
The proton radius puzzle solved 
Jean Louis Van Belle, Drs, MAEc, BAEc, BPhil 

6 February 2020 

Email: jeanlouisvanbelle@outlook.com 

 

Summary  

The electron-proton scattering experiment by the PRad (proton radius) team at Jefferson Lab measured 

the root mean square (rms) charge radius of the proton as rp = 0.831 ± 0.007stat ± 0.012syst fm. Assuming 

all of the electric charge in the proton is packed into a single pointlike (elementary) charge and applying 

the ring current model to a proton, one gets a radius for the circular current that is equal to a = 2μp/qec 

 0.58736 fm. Using CODATA values for all variables and constants in this equation, and applying a 2 

form factor to, somehow, account for the envelope of the magnetic field around the ring current, yields 

an electric charge radius of 0.8065 fm. The difference between the PRad point estimate and this 

theoretical value is 0.00035 fm, which represents 5% of the standard error (0.007 fm) of PRad’s point 

estimate. It is, therefore, hard to argue this is a mere coincidence.  

We can also calculate a proton radius based on the idea of a strong charge. This radius corresponds to 

the range parameter in Yukawa’s equation and is equal to a = ħ/mpc  0.2103, which is about 1/4 of the 

PRad point estimate. This 1/4 factor is, obviously, far more mysterious, and the difference between 

0.831 and this strong charge radius multiplied by 4 is 0.01 fm, which is about 50% of the combined 

statistical and systematic error (0.007 + 0.012 = 0.019). We, therefore, think that, while being somewhat 

less precise, the 1/4 factor cannot be a coincidence.  

We, therefore, feel the new measurement of the proton radius by JLAB’s PRad team may lend credibility 

to attempts to extend the Zitterbewegung hypothesis from electrons to also include protons and other 

elementary particles. In contrast, the measurement is hard to fit into a model of oscillating quarks that 

have partial charge only. 
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The proton radius puzzle solved 
The new measurement 
Anyone who follows the weird world of quantum physics with some interest, must have heard the latest 

good news: the ‘puzzle’ of the charge radius of the proton has been solved. Although we basically agree 

with it, we think it is a rather grand statement to make. A more sober way of stating what happened is 

this: a very precise electron-proton scattering experiment by the PRad (proton radius) team using the 

Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab has now measured the root 

mean square (rms) charge radius of the proton as1: 

rp = 0.831 ± 0.007stat ± 0.012syst fm 

Most commentators2 interpret the measurement as putting an end to various divergent measurements 

from past experiments – not only using nuclear scattering but also spectroscopy techniques3 – which 

typically yielded a value centered in the range of 0.87 or 0.88 fm. In light of the precision of these 

experiments, which is expressed in the statistical and systematic errors mentioned above, this 

discrepancy was – and, according to many, still is – very worrying. Indeed, claims that “the discrepancy 

was likely due to measurement errors” work in both ways.  

The illustration below, for example, was taken from a March 2019 article on the issue which, based on 

the previous measurement data, established a (statistical) lower bound on the proton’s radius equal to 

0.848 fm. To be precise, these researchers claimed – just a few months before the result of the new 

measurements came out4 – that the actual charge radius of a proton, based on common definitions and 

a decade of high-precision measurements, should be larger than 0.848 fm. To be precise, applying 

common statistical concepts, they said so with 95% confidence.5  

However, the newly measured radius (0.831) is 0.017 fm smaller than what these researchers think is 

the lower bound of the proton’s radius. If 0.007 is the standard error of the new measurement, then a 

 
1 See: https://www.nature.com/articles/s41586-019-1721-2. See also: 
https://www.jlab.org/prad/collaboration.html and https://www.jlab.org/experiment-research. 
2 See, for example, the Physics Today article on it: 
https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/. 
3 The Wikipedia article on the proton radius puzzle offers a very good non-technical introduction to what’s at 
stake. See: https://en.wikipedia.org/wiki/Proton_radius_puzzle, accessed on 26 January 2020. 
4 The article on the new proton radius was published in Nature in November 2019 
(https://www.nature.com/articles/s41586-019-1721-2), but preliminary results had been shared with researchers 
by one of the authors of the referenced article at the occasion of the ELBA Conference, which was held from 23 to 
28 June 2019. The presentation for the ELBA Conference participants is interesting and, surprisingly, quite 
readable: https://agenda.infn.it/event/17166/contributions/85329/attachments/64938/78815/Gasparian.pdf.  
5 Franziska Hagelstein and Vladimir Pascalutsa, 25 March 2019, Lower bound on the proton charge radius from 
electron scattering data, (https://arxiv.org/pdf/1812.02028.pdf). To be clear, we now think these two young 
researchers may look somewhat foolish now: we do think the new measurement is valid and, therefore, that these 
two authors should re-visit their assumptions and calculations. 

https://www.nature.com/articles/s41586-019-1721-2
https://www.jlab.org/prad/collaboration.html
https://www.jlab.org/experiment-research
https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/
https://en.wikipedia.org/wiki/Proton_radius_puzzle
https://www.nature.com/articles/s41586-019-1721-2
https://agenda.infn.it/event/17166/contributions/85329/attachments/64938/78815/Gasparian.pdf
https://arxiv.org/pdf/1812.02028.pdf
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difference of 0.017 is about 2.43 times that value. The difference may, therefore, be considered to be 

quite significant.6 So who is right, and who is wrong here? 

