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Abstract. In this paper, we introduce and study the class of ideal topological
groups by using I-open sets and I-continuity.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied
by Kuratowski [7] and Vaidyanathaswamy, [10]. An ideal I on a topological
space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A ∈ I
and B ⊂ A implies B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a
topological space (X, τ) with an idealI on X and if P (X ) is the set of all subsets
of X , a set operator (.)?: P (X )→P (X ), called the local function [10] of A with
respect to τ andI, is defined as follows: for A ⊂ X , A?(τ,I) = {x ∈ X |U∩A < I
for every U ∈ τ(x)}, where τ(x) = {U ∈ τ : x ∈ U }. A Kuratowski closure
operator Cl?(·) for a topology τ?(τ,I) called the ?-topology, finer than τ is
defined by Cl?(A) = A∪ A?(τ,I) when there is no chance of confusion, A?(I)
is denoted by A?. IfI is an ideal on X , then (X, τ,I) is called an ideal topological
space. Recently, Hussain et. al. [4, 5] introduced and studied some new notions
in topological groups. In this paper, we introduce and study the class of ideal
topological groups by using I-open sets and I-continuity.
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2. Preliminaries

Throughout this paper (G,?, τ,I), or simply G, will denote a group (G,?)
endowed with a topology τ and ideal I. The identity element of G is denoted by
e, or eG when it is necessary, the operation ?: G × G → G, (x, y) → x ? y, is
called the multiplication mapping and sometimes denoted by m, and the inverse
mapping i : G → G, x → x−1 is denoted by i. X andY denote topological spaces
onwhich no separation axioms are priori assumed. For a subset Aof a topological
space (X, τ), Cl(A) and Int(A) denote the closure and the interior of A in (X, τ),
respectively. A subset S of an ideal topological space (X, τ,I) is I-open [6] if
S ⊂ Int(S∗). The complement of an I-closed set is said to be an I-open set. The
I-closure and the I-interior, that can be defined in the same way as Cl(A) and
Int(A), respectively, will be denoted by I Cl(A) and I Int(A), respectively. The
family of allI-open (resp.I-closed) sets of (X, τ,I) is denoted byIO(X ) (resp.
IC(X )). The family of all I-open (resp. I-closed) sets of (X, τ,I) containing
a point x ∈ X is denoted by IO(X, x) (resp. IC(X, x)).

Definition 2.1 ([1]). A subset M of an ideal topological space (X, τ,I) is called
an I-neighbourhood of a point x ∈ X if there exists an I-open set S such that
x ∈ S ⊂ M .

Definition 2.2 ([1]). A function f : (X, τ,I) → (Y, σ,I) is said to be:

(1) I-continuous if f −1(V ) ∈ IO(X ) for every V ∈ σ.
(2) I-open if f (U) ∈ IO(Y ) for every U ∈ IO(X ).
(3) I-closed if f (U) ∈ IC(Y ) for every U ∈ IC(X ).

Definition 2.3. Let (X, τ,I) be an ideal topological space andU,V ⊂ X . Then
we say that the pair U,V is I-separated if I Cl(U) ∩ V = I Cl(V ) ∩ U = ∅.
A set S ⊂ X is I-connected if there are no two nonempty I-separated sets U
and V such that U ∪ V = S. The space X is I-connected if it is an I-connected
subset of itself.

3. Properties of ideal topological groups

In this section, we introduce and study a new class of topological groups by
using I-open sets and I-continuity.
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Definition 3.1. A topologized group (G,?, τ,I) is called an ideal topological
group if for each x, y ∈ G and each neighborhood W of x ? y−1 in G there exist
I-open neighborhoods U of x and V of y such that U ?V−1 ⊂ W .

The following lemma will be used in the sequel.

Lemma 3.2. If (G,?, τ,I) is an ideal topological group, then

(1) A ∈ IO(G) if, and only if A−1 ∈ IO(G);
(2) If A ∈ IO(G) and B ⊂ G, then A? B and B ? A are both in IO(G).

Definition 3.3. A subset A of a group G is symmetric if A = A−1.

