall use the following expasion for ψ :

ψ =
∞∑
n=0

ψn, (6)

where ψ0 ∈ Vk, k ≥ 0, ψn ∈ Vn+k. Expansion (6) in hyperspherical coordi-
nates can be also written in the form of Fock’s expansion.

Substituting (6) in (1) one obtains the following equations

∆ψ0 = 0, (7)
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∆ψ1 = 2V ψ0, (8)

∆ψn = 2V ψn−1 − 2Eψn−2, (9)

n = 2, 3, . . . . In the case of two-electron atoms these equations were studied
by many authors (see e.g. [3] and referencies therein).

2 General solution to equation for ψ1

Our aim is to find a solution to (8) in the case that ψ0 = pk is a homogeneous
polynomial of degree k,

∆ψ1 = 2V pk. (10)

LEMMA If g is a harmonic function and pk is a polynomial of degree k then

∆k+1(gpk) = 0. (11)

PROOF The proof will be by induction on the degree k. For k = 0 the lemma
is true. Suppose the lemma is true for k = 0, 1, ..., r − 1. We have

∆r+1(gpr) = ∆r

(
g∆pr + 2

N∑
i=1

3∑
α=1

∂g

∂xiα

∂pr
∂xiα

)
. (12)

Functions ∆pr, ∂pr/∂xiα are polynomials of degree r−2 and r−1 respectively,
and ∂g/∂xiα is a harmonic function.Hence, by the induction hypothesis, the
rhs of (12) is zero. This completes the induction.

THEOREM General solution to (10) is given by

ψ1 = ψ̃1 + h,

where

ψ̃1 =
k+1∑
n=1

(−1)n+1r2n∆n−1(2V pk)

2nn! (3N + 2k − 2)(3N + 2k − 4) . . . (3N + 2k − 2n)
, (13)

h ∈ Vk+1, ∆h = 0.
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PROOF We shall seek the solution to eq. (10) in the form

ψ1 =
k+1∑
n=1

anr
2n∆n−1(2V pk). (14)

It may be verified that if f is a homogeneous function of degree k − 1 then

∆(r2n∆n−1f) = 2n(3N + 2k − 2n)r2n−2∆n−1f + r2n∆nf. (15)

Substituting (14) in (10), and using relation (15) we find

an =
(−1)n+1

2nn! (3N + 2k − 2)(3N + 2k − 6) . . . (3N + 2k − 2n)
, (16)

and hence a particular solution to (10) is given by (13).

Unfortunately function ψ̃1 is discontinuous at ri = 0, rij = 0. order to get
a continuous ψ1 we must find a suitable h.

As an example, consider the case ψ0 = 1. Eq. (10) takes the form

∆ψ1 =
N∑
i=1

2qi
ri

+
N∑

i<j=1

2qij
rij

. (17)

By using (13) we find

ψ̃1 =
r2

(3N − 2)

(
N∑
i=1

qi
ri

+
N∑

i<j=1

qij
rij

)
. (18)

A continuous ψ1 can be constructed by using the following harmonic functions

hi = ri −
r2

(3N − 2)ri
, hij = rij −

2r2

(3N − 2)rij
. (19)

. We have

ψ1 = ψ̃1 +
N∑
i=1

hi +
1

2

N∑
i<j=1

hij =
N∑
i=1

qiri +
1

2

N∑
i<j=1

qijrij. (20)

Some other examples of constructing continuous ψ1 in the case of N = 2 can
be found in [4].
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