Figure 1: Historical measurements of the proton radius 

 

Source: Hagelstein and Pascalutsa, 25 March 2019 
 

Looking at Figure 1, we think Hagelstein and Pascalutsa should make a better case for their rather high 

cut-off value. The colors indicate the source and/or technique that was used. CODATA values are in 

black, so these should not count because they are based on other experiments.7 Values measured in 

hydrogen and deuterium spectroscopy are in yellow-orange. Values based on electron-proton scattering 

experiments – like the new experiments – are in red-brown. Finally, muonic-hydrogen spectroscopy 

results are in green but, for some reason we do not quite understand, seem to have been excluded as 

being valid – because they are outside of the calculated lower bound, which is given by the light blue-

grey band in the image. Finally, the magenta values, which are based on “electron-proton scattering fits 

within a dispersive framework” do also not seem to be acceptable to these two researchers8 because – 

well – we must our reader to the article itself because we could not quite understand their reason for 

 
6 This statement assumes, naturally, that 0.007 is the standard error of the mean (SEM) of the new measurement, 

not the standard deviation of the distribution of measurements (). There is also the systematic error, of course, 
which – added to the measured SEM – would bring the difference of 0.017 within less than one sigma of the 
estimated lower bound. We will come back to statistical definitions in a few seconds. 
7 The reader should also note that, for some weird reason, these authors do not include the 2018 CODATA value 
for the proton radius which, in fact, seems to discard all measurements except those of Pohl (2010) and Antognini 
(2013). Indeed, the new 2018 CODATA value for the proton radius is equal to rp = 0.8414 ± 0.0019 fm, and seems 
to be some weighted average of the two mentioned measurements: (0.84087 + 0.84184)/2 = 0.841355 fm. Not 
only does this make the PRad measurement look very good but, importantly, this value also hardly differs from our 
theoretical 'back-of-the-envelope' calculation from the ring current model (4ħ/mc = 0.8413564... fm). 
8 Descriptions of the various techniques and/or measurements are quoted from the referenced article 
(https://arxiv.org/pdf/1812.02028.pdf), so we should not be suspected of any bias here. 

https://arxiv.org/pdf/1812.02028.pdf
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excluding the results of those scientific experiments in their calculations of this so-called lower bound 

(0.848 fm) for acceptable measurements. 

The point is this: the new measurement result may not solve the controversy. Indeed, the conclusion 

that “the puzzle seems to be resolved” because “the discrepancy was likely due to measurement 

errors”9 seems to be premature: the latter statement works in both ways. If the PRad team would be 

convinced that previous experiments were wrong because of “measurement errors”, then they should 

explain these. Otherwise, the experiment may be subjected to the same conjecture: perhaps it is the 

PRad experiment which suffers from “measurement errors”, rather than the previous experiments? 

The ring current radius 
Having said that, we actually do like the new measurement of the PRad team. Why? Because we 

immediately see some remarkable relations here. The first, and most obvious, relation is the relation 

between the new radius and the theoretical ring current radius of a proton. The second is with the range 

parameter that comes out of Yukawa’s potential formula for the nuclear (strong) force, which we will 

look at in the next section.  

Let us start with the ring current model.  

If a proton would, somehow, have a pointlike elementary (electric) charge in it, and if it is in some kind 

of circular motion (as we presume in Zitterbewegung models of elementary particles10), then we can 

establish a simple relation between the magnetic moment (μ) and the radius (a) of the circular current. 

Indeed, the magnetic moment is the current (I) times the surface area of the loop (πa2), and the current 

is just the product of the elementary charge (qe) and the frequency (f), which we can calculate as f = 

c/2πa, i.e. the velocity of the charge11 divided by the circumference of the loop. We write: 

μ = I ∙ π𝑎2 = qe𝑐
π𝑎2

2π𝑎
= qe𝑐

𝑎

2
≈ 0.24 … 10−10 ∙ 𝑎 

 
9 See: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/. 
10 The Zitterbewegung model assumes an electron consists of a pointlike charge whizzing around some center. The 
rest mass of the pointlike charge is zero, which is why its velocity is equal to the speed of light. However, because 
of its motion, it acquires an effective mass – pretty much like a photon, which has mass because of its motion. One 
can show the effective mass of the pointlike charge – which is a relativistic mass concept – is half the rest mass of 
the electron: mγ = me/2. The concept goes back to Alfred Lauck Parson (1915) and Erwin Schrödinger, who 
stumbled upon the idea while exploring solutions to Dirac’s wave equation for free electrons. It’s always worth 
quoting Dirac’s summary of it: “The variables give rise to some rather unexpected phenomena concerning the 
motion of the electron. These have been fully worked out by Schrödinger. It is found that an electron which seems 
to us to be moving slowly, must actually have a very high frequency oscillatory motion of small amplitude 
superposed on the regular motion which appears to us. As a result of this oscillatory motion, the velocity of the 
electron at any time equals the velocity of light. This is a prediction which cannot be directly verified by experiment, 
since the frequency of the oscillatory motion is so high and its amplitude is so small. But one must believe in this 
consequence of the theory, since other consequences of the theory which are inseparably bound up with this one, 
such as the law of scattering of light by an electron, are confirmed by experiment.” (Paul A.M. Dirac, Theory of 
Electrons and Positrons, Nobel Lecture, December 12, 1933) 
11 The velocity of the charge is the speed of light. We readily admit this is a weird idea and offer some analysis in 
Annex II. 

https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/
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Using the Compton radius of an electron (ae = ħ/mec), this yields the correct magnetic moment for the 

electron12: 

μe = (0.24 …10−10 ∙ 0.386 … × 10−12) ≈ 9.2847647043 × 10−24 J/T 

When applying the a = μ/0.24…10–10 relation to the (experimentally measured) magnetic moment of a 

proton, we get the following value for the ring current radius of a proton: 

𝑎 =
1.41 … 10−26

0.24 … 10−10
= 0.58710−15 m 

When we multiply this with 2, we get a value which fits into the 0.831  0.007 interval:  

(0.587 …10−15 m) ∙ √2 ≈ 0.8306510−15 m 

The 2 factor is puzzling, of course. We have no real explanation for it but we venture it is some form 

factor that should have a very logical explanation. The magnetic field of the current ring, for example, 

will envelop the current ring itself. We would, therefore, expect the measured charge radius to be larger 

than the radius of the current ring.13  

There are, of course, also the intricacies related to the definition of a root mean square (rms) radius. We 

could invent some crackpot theory, for example, in which the measured value (0.831 fm) would be the 

largest value of a sinusoidal distribution.14 However, we readily admit the concept of a sinusoidal 

distribution sounds rather non-sensical. We may also think of some kind of randomness in the motion of 

the pointlike charge15 but we admit that sounds equally ad hoc.  

In short, a simple form factor related to the magnetic field of the proton – or to the electrons that 

scatter off it16 – is much more probable.  