Definition 3.4. A bijective function f : (X, τ,I) → (Y, σ,I) is said to be
I-homeomorphism if it is I-continuous and I-open.

The following simple result is of fundamental importance in what follows.

Theorem 3.5. Let (G,?, τ,I) be an ideal topological group. Then each left
(right) translation lg : G → G(rg : G → G) is an I-homeomorphism.

Proof. We prove the statement only for left translations. Of course, left transla-
tions are bijective mapping. We prove directly that for any x ∈ G, the translation
lx is I-continuous. Let y be an arbitrary element in G and W an open neigh-
bourhood of lx (y) = x ? y = x ? (y−1)−1. By definition of ideal topological
groups, there are I-open sets U and V containing x and y−1, respectively, such
that U ?V−1 ⊂ W . In particular, we have x ?V−1 ⊂ W . By Lemma 3.2 the set
V−1 is an I-open neighbourhood of y, so that the last inclusion actually says
that lx is I-continuous at y. Since y ∈ G was an arbitrary element in G, lx is
I-continuous on G. We prove now that lx is I-open. Let A be an I-open set in
G. Then by Lemma 3.2, the set lx (A) = x ? A = {x} ? A is I-open in G, which
means that lx is an I-open mapping.

Theorem 3.6. Let (G,?, τ,I) be an ideal topological group and let βe be the
base at identity element e of G. Then

(1) for every U ∈ βe , there exists V ∈ IO(G, e) such that V 2 ⊂ U.
(2) for every U ∈ βe , there exists V ∈ IO(G, e) such that V−1 ⊂ U.
(3) for every U ∈ βe , there exists V ∈ IO(G, e) such that V ? x ⊂ U .

Proof. (1). Let U ∈ βe . This implies that e ∈ U ⊂ G and Ue?e−1 = U . Since
(G,?, τ,I) is an ideal topological group, there exists V ∈ IO(G, e) and by
Lemma 3.2, V−1 ∈ IO(G, e) such that V ?V ⊂ U . Hence V 2 ⊂ U .
(2). Since (G,?, τ,I) is an ideal topological group, for everyU ∈ βe there exists
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V ∈ IO(G, e) such that i(V ) = V−1 ∈ IO(G, e).
(3). Since (G,?, τ,I) is an ideal topological group, the left (right) translation
lg : G → G(rg : G → G) is an I-homeomorphism. hence for each U ∈ βe
containing x, there exists V ∈ IO(G, e) such that rx (V ) = V ? x ⊂ U.

Corollary 3.7. Let (G,?, τ,I) be an ideal topological group and x be any
element of G. Then for any local base βe at e ∈ G, each of the families
βx = {x ?U : U ∈ βe } and {x ?U−1 : U ∈ βe } is an I-open neighbourhood
system at x.

Definition 3.8. An ideal topological space (X, τ,I) is said to be I-
homogeneous if for all x, y ∈ X there is an I-homeomorphism f of the space X
onto itself such that f (x) = y.

Corollary 3.9. Every ideal topological group G is an I-homogeneous space.

Proof. Take any elements x and y in G and put z = x−1 ? y. Then lz is an
I-homeomorphism of G and lz (x) = x ? z = x ? (x−1 ? y) = y.

Theorem 3.10. Let (G,?, τ,I) be an ideal topological group and H a subgroup
of G. If H contains a nonempty I-open set, then H is I-open in G.

Proof. Let U be a nonempty I-open subset of G with U ⊂ H . For any h ∈ H
the set lh (U) = h ? U is I-open in G and is a subset of H . Therefore, the
subgroup H = ∪

h∈H
(h?U) is I-open in G as the union of I-open sets.

Theorem 3.11. Every open subgroup H of an ideal topological group
(G,?, τ,I) is also an ideal topological group (called ideal topological subgroup
of G).