Of course, the argument is entirely heuristic⎯simplistic, even. At the same time, we feel the 2 factor 

cannot be a coincidence: the difference between the ‘theoretical’ 0.83065 fm value and the 0.831 fm 

measurement is only 0.000346656… fm, which is less than 5% of the standard error of the PRad point 

estimate (0.007 fm). 

 
12 The calculations do away with the niceties of the + or – sign conventions as they focus on the values only. We 
also invite the reader to add the SI units so as to make sure all equations are consistent from a dimensional point 
of view. For the values themselves, see the CODATA values on the NIST website 
(https://physics.nist.gov/cuu/Constants/index.html). 
13 However, the magnetic field of a current ring does not extend much. Antognini and his team, for example, 
distinguish between the magnetic radius (rM = 0.87(6) fm) and the charge radius of the proton, which they measure 
as rE = 0.84087(39) fm in their seminal 2013 experiment and calculations. 
14 See annex III (basic statistics) to this paper. The peak value of a sinusoidal wave and its rms value are, effectively, 

related through a 2 factor but, we admit, this is a very poor argument. 
15 The concept of the random walk, as modeled by Einstein, involves a mean squared distance. See: 
https://www.feynmanlectures.caltech.edu/I_06.html#Ch6-S3.  
16 One should note that both the classical as well as the Compton radius of electron – about 2.8 fm and 386 fm 
respectively – are both much larger than the proton radius. Unfortunately, we have not seen any easy or 
comprehensible explanation of how these electron-proton scattering experiments account for the rather large size 
of electrons as compared to the target: even the smallest electron radius (2.8 fm) is almost 3.5 times the estimated 
size of the proton!  

https://physics.nist.gov/cuu/Constants/index.html
https://www.feynmanlectures.caltech.edu/I_06.html#Ch6-S3


5 
 

We, therefore, have started to do some more speculative calculations. We summarize the current status 

of these calculations in Annex I, and we encourage the reader to explore those.17 

The strong charge radius 
Our particular interpretation of the Zitterbewegung model of an electron allows us to calculate another 

theoretical radius of the proton. We’ve explained the idea elsewhere18 and, hence, we will not elaborate 

too much here. We refer to it as the oscillator model, and it involves a direct calculation of the Compton 

radius combining the E = ħ·ω, c = a·ω and E = m·c2 relations. When using the mass for an electron, we 

get: 

𝑎 =
𝑐

ω
=

𝑐 ∙ ℏ

m ∙ 𝑐2
=

ℏ

m ∙ 𝑐
=

λC

2π
≈ 0.386 × 10−12 m 

When applying the E = ħ·ω, c = a·ω and E = m·c2 relations to  the mass/energy of proton (or a neutron19), 

we get this: 

𝑎p =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

938 × 106 eV
≈ 0.21 × 10−15 m 

The result that we obtain here is about 1/4 of the experimentally measured value. This distance is 

exactly the same as the distance that we get for the range parameter a in Yukawa’s formula.20 In fact, 

we can equate the range parameter a and the distance r with the ap = ħ/mpc value in the force formulas 

we get from the potential formulas and we’ll see the electrostatic and nuclear force – which we’ll 

denote as FC and FN respectively – are, effectively the same21: 

FC = −
dV

d𝑟
= −

qe
2

4πε0

1

𝑟2
= −

αℏ𝑐

𝑟2
= −

αmp
2𝑐2

ℏ
 

 
17 We also appreciate feedback through email. We can be reached at jeanlouisvanbelle@outlook.com or, 
preferably, through academia.edu messages. 
18 See, for example, our previous paper: the Metaphysics of Physics, http://vixra.org/abs/2001.0453. 
19 The mass of a neutron is about 939,565,413 eV/c2 and about 938,272,081 eV/c2 for the proton. Hence, the 
energy difference is a bit less than 1.3 MeV. It is, therefore, very tempting to think a neutron might, somehow, 
combine a proton and an electron: the electron mass is about 0.511 MeV/c2 and, hence, we may think of the 

remaining difference as some kind of binding energy⎯the attractive force between the positive and a negative 
charge, perhaps? These thoughts are, obviously, very speculative. We did explore some of these, however, in our 
paper on the nature of protons and neutrons (http://vixra.org/abs/2001.0104), and we very much welcome 
comments. 
20 See Aitchison and Hey’s introduction to Gauge Theories in Particles Physics, Vol. 1, Chapter 1 ((The Particles and 

Forces of the Standard Model) , p. 16. To be precise, Aitchison and Hey there write the range parameter is  2 fm. 
They do not explain this result and we wonder why they do not calculate some more precise value, which is easy 
enough based on the idea of calculating and equating the forces involved.  
21 As for the theoretical model that we use – and the reference to the strong force radius in the title of this section 
– see the above-mentioned paper (http://vixra.org/abs/2001.0104) as well as our Metaphysics of Physics paper 
(http://vixra.org/abs/2001.0453). Note that we left the nuclear constant (υ0) out because its numerical value is 
one. You can, of course, calculate the exact value of the force using the CODATA values for the various constants. 
We leave it as a teaser for the interested reader. 

mailto:jeanlouisvanbelle@outlook.com
http://vixra.org/abs/2001.0453
http://vixra.org/abs/2001.0104
http://vixra.org/abs/2001.0104
http://vixra.org/abs/2001.0453
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FN = −
dU

d𝑟
= −

gN
2

4π
∙

(
𝑟
𝑎

+ 1) ∙ 𝑒−
𝑟
𝑎

𝑟2
= −

gN
2

4π
∙

2𝑒−1

𝑟2
= −

𝑒αhc

4π
∙

2𝑒−1mp
2𝑐2

ℏ2
= −

αmp
2𝑐2

ℏ
 

Using the exact value for ap, we can calculate the ratio between the new experimental value of the 

proton and the ratio as calculated above more exactly as: 

𝑎p

𝑟p
=

0.21 …

0.831
≈ 0.25308 

Hence, the ratio differs from the ¼ ratio (0.25) by about 1.2% only. Is this good enough?  

The systematic and statistical variance of the measured radius add up to 0.012 + 0.007 = 0.019 fm, which 

is about 2.3% of the point estimate (0.019/0.831) so, yes, we think it is significant. Indeed, the difference 

between 0.831 fm and this strong charge radius multiplied by 4 is 0.01 fm, so that’s about 50% of the 

mentioned combined statistical and systematic error . We, therefore, think that, while being somewhat 

less precise, the 1/4 factor can also not be a coincidence. 

Old, new or bad physics? 
The concluding comments of Physics Today22 on the very precise measurement of the proton’s rms 

charge radius were this:  

“The PRad radius result, about 0.83 fm, agrees with the smaller value from muonic and now 

electronic hydrogen spectroscopy measurements. With that, it seems the puzzle is resolved, and 

the discrepancy was likely due to measurement errors. Unfortunately, the conclusion requires no 

new physics.” (my italics) 

We wonder what kind of new physics they are talking about. We get two different theorical radii of the 

proton from ‘new physics’ here, and their relation with the measured radius is strangely perfect: 

1. The charge radius, which relates to the measured radius by a factor equal to 2; and 

2. The ‘oscillator’ or strong force radius, which is 1/4 of the measured value. 

Ratios like this suggest it should not be difficult to connect the numbers but then, somehow, it is. 

Hopefully, some researchers smarter than us23 will be able to connect the dots and come up with a 

realist interpretation of quantum mechanics combining the idea of an electromagnetic and a ‘strong’ 

force.24 Till that day, the words which Mr. Dirac wrote back in 1958, as the last paragraph in the last 

edition of his Principles of Quantum Mechanics, will continue to ring true:  

 
22 See: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/. 
23 Needless to say, we did contact the PRad team at JLAB through their spokesperson (Prof. Dr. Ashot Gasparian). 
Mr. Gasparian was kind enough to react almost immediately to our email, stating he thought “the approach and 
numbers were interesting” and that he would share them with the students and postdocs in the team. We look 
forward to future comments. 
24 The weak force is supposed to explain why things fall apart, or why particles are unstable, rather than stable. We 
prefer to not think of decay or disintegration as a force. It is, in fact, the exact opposite of the idea of a force: a 
force is supposed to keep things together. In the same vein, we like to add we do not want to entertain the idea of 
messenger particles or force carriers – virtual photons, gluons, or whatever other bosons or metaphysical 
constructs that have been invented since Yukawa first presented these ideas. Indeed, it is unfortunate that – 

https://physicstoday.scitation.org/do/10.1063/PT.6.1.20191106a/full/
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“Now there are other kinds of interactions, which are revealed in high-energy physics and are 

important for the description of atomic nuclei. These interactions are not at present sufficiently 

well understood to be incorporated into a system of equations of motion. Theories of them 

have been set up and much developed and useful results obtained from them. But in the 

absence of equations of motion these theories cannot be presented as a logical development of 

the principles set up in this book. We are effectively in the pre-Bohr era with regard to these 

other interactions. It is to be hoped that with increasing knowledge a way will eventually be 

found for adapting the high-energy theories into a scheme based on equations of motion, and 

so unifying them with those of low-energy physics.” (Principles of Quantum Mechanics, 4th 

edition, p. 312) 

Do we have any ideas on the way forward? Of course ! There is a very easy way forward. We could 

probably build some kind of model that would match the newly measured proton radius like this: 

1. We imagine some kind of 'nucleon': this would be a pointlike ‘carrier’ of both the electric and 'strong' 
charge. Hence, the only property of this ‘nucleon’ would be to ‘combine’ the elementary charge (qe = 

1.60217663410−19 coulomb) and the strong charge (gN = X dirac25). 
 
2. It would then be very logical to think that – unlike the Zitterbewegung charge in an electron – this 
pointlike 'nucleon', as carrier of both electric and strong charge, could not possibly reach lightspeed 
while orbiting around some center in some 'Zitterbewegung' or ‘circular’ motion (current ring). Its 
velocity would have to be less than c because its rest mass is non-zero.26 Hence, we would write the 
radius of the (electric) current ring as a = 2μ/qev instead of a = 2μ/qec. 
 
3. We could then find some new functional form for Yukawa's nuclear potential function to obtain a 
strong charge radius that matches the new electric current radius, i.e. the new a = 2μ/qev value. Indeed, 
because we have two variables now (instead of just one) – or two degrees of freedom in modeling this 
problem, so to speak – this should not be too difficult. 
 
Hence, yes, we think it can be done, and we will probably give it a try over the coming weeks! So then 
we would have an easy 'ring current' model of the proton combining both the idea of electric as well as 
'strong' charge. It would be artificial and simplistic, of course, but it would effectively challenge the 
rather strange idea of the strong charge having three different 'colors'. We would, effectively, just have 
this ‘pointlike’ nucleon combining electric charge and strong charge going around and around at some 
velocity v, and it would explain both the magnetic moment as well as the measured radius of the 
proton.27 

 
instead of realizing he was actually proposing the existence of a new charge – he used his formula to derive a 
hypothetical nuclear force quantum. 
25 The dirac would be our favored name for the unit of some non-colored strong charge, but we would abbreviate 
it as Y to also honor Yukawa. See our paper on Yukawa’s formula (https://vixra.org/abs/1906.0384) or, for a more 
concise treatment, our Metaphysics of Physics paper (https://vixra.org/abs/2001.0453). 
26 See also the potential philosophical objections against the assumption of a pointlike charge with zero rest mass 
in Annex II of this paper.   
27 It may be noted that we cannot, of course, directly verify the presence of the strong charge because we do not 
have the equivalent of photons or electrons bouncing off strong charges. If neutrinos would be the ‘photons’ that 
are associated with the strong force (we have another very speculative paper on this: 

https://vixra.org/abs/1909.0026), then neutrinos might, perhaps, serve this purpose one day⎯but that will be 
something only future generations will be able to verify, if at all possible.  

https://vixra.org/abs/1906.0384
https://vixra.org/abs/2001.0453
https://vixra.org/abs/1909.0026
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That would be nice, wouldn’t it? Perhaps⎯but it would look quite artificial. If the pointlike ‘nucleon’ 
inside of a proton would really combine some electric as well as some strong charge – in exactly the 
same motion – then it would imply that the electric and strong force would, somehow, have exactly the 
same ‘geometric structure’, so to speak. That is a very obvious weakness of the approach as outlined 

above: we would just be seen to make our model ‘fit’ the measurement⎯and rightly so! 
 