Proof. Wehave to show that for each x, y ∈ H and each neighbourhoodW ⊂ H
of x? y−1 there exist I-open neighbourhoods U ⊂ H of x and V ⊂ H of y such
that U ? V−1 ⊂ W . Since H is open in G, W is an open subset of G and since
G is an ideal topological group there are I-open neighbourhoods A of x and B
of y such that A? B−1 ⊂ W . The sets U = A ∩ H and V = B ∩ H are I-open
subsets of H because H is open. Also, U ?V−1 ⊂ A? B−1 ⊂ W , which means
that H is an ideal topological group.

Theorem 3.12. Let (G,?, τ,I) be an ideal topological group. Then every open
subgroup of G is I-closed in G.
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Proof. Let H be an open subgroup of G. Then every left coset x ? H of H
is I-open because lx is an I-open mapping. Thus, Y = ∪

h∈G\H
x ? H is also

I-open as a union of I-open sets. Then H = G \ Y and so H is I-closed.

Definition 3.13. [2] A function f : (X, τ,I) → (Y, σ,J ) to be I-irresolute if
f −1(V ) is I-open in (X, τ,I) for every J -open in (Y, σ,J ).

Theorem 3.14. Let f : G → H be a homomorphism of ideal topological groups.
If f is I-irresolute at the neutral element eG of G, then f is I-irresolute (and
thus I-continuous) on G.

Proof. Let x ∈ G. Suppose that W is an I-open neighbourhood of y = f (x)
in H . Since the left translations in H are I-continuous, there is an I-open
neighbourhood V of the neutral element eH of H such that Ly (V ) = y?V ⊂ W .
FromI-irresoluteness of f at eG , it follows the existence of anI-open setU ⊂ G
containing eG such that f (U) ⊂ V . Since lx : G → G is an I-open mapping,
the set x ? U is an I-open neighbourhood of x, and we have f (x ? U) =
= f (x) ? f (U) = y ? f (U) ⊂ y ? V ⊂ W : Hence f is I-irresolute (and thus
I-continuous) at the point x of G, hence on G, because x is an arbitrary element
in G.

Definition 3.15. [8] An ideal topological space (X, τ,I) is said to be I-regular
if for each closed set F ⊂ X and each x ∈ X \F, there are disjoint H,W ∈ IO(X )
such that F ⊂ H and x ∈ W .

Theorem 3.16. Let (G,?, τ,I) be an ideal topological group with base βe at
the identity element e such that for each U ∈ βe there is a symmetric I-open
neighbourhood V of e such that V ? V ⊂ U. Then G satisfies the axiom of
I-regularity at e.

Proof. Let U be an open set containing the identity e. Then, by assumption,
there is a symmetric I-open neighbourhood V of e satisfying V ? V ⊂ U . We
have to show that I Cl(V ) ⊂ U . Let x ∈ I Cl(V ). The set x ? V is an I-open
neighbourhood of x, which implies x ? V ∩ V , ∅. Therefore, there are points
a, b ∈ V such that b = x ? a, that is, x = b? a−1 ∈ V ?V−1 = V ?V ⊂ U .

Theorem 3.17. Let A and B be subsets of an ideal topological group G. Then:

(1) I Cl(A) ?I Cl(B) ⊂ Cl(A? B);
(2) (I Cl(A))−1 ⊂ Cl(A−1).

Proof. (1). Suppose that x ∈ I Cl(A), y ∈ I Cl(B). LetW be a neighbourhood
of x ? y. Then there are I-open neighbourhoods U and V of x and y such that
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U?V ⊂ W . Since x ∈ I Cl(A), y ∈ I Cl(B), there are a ∈ A∩U and b ∈ B∩V .
Then a? b ∈ (A? B) ∩ (U ?V ) ⊂ (A? B) ∩W . This means x? y ∈ Cl(A? B),
that is, we have I Cl(A) ?I Cl(B) ⊂ Cl(A? B).
(2). Let x ∈ (I Cl(A))−1 andU a neighbourhood of x. Since the inverse mapping
is I-open, the set U−1 is I-open neighbourhood of x−1. Since x−1 ∈ I Cl(A),
U−1∩A , ∅. Therefore,U∩A−1 , ∅, that is, x ∈ Cl(A−1), and so (I Cl(A))−1 ⊂

⊂ Cl(A−1).