However, that’s what we’re going to do in our next paper.28 Hence, we do think the PRad measurement 
did solve the proton radius puzzle! 
 
Jean Louis Van Belle, 6 February 2020 

  

 
28 See our paper on the mass, radius and magnetic moment of protons and electrons: 
https://vixra.org/abs/2001.0685. We know this reference is a bit weird – as we kept updating two papers 
separately. The reason is the audience: we hope the referenced paper sounds more scientific. Regardless of the 
reader and/or audience here, we believe both papers are honest reflections of our search for physical truth. In 
case the reader would wonder, we did reach out and Prof. Dr. Ashot Gasparian has been kind enough to respond 
and encourage us, stating he finds the approach and the numbers “interesting”. We responded we think his 
experiment is a landmark experiment. Of course, only history can tell whether any of this is actually relevant. 

https://vixra.org/abs/2001.0685
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Annex I: Detailed calculations assuming precession 
We offer the following thoughts and calculations for the reader who wishes to further explore the 

matter: 

1. There is a precise CODATA value for the magnetic moment of a proton: 

μ = 1.4106067973610−26 J·T−1  0.00000000060 J·T−1 

Let us use this ratio to calculate a theoretical proton radius. If we imagine this magnetic moment to be 

created by a circular current of the elementary charge, then it will be equal to the current times the area 

of the loop. The current itself will be the product of the charge (+qe) and the frequency (f = ω/2π). We, 

therefore, get the following easy formula: 

μ = Iπ𝑎2 = qe𝑓π𝑎2 =
qeω𝑎2

2
⟺ 𝑎 = √

2μ

qeω
 

So far, so good. We now need to make an assumption about the frequency. This is where the hocus-

pocus starts. The various crackpot theories we’ve entertained have one thing in common: we believe the 

Planck-Einstein relation (E = h·f = ħ·ω) reflects a fundamental cycle, and so we believe it also applies to 

this ring current idea. Hence, we write: 

𝑎 = √
2μ

qeω
= √

2μℏ

qeE
 

Of course, the question is: what energy should we use? For the electron we used the E = mc2 formula – 

based on the assumption that all of the mass of the electron is the equivalent mass of the energy of the 

oscillation of the (elementary) pointlike electric charge – but a proton combines electric and strong 

charge. Hence, perhaps half of its energy (or mass) is to be explained by the (electric) current ring while 

the other is to be explained by the oscillation of the strong charge.29 Hence, perhaps we should write: 

E/2 = ħ·ω. Why half? I am not sure, but I am thinking of the energy equipartition theorem from kinetic 

gas theory here. However, you are right: perhaps we should generalize and write something like: E/n = 

ω·ħ.   

It may also be possible an oscillation packs several units (h) of physical action, so we should – perhaps – 

write E = n·h·f = n·ħ·ω. Combining this and the energy equipartition theorem, it seems to make sense to 

write ω as: 

ω =
𝑛1

𝑛2

E

ℏ
= γ

E

ℏ
 

In fact, perhaps we should not make  too much assumptions. The (angular) frequency (ω) is some 

number and so we can always write it as some fraction of the energy (or the mass) of our particle which, 

in this particular case, is the proton, so we’ll just insert a more general γ coefficient (or its inverse, which 

 
29 One should think of some equivalent of the Zitterbewegung motion of the electric charge here. Perhaps it has 
the same structure, perhaps not. 
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we’ll write as  = γ−1) into the equation.30 It may also be its inverse (γ−1) and, from what we wrote above, 

it is rather obvious that we hope it will be some fraction of two natural numbers, like 1/1, or 1/2, 3/2 or 

whatever. However, we cannot be sure of that, so let us simply write this: 

𝑎 = √
2μ

qeω
= √

2μℏ

qeγE
= √η√

2μℏ

qem𝑐2
 

If γ (and, therefore, ) would happen to be equal to 1, then we can calculate the radius to be equal to: 

𝑎 = √
2μℏ

qem𝑐2
≈ 0.351 × 10−15 

Does this make sense? Maybe. Maybe not. The range is OK, because the most precise measurement of 

the charge radius of a proton is 0.831 fm. However, the gap between 0.831 and 0.831 is quite 

considerable. 

2. Perhaps we should try another approach. If the elementary charge is really pointlike and rotating 

around, then the frequency will be equal to its velocity (v) divided by the circumference of the loop 

(2πa). If we write the velocity v as some fraction of the speed of light (v = βc), then we can write this: 

μ = Iπ𝑎2 = qe𝑓π𝑎2 = qe

𝑣

2π𝑎
π𝑎2 =

qeβ𝑐

2
𝑎 ⟺ 𝑎 =

2μ

qeβ𝑐
 

For example, if β would happen to be equal to 1, then the radius would be equal to: 

𝑎 =
2μ

qe𝑐
≈ 0.587 × 10−15 

This is an OK range too, and the difference with the measured 0.831 fm is an easier – or weirder? – 2 

factor. If the calculated radius above would be more credible (because of the clean 2 factor), then we 

need to explain the difference between the two. It is quite obvious to see that the two radii are equal if 

the following condition holds: 

𝑎 = √η√
2μℏ

qem𝑐2
=

2μ

qe𝑐
⟺ η =

2mμ

qeℏ
≈ 2.79 

We can quickly check this value:  

√2.79 · (0.351 × 10−15) ≈ 0.587 fm 

It works, but that 2.79 value for  is weird. Let us suppose that the measured radius is the actual radius. 

We also know an atomic magnet – classically – is going to precess in a magnetic field. We should, 

 
30 The choice of  as a symbol is really random. We did not want to use α or ε because these are also reserved for 
the fine-structure constant and the electric constant respectively. In fact, we should probably not have used γ 

either, because it suggests we are thinking of the Lorentz factor⎯which is not the case in this context! 
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therefore, perhaps multiply the magnetic moment by that 2 factor?31 The new value would be equal 

to: 

μL = (1.4106067973610−26 J·T−1)·2  1.99489926410−26 J·T−1 

Wow! That is weird: it’s almost equal to 210−26 J·T−1, exactly. Indeed, 2/2  1.4142… and that’s pretty 

close to the 1.4106… that is measured for μ. We will consider this to be a coincidence for the time being. 

Let us recalculate things using the new μL value for the magnetic moment.32 

3. We know we something close to the measured radius when using that 2 factor. We put the 

numbers in the numerator and denominator of the ratio so you can see how close they are to whole 

numbers. That, too, must be a coincidence, of course! 

𝑎 =
2μ

qe𝑐
=

2 ∙ 1.99 … × 10−26

(1.602 … × 10−19) ∙ (2.998 … × 108)
≈

4 × 10−26

4.8 × 10−11
≈ 0.83065 … × 10−15 

Note that we have consistently used CODATA values (and precision) for our calculations, so it is really 

remarkable this 8.3065 fm value differs from JLAB’s recent PRad measurement of the proton radius by 

only 0.00035 fm, which is about half of the standard error of the measurement. To be precise, the PRad 

(proton radius) team using the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab 

measured the root mean square (rms) charge radius of the proton as33: 

rp = 0.831 ± 0.007stat ± 0.012syst fm 

What about that  or γ factor in the other calculation of a radius? We get this: 

η =
2mμ

qeℏ
=

2 ∙ (1.673 … × 10−26 ∙ (1.99 … × 10−26)

(1.602 … × 10−19) ∙ (1.054 … × 10−34)
≈

6.67 … × 10−53

1.69 … × 10−53
≈ 3.95 … 

That is a value that is quite close to 4 and, using CODATA values for all variables once again, its square 

root can be calculated as equal to   1.98738… So that’s a difference of less than 1.3% with the exact 

4 or 4 = 2 values which – let us admit it – we had hoped to see.  

Wait a minute! A  = 4 or – what amounts to the same – a γ = 1/4 value implies that we should write the 

angular frequency as: 

 
31 Richard Feynman (https://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S7) shows that, for spin-1/2 
particles, we could relate L (the magnitude of the actual angular momentum of a precessing magnet) and Lz (the 

measured (quantum) value) as 
𝐿

𝐿𝑧
=

√𝑗(𝑗+1)∙ℏ

𝑗∙ℏ
=

√1/2(1/2+1)

1/2
= 2 ∙ √

3

4
= √3 ≈ 1.732 … As such, we admit our 2 

factor looks very ad hoc. To our defense, we should say there may also be some factor related to the intricacies of 
measuring an root mean square value for the radius (which is the case here) and, most importantly, we should also 
mention the magnetic field that is generated by the circular current is supposed to envelop the current ring itself. 

Perhaps all of these factors combine, in some miraculous way, to produce this mysterious 2 factor. 
32 The L stands for (orbital) angular momentum. We thought it was a good subscript to use because it reminds us 
of the (orbital) angular momentum one would effectively associate with the circular motion. 
33 See: https://www.nature.com/articles/s41586-019-1721-2. See also: 
https://www.jlab.org/prad/collaboration.html and https://www.jlab.org/experiment-research. 

https://www.feynmanlectures.caltech.edu/II_34.html#Ch34-S7
https://www.nature.com/articles/s41586-019-1721-2
https://www.jlab.org/prad/collaboration.html
https://www.jlab.org/experiment-research
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ω =
1

4

E

ℏ
 

Didn’t we think half – rather than one fourth – of the energy was in the electromagnetic oscillation of 

the pointlike charge? You are right. That should be the case, but perhaps half of the energy is in the 

kinetic energy of the pointlike charge, and the other half is in the electromagnetic field that keeps it 

going.  

That would be the interpretation of David Hestenes and most Zitterbewegung theorists. It wasn’t quite 

ours so far, but perhaps it should be. 
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Annex II: Lightspeed currents, relativity and form factors 
The concept of a lightspeed circular current is at the core of the Zitterbewegung and/or ring electron 

models: an electron is imagined as consisting of a pointlike charge which – in itself – has zero rest mass 

but which, because of its Zitterbewegung motion, gives the electron as a whole the energy and, 

therefore, the rest mass as measured in countless experiments. The ‘elementary charge’ that is whizzing 

around the center is a naked charge: it has no properties but its charge. Its rest mass is, therefore, zero, 

and it acquires all of its mass from its velocity. As such, some (e.g. Burinskii) have referred to it as a 

toroidal photon, or an electron photon. However, we don’t like these terms because they are not only 

imprecise but also misleading: photons are not supposed to carry any charge.  

The quintessential question is: how does a naked charge – in a circular current – acquire an effective 

mass? This is a deep mystery which we can only analyze mathematically, and even such mathematical 

analysis leaves us somewhat bewildered because we are applying equations to limiting situations. To be 

precise, we are calculating the mv = γm0 product for γ (the Lorentz factor) going to 1 divided by 0 (zero), 

while the rest mass m0 is also supposed to be equal to zero. Indeed, with m0 → 0 and v → c, we are 

effectively dividing zero by zero in Einstein’s relativistic mass formula: 

m𝑣 = γ ∙ m0 =
1

√1 − 𝑣2 𝑐2⁄
∙ m0 

We have not tried to solve this problem mathematically. Instead, we suggested a geometric solution, 

according to which the effective mass of our pointlike charge (which we denoted as mγ = mv = c) must be 

equal to 1/2 of the (rest) mass of the electron: 

mγ =  m𝑣 = 𝑐 =  
me

2
 

We refer to our previous paper(s) for the detail.34 Here, we would just like to briefly examine another 

angle to the question, and that is the question as to how one would imagine the charge to be distributed 

over the current ring. The answer to that question is, unfortunately, equally logical and mysterious. 