Theorem 3.18. If V is an I-open neighbourhood of e in ideal topological group
(G, τ,?,I), then V ⊂ I Cl(V ) ⊂ V 2.

Proof. Since s ? V−1 is an I-open neighbourhood of s, it must intersects V .
Thus there is t ∈ V of the form s?v−1, where v ∈ V . But s = t?v ∈ V ?V = V 2

and I Cl(V ) ⊂ V 2.

Theorem 3.19. If (G, τ,?,I) is an ideal topological group, then I Cl(A) ⊂
A?U holds for every subset A of G and every open neighbourhood U of e.

Proof. Since (G, τ,?,I) is an ideal topological group, for every open neigh-
bourhoodU of e, there existsV ∈ IO(G, e) such thatV−1 ⊂ U . Let x ∈ I Cl(A)
and x ? V is an I-open neighbourhood of x. Then there exists a ∈ A ∩ x ? V ,
that is, a ∈ x ? V . This implies that a = a ? b−1 ∈ a ? V−1 ⊂ A ?U . Hence
I Cl(A) ⊂ A?U .

Theorem 3.20. If (G, τ,?,I) is an ideal topological group and βe a base of the
space (G, τ,I) at the neutral element e, then for every subset A of G, we have
I Cl(A) = {A?U : U ∈ βe }.

Proof. We only have to verify that if x < I Cl(A), then there exists U ∈ βe
such that x < A ?U . Since x < A, then by definition there exists an I-open
neighbourhood W of e such that x ?W ∩ A = ∅. Take U in βe satisfying the
conditionU−1 ⊂ W . Then x?U−1∩ A = ∅, that is {x} ∩ A?U = ∅. This implies
that x < A?U.

Definition 3.21. [2] An ideal topological space (X, τ,I) is called I-T2 if for
every two different points x, y of X , there exist disjoint I-open sets U , V of X
such that x ∈ U and y ∈ V .

Theorem 3.22. If (G, τ,?,I) is an ideal topological group, then (G, τ,I) is
I-regular and I-T2 space.

Proof. Suppose that F ⊂ G is closed and s < F. Multiplication by s−1 allows
us to assume that s = e. Since F is closed, W = G \ F is an open neighbourhood
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of e. Then there exists V ∈ IO(G, e) such that V 2 ⊂ W . Hence I Cl(V ) ⊂ W .
Then U = G \ I Cl(V ) is an I neighbourhood containing F which is disjoint
from V . This proves that (G, τ,I) is I-regular. That is, e ∈ V ∈ IO(G) and
e , y ∈ F ⊂ U ∈ IO(G) such that V ∩U = ∅. Hence G is I-T2.

Definition 3.23. [9] An ideal topological space (X, τ,I) is said to be I-
compact if for every cover {Uα : α ∈ ∆} of X by open sets of X , there exists a
finite subset ∆0 of ∆ such that X\ ∪ {Uα : α ∈ ∆0} ∈ I.

Theorem 3.24. Let (G, τ,?,I) be an ideal topological group. If K is an I-
compact subset of G, and F an I-closed subset of G. Then F?K and K ?F are
I-closed subsets of G.

Proof. If F ? K = G, we are done, so let y ∈ G \ F ? K . This means
F ∩ y ? K−1 = ∅. Since K is I-compact, y ? K−1 is I-compact. Then there
is an I-open neighbourhood V of e such that F ∩ V ? y ? K−1 = ∅. That is,
F ? K ∩ V ? y = ∅. Since V ? y is I-open neighbourhood of y contained in
G \ F ? K , we have F ? K is I-closed and similar arguments for the proof of
K ? F.

Theorem 3.25. A nonempty subgroup H of an ideal topological group G is
I-open if and only if its I-interior is nonempty.

Proof. Assume that x ∈ I Int(H). Then by definition, there is an I-open set
V such that x ∈ V ⊂ H . For every y ∈ H , we have y ?V ⊂ y ? H = H . Since
V is I-open, so is y ?V , we conclude that H = ∪{y ?V : y ∈ H } is an I-open
set. The converse is straightforward.