While we imagine the rest mass of the pointlike charge to be zero, we actually do not assume it has no 

dimension whatsoever. On the contrary, we think the anomalous magnetic moment of the electron can 

be explained by assuming its dimension corresponds to the classical electron radius35, which is equal to: 

𝑟𝑒 = α𝑟𝐶 = α
ℏ

me𝑐
=

qe
2

4πε0ℏ𝑐

ℏ

me𝑐
=

qe
2

4πε0Ee
 

Of course, if we imagine our pointlike charge to have a radius, then it is only logical to assume it has 

some volume too. In fact, our classical calculations of the anomalous magnetic moment assume the 

classical electron radius is the radius of a (very tiny) sphere of charge. This effectively gives our toroidal 

or disk-like electron36 some volume. Now, as Feynman convincingly argues, the charge of a particle – any 

particle – is an invariant scalar quantity. It is, therefore, independent of the frame of frame. However, 

the charge density of a charge distribution will vary in the same way as the relativistic mass of a 

 
34 See our Metaphysics of Physics paper, and especially annex 2 (https://vixra.org/abs/2001.0453). 
35 See our Classical Calculations of the Anomalous Magnetic Moment (https://vixra.org/abs/1906.0007). 
36 For a discussion on the form factor in classical calculations of the anomalous magnetic moment (amm), see our 
discussion of the calculations of the amm of Oliver Consa (https://vixra.org/abs/2001.0264).  

https://vixra.org/abs/2001.0453
https://vixra.org/abs/1906.0007
https://vixra.org/abs/2001.0264
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particle. To be precise, the charge density as calculated in the moving reference frame (ρ)will be related 

to the charge density in the inertial frame of reference (ρ0) as follows37: 

ρ =
1

√1 − 𝑣2 𝑐2⁄
∙ ρ0 

This effect is entirely due to the relativistic length contraction effect. Indeed, the assumption is that the 

dimensions transverse to the motion remain unchanged.38 Hence, the area A = A0 is the same in the 

inertial (S) as well as in the moving reference frame (S’). However, the length L will be shorter, and this 

relativistic length contraction will be given by the same Lorentz factor: L = L0/γ.39  

Figure 2: The relativity of charge densities 

 

Source: Feynman’s Lectures, Vol. II, Chapter 13, Fig. 13-11 

Substituting the total charge Q by qe, we can effectively write this: 

q = ρ ∙ L ∙ A = ρ ∙ L ∙ A0 = ρ0 ∙ L0 ∙ A0 ⟺ ρ = γ ∙ ρ0 =
ρ0

√1 − 𝑣2 𝑐2⁄
 

You may think the argument depends on a form factor: we are talking the volume of a cylindrical shape 

here, aren’t we? Not really.40 We could divide any volume (cylindrical, spherical or whatever other 

 
37 See: Feynman’s Lectures, The Relativity of Magnetic and Electric Fields 
(https://www.feynmanlectures.caltech.edu/II_13.html#Ch13-S6). 
38 We may remind the reader that Einstein – in his original 1905 article on special relativity – did actually introduce 
a distinction between the “longitudinal” and “transverse” mass of a moving charge. See p. 21 of the English 
translation of Einstein’s article on special relativity, which can be downloaded from: 
http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf. We feel the two concepts may 
be related to the equally relative distinction between the electrostatic and magnetic forces. 
39 Note we divide by the Lorentz factor here or, what amounts to the same, multiply with the inverse Lorentz 
factor. 
40 Note that the argument actually does not use the V = π·a2·L formula, which is the formula one would use for the 
volume of a cylindrical shape. The argument only depends on the mathematical shape of the formula for electric 
current only (ρ·v·A) which, unsurprisingly, is the same as the q = ρ·L·A formula: current is measured as charge per 
time unit, while a length may be expressed as the product of time and velocity. The reader may want to do a quick 
dimensional analysis of the equations to check the logic and appreciate the points made here.   

https://www.feynmanlectures.caltech.edu/II_13.html#Ch13-S6
http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf
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shape) into an infinite set of infinitesimally small cylindrical volumes and obtain the same result: the ρ = 

γ·ρ0 formula is also valid for the charge density as used in the general formula for an electric current, 

which is equal to: I = ρ·v·A. The velocity in this formula is just the velocity of the charge, and A is the 

same old cross-section of whatever ‘wire’ we would be looking at. Applying the relativistic formula 

above, and equating v to c, we can now calculate the current in terms of some stationary charge or – to 

be more precise – in terms of the stationary charge distribution ρ0: 

I = ρ ∙ 𝑣 ∙ A =
ρ0

√1 − 𝑣2 𝑐2⁄
∙ 𝑣 ∙ A 

Hence, we get the same seemingly nonsensical division of zero by zero for v = c. How should we 

interpret this? We are not sure. We think it makes any meaningful discussion of the shape of the 

stationary charge distribution very difficult: a spherical charge moving in a circle at the speed of light is, 

therefore, probably equivalent to a toroidal ring of charge. As such, the discussions on such shape factor 

may distract from some more fundamental reality, which is and remains difficult to gauge or 

understand. 

Needless to say, such philosophical discussions may be solved by assuming our pointlike charge does 

actually not have a rest mass that is absolutely equal to zero: perhaps its rest mass is infinitesimally 

small but non-zero number. As such, the discussion reflects the discussion on the rest mass of 

neutrinos41 which – in light of our rather wild ideas on what neutrinos might actually be42 – makes very 

much sense to us: a charge with zero rest mass is, perhaps, as absurd – from a philosophical point view – 

as the idea of infinite velocity. To illustrate this point, we show what happens to the momentum of a 

particle when its rest mass goes to zero, while its velocity goes to c. 