Theorem 3.26. If U ∈ IO(G), then the set L =
∞

∪
n=1

Un is an I-open set in an

ideal topological group (G, τ,?,I).

Proof. Since U is I-open in an ideal topological group (G, τ,?,I), then by
Lemma 3.2, U ?U = U2 ∈ IO(G), U2 ?U = U3 ∈ IO(G) and similarly U4,
U5, . . . all are I-open sets in G. Thus the set L =

∞

∪
n=1

Un being the union of
I-open sets is an I-open set.

Lemma 3.27. If (G, τ,?,I) is an ideal topological group, then the inverse map
i : G → G defined by i(x) = x−1 for all x ∈ G is an I-homeomorphism.

Theorem 3.28. If A is a subset of an ideal topological group (G, τ,?,I), then
(I Int(A))−1 = I Int(A−1).



8 S. JAFARI, N. RAJESH

Proof. Since the inverse mapping i : G → G is an I-homeomorphism,
I Int(i(A)) = I Int(A−1) = i(I Int(A)) = (I Int(A))−1.

Definition 3.29. SupposeU is anI-open neighbourhood of the neutral element
e of an ideal topological group (G, τ,?,I). A subset AofG is calledU-I-disjoint
if b < a ?U for any disjoint a, b ∈ A.

Definition 3.30. A collection Υ of subsets of a topological space (G, τ,I) is
I-discrete, provided each x ∈ G has an I-open neighbourhood that intersects at
most one member of Υ.

Theorem 3.31. Let U and V be I-open neighbourhoods of the neutral element
e in an ideal topological group (G, τ,?,I) such that V 4 ⊂ U and V−1 = V . If
a subset A of G is I-disjoint, then the family of I-open sets {a ?V : a ∈ A} is
I-discrete in G.

Proof. It suffices to verify that, for every x ∈ G, an I-open neighbourhood
x?V of x intersects at most one element of the family {a?V : a ∈ A}. Suppose
to the contrary that, for some x ∈ G, there exists distinct elements a, b ∈ A such
that x?V ∩a?V , ∅ and x?V ∩b?V , ∅. Then x−1?a ∈ V 2 and b−1?x ∈ V 2,
where b−1?a = (b−1? x)(x−1?a) ∈ V 4 ⊂ U . This implies that a ∈ b?U . This
contradicts the assumption that A is I-disjoint.

4. On I-connectedness in ideal topological groups

In this section, we continue the study of ideal topological groups, then we
will present some results onI-connectedness in the presence of ideal topological
groups.

Theorem 4.1. Let (G, τ,?,I) be an ideal topological group. Then everyI-open
subgroup of G is I-closed in G.

Proof. Let H be an I-open subgroup of G. Then every left coset x?H of H is
I-open. Thus Y = ∪

x∈G\H
x?H is also I-open as a union of I-open sets. Hence

H = G \ Y is I-closed.

Theorem 4.2. Let U be any symmetric I-open neighbourhood of e in an ideal

topological group (G, τ,?,I). Then the set L =
∞

∪
n=1

Un is an I-open and an

I-closed subgroup of G.
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Proof. First we prove that L =
∞

∪
n=1

Un is a subgroup of G. Let x, y ∈ L. If

x = uk , y = ul , x ? y = uk ? ul = uk+l ∈ L, x−1 = (uk )−1 = (u−1)k = uk ∈ L.
This implies that L is a subgroup of G and L =

∞

∪
n=1

Un is an I-open in G. Hence

L =
∞

∪
n=1

Un is I-closed in G.

Definition 4.3. Let A be a subset of an ideal topological space (X, τ,I). Then
a point x ∈ A is said to be an I-isolated point of A if there exists an I-open set
containing x which does not contain any point of A different from x.

Theorem 4.4. A subgroup H of an ideal toplogical group G is I-discrete if and
only if it has an I-isolated point.

Proof. Suppose that x ∈ H and x is I-isolated in the relative topology of
H ⊂ G. That is, there is an I-open neighbourhood U of e in G such that
(x ·U)∩H = {x}. Then for arbitrary y ∈ H , we have (y ·U)∩H = (y ·U)∩ {y ·
· x−1 · H } = y · x−1 · ((x ·U) ∩ H)) = {y}. Thus every point of H is I-isolated,
so that H is indeed I-discrete. If H is I-discrete, then by definition, all of its
points are I-isolated.

Theorem 4.5. For any neighbourhood U of identity e in an ideal topological
group, there exists a symmetric I-open neighbourhood V of e such that V ⊂ U .

Proof. Since U is a neighbourhood of e and the inverse function is I-
continuous, there exists an open neighbourhood W of e such that W ⊂ U
and W−1 is I-open neighbourhood of e. Let V = W ∩W−1 , ∅. Since V is the
intersection of open and I-open sets, V is I-open and clearly V = V−1.

Theorem 4.6. Let (G, τ,?,I) be an ideal topological group, C theI-component

of e, and U any neighbourhood of e. Then C ⊂
∞

∪
n=1

Un , in particular, if G is

I-connected, then G =
∞

∪
n=1

Un .

Proof. Let V be the symmetric I-open neighbourhood of e such that V ⊂ U .
Therefore L =

∞

∪
n=1

Un is I-open as well as I-closed subgroup of G. Since C

is I-connected component of e, we have C ⊂
∞

∪
n=1

V n ⊂
∞

∪
n=1

Un . Now if G is

I-connected, then G =
∞

∪
n=1

Un .
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Theorem 4.7. Let (G, τ,?,I) be an I-connected ideal topological group and
H a subgrop which contains any I-neighbourhood. Then H = G. In particular,
an I-open subgroup of G equals G.

Proof. Since H contains any I-neighbourhood, the I-interior of H is non-
empty. By H is I-open and I-closed. Since G is I-connected, G = H .

Definition 4.8. A ideal topological group with respect to I-continuity is a
group G endowed with a topology such that for each a ∈ G, the translations
la, ra : G → G, la (x) = a · x, ra (x) = x · a are I-continuous, and such that the
inverse mapping i : G → G, i(x) = x−1 is I-continuous.

Theorem 4.9. Let (G, τ,?,I) be an ideal topological group with respect to
I-continuity and the I-component IC(e) of identity e be open. Then

(1) for all x ∈ IC(e), lx−1 (rx−1) is also open, then IC(e) is subgroup.
(2) if all translations are also open, then IC(e) is a normal subgroup.

Theorem 4.10. Let G be a Hausdorff ideal topological group with respect
to I-continuity such that left translations are continuous (I-continuous), right
translations areI-continuous (continuous) and inverse mapping isI-continuous.
For any subset M of G, the subgroup CG (M) = {g ∈ G : mg = gm} is I-closed
in G. In particular, the centre of G is I-closed.

Corollary 4.11. Let G be a Hausdorff ideal topological group such that left
translations are continuous (I-continuous), right translations are I-continuous
(continuous) and inverse mapping is I-continuous. For any subset M of G, the
subgroup CG (M) = {g ∈ G : mg = gm} is I-closed in G. In particular, the
centre of G is I-closed.

Theorem 4.12. Let G be an I-connected ideal topological group and e its
identity element. If U is any I-open neighborhood of e then G is generated
by U .

Proof. Let U be an I-open neighborhood of e. For each n ∈ N, we denote by
Un the set of elements of the form u1 . . . un , where each ui ∈ U. LetW =

∞

∪
n=1

Un .
Since each Un is I-open, we have that W is an I-open set. We now see that it
is also I-closed. Let G be an element of I-closure W . That is, g ∈ I Cl(W ).
Since gU−1 is an I-open neighborhood of g, it must intersect W . Thus, let
h ∈ W ∩ gU−1. Since h ∈ gU−1, then h = gu−1 for some elements u ∈ U . Since
h ∈ W , then h ∈ Un for some n ∈ N, that is, h = u1 . . . un with each ui ∈ U . We
then have g = u1 . . . un .u, that is, g ∈ Un+1 ⊂ W . Hence W is I-closed. Since
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G is I-connected and W is I-open and I-closed, we must have W = G. This
means that G is generated by U.
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