Figure 3: p = mvv = γm0v for m0 → 0 

 

 

  

 
41 We refer to the Wikipedia article for a brief but comprehensible discussion on the thorny questions related to 
the rest mass of neutrinos (https://en.wikipedia.org/wiki/Neutrino). The reader can easily find more specialized 
articles if needed. 
42 We refer to our even more speculative papers here, including but not limited to our Neutrinos as the Photons of 
the Strong Force (https://vixra.org/abs/1909.0026). We accept the reader may dismiss those as ‘crackpot theory.’  

https://en.wikipedia.org/wiki/Neutrino
https://vixra.org/abs/1909.0026
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Annex III: Basic statistics 
To understand anything of the articles explaining how one actually arrives at a root mean square (rms) 

charge radius from experiments, one seems to need not one but three PhDs: not only in physics, but 

also in math and statistics. It starts with the definition of the concept of a root mean square radius, 

which is basically this43: 

𝑅p = √〈𝑟p〉2 

At first, this looks non-sensical: angle brackets usually denote an average – which makes sense – but 

why would you first square it, and then take a square root again? You would think that √〈𝑟p〉2 would 

equal rp, right? Of course, it is not. A root mean square value of a function is defined as follows: 

𝑥RMS = √
𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑛

2

𝑛
= √

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛
 

There is also an equivalent for a continuous function. For example, if x is a continuous function of time 

(t), then the rms value as measured over some time interval [T1, T2] is equal to: 

𝑥RMS = √
1

𝑇2 − 𝑇1

∫ [𝑥(𝑡)]2𝑑𝑡
𝑇2

𝑇1

 

If we obtain the same value – or very nearly the same value – for every measurement, such as in 

distribution of the ci and di variables in Table 1, then the rms value will be very close or equal to the 

average value. However, if that is not the case, then the rms value will diverge from it.   

Table 1: Average versus rms value of a distribution 

i ai bi ci di 

1 1 3 4.6 5 
2 2 4 4.7 5 
3 3 4 4.8 5 
4 4 5 4.9 5 
5 5 5 5 5 
6 6 5 5.1 5 
7 7 6 5.2 5 
8 8 6 5.3 5 
9 9 7 5.4 5      

average 5.00 5.00 5.00 5.00 

rms 
value 5.63 5.13 5.01 5.00 

 

The relations between the rms value, the average and the peak value of a sine wave are interesting: 

 
43 See, for example, A. Vorobyev, 22 April 2019, https://arxiv.org/ftp/arxiv/papers/1905/1905.03181.pdf. 

https://arxiv.org/ftp/arxiv/papers/1905/1905.03181.pdf
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Table 2: Average, rms and peak value of a sinusoidal function 

function average rms value peak value 

x = sinα 𝑥̅ =
2

π
≈ 0.637 𝑥𝑟𝑚𝑠 =

1

√2
≈ 0.707 1 

 

The question is: why would want to calculate an rms value for a radius, rather than just the more 

straightforward average? We did not find any convincing answer to this question but we must also 

admit that – because of time constraints44 – we did not look very hard. We assume it has to do with the 

same statistical conventions that lead scientists to use the standard error rather than the mean absolute 

deviation as a measure of the accuracy of an estimate. 

Indeed, we should double-check but we must assume that the 0.007stat in the rp = 0.831 ± 0.007stat ± 

0.012syst fm equation refers to the standard error of the mean (SEM) – also known as root mean squared 

error (RMSE) – of the new measurement (σ𝑥̅), not the standard deviation of the distribution of 

measurements (σ𝑥). We may remind the reader of the difference between the two concepts by jotting 

down the formula for the RMSE: 

RMSE = SEM = σ𝑥̅ =
σ𝑥

√𝑛
=

√
∑ (𝑥𝑖 − 𝑥𝑛)2𝑛

𝑖=1

𝑛 − 1

√𝑛
=

√∑ (𝑥𝑖 − 𝑥𝑛)2𝑛
𝑖=1

√𝑛(𝑛 − 1)


√∑ (𝑥𝑖 − 𝑥𝑛)2𝑛
𝑖=1

𝑛
 

The RMSE or SEM statistic45 is used mainly because of computational convenience: it is much easier to 

do variance analysis and other gimmicks with the RMSE than with the alternative statistic, which is the 

mean absolute deviation or mean absolute error (MAD or MAE)46: 

MAD =  MAE = |σ|𝑥̅ =
∑ |𝑥𝑖 − 𝑥𝑛|𝑛

𝑖=1

𝑛
 

 

Where do we want to go with this statistical annex? Not very far. In fact, we’ll stop here. For the rather 

bewildering detail of how a charge radius is actually calculated, we refer to the referenced papers (see, 

for example, Hagelstein and Pascalutsa, 2019 or, Vorobyev, 2019) which, to be honest, we find totally 

impenetrable.   

 
44 As an amateur physicist, I need to attend to my real job from time to time. 
45 The reader can check the rapid convergence between the 1/√𝑛(𝑛 − 1) and 1/√𝑛2 = 1/𝑛 formulas for any 

meaningful sample size (say, more than five or ten measurements, for example). As for the abbreviation, the SEM 
(standard error of the mean) is probably more common, but we find the RMSE abbreviation (root mean squared 
error) more scientific, if only because it reminds us of the formula that is used to calculate this value. To be fully 

transparent here, some authors distinguish SEM and RMSE based on the use of √𝑛 − 1 or √𝑛 in the calculation of 
the average error from the calculated mean of the observations. In light of the rapid convergence between the 
two, we think the distinction is purely academic and, hence, we treat the two concepts as being more or less the 
same. 
46 When simplifying expressions, it is easier to deal with quadratic or square root functions, as opposed to absolute 
values. This is probably the most important reason why scientific model builders and statisticians stick to the SEM 
or RMSE definition when calculating an average error from the mean. To be complete, one may also find a 
distinction between the MAD and MAE definitions but we also merge them for the sake of practicality. 
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One would expect, for example, some kind of explanation of the fact that the charge radius of electrons 

is actually supposed to be much larger than the charge radius of the target. Indeed, both the classical as 

well as the Compton radius of electron – about 2.8 fm and 386 fm respectively – are both much larger 

than the proton radius. Unfortunately, we have not seen any easy or comprehensible explanation of 

how these electron-proton scattering experiments account for that. Even the smallest electron radius 

(2.8 fm) is almost 3.5 times the estimated size of the proton!  

We must assume the answer to this obvious question is somewhere hidden in the rather abstruse 

arguments on the various form factors that are used in the methodologies and calculations. If our 

approach and numbers make sense, then we may get into those in the future.47 

 
47 We contacted the PRad team at JLAB through their spokesperson (Prof. Dr. Ashot Gasparian). Mr. Gasparian was 
kind enough to react almost immediately to our email, stating he thought “the approach and numbers were 
interesting” and that he would share them with the students and postdocs in the team. We look forward to future 
comments, based on which we may do further research within our own rather limited means and time. 


