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Preface 

 

The thesis investigates some strategies for solving Multi-Attribute Decision Making 

(MADM) and Multi-Attribute Group Decision Making (MAGDM) problems in 

neutrosophic environment. It consists of the following nine chapters. 

Chapter 1 describes a brief discussion on decision making problems in neutrosophic set 

environment. It presents some basic definitions and operations of neutrosophic sets, single 

valued neutrosophic sets, interval neutrosophic sets, bipolar neutrosophic sets and 

neutrosophic cubic sets. 

Chapter 2 proposes a new cross entropy measure in single-valued neutrosophic set 

environment, namely NS-cross entropy, and proves its basic properties. It also defines 

weighted NS-cross entropy measure and investigates its basic properties. It develops a novel 

MAGDM strategy that is free from the drawback of asymmetrical behavior and undefined 

phenomena. 

Chapter 3 proposes IN-cross entropy measure and proves its basic properties. It also 

develops weighted IN-cross entropy measure and investigates its basic properties. Based on 

the weighted IN-cross entropy measure, it develops a novel MAGDM strategy in interval 

neutrosophic environment. It solves an illustrative example of MAGDM to show the 

feasibility, validity and efficiency of the proposed MAGDM strategy. 

Chapter 4 proposes the score function and accuracy function for neutrosophic cubic sets 

and prove their basic properties. It also develops a strategy for ranking of neutrosophic cubic 

numbers based on the score function and accuracy function. In this chapter, it firstly 

develops a TODIM (Tomada de decisao interativa e multicritévio) in the neutrosophic cubic 

set (NC) environment, namely the NC-TODIM. It establishes a new NC-TODIM strategy 

for solving MAGDM in neutrosophic cubic set environment. It illustrates the proposed NC-

TODIM strategy for solving an MAGDM problem to show the applicability and 

effectiveness of the developed strategy. It also conducts sensitivity analysis to show the 



xii 
 

impact of ranking order of the alternatives for different values of the attenuation factor of 

losses for the proposed MAGDM strategy. 

Chapter 5 defines similarity measure for neutrosophic cubic sets and proves some of its 

basic properties. It presents a new MAGDM strategy with linguistic variables in 

neutrosophic cubic set environment. Finally, it presents a numerical example to demonstrate 

the usefulness and applicability of the proposed strategy. 

Chapter 6 proposes VIKOR strategy in neutrosophic cubic set environment, namely NC-

VIKOR. It first defines NC-VIKOR strategy in neutrosophic cubic set environment to 

handle MAGDM problems. Actually, it combines the VIKOR with neutrosophic cubic 

numbers to deal with MAGDM problems. Finally, it solves an MAGDM problem to show 

the feasibility, applicability and effectiveness of the proposed NC-VIKOR strategy. Further, 

it presents sensitivity analysis to show the impact of different values of the decision making 

mechanism coefficient on ranking order of the alternatives. 

Chapter 7 introduces a new cross entropy measure in a neutrosophic cubic set environment, 

namely, NC-cross entropy measure. It proves its basic properties. It also proposes weighted 

NC-cross entropy and investigates its basic properties. It develops a novel MADM strategy 

based on a weighted NC-cross entropy measure. To show the feasibility and applicability of 

the proposed MADM strategy, it solves an illustrative numerical example. 

Chapter 8 extends the VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) 

strategy to MAGDM with bipolar neutrosophic set environment. It first defines VIKOR 

strategy in bipolar neutrosophic set environment to handle MAGDM problems. It combines 

the VIKOR with bipolar neutrosophic numbers to deal with MAGDM. It solves an 

MAGDM problem in bipolar neutrosophic set environment. Further, it presents sensitivity 

analysis to show the impact of different values of the decision making mechanism 

coefficient on ranking order of the alternatives. 

Chapter 9 concludes the thesis with some future scope of research. 



 

Introduction Chapter 1 

1 
 

Chapter 1 

Introduction  

 

1.1 Decision making 

Multi-attribute decision-making (MADM) refers to a cognitive process that 

involves evaluating and classifying data to find and select the best alternative from a set 

of feasible alternative with respect to some  specific conflicting  criteria. Each MADM 

problem consists of four components namely: (1) Expert/ decision maker, (2) 

alternatives, (3) criteria, (4) weight of each criterion. When decision making problem 

involves multiple decision makers, it is called a multi attribute group decision making 

(MAGDM) problem. MADM and MAGDM are widely employed in the fields of 

economy, engineering, management systems, and so on. 

Decision making in every sphere of life has become the ultimate purpose of 

rational thinking of human being. In everywhere, human beings of every level have to 

make decision according to the demand of environment surrounding them. In the 

practical decision making context, decision making involves the application of elegant 

mathematical tools. 

We may encounter decision making situation, where we have information with 

uncertainty and hesitancy and indeterminacy. So MADM environments are different. So 

to deal with MADM problems in different environments, elegant mathematical tools 

need to be developed. There are two types of decision making environments that we can 

classify. There are: 

 MADM in exact environment/ crisp environment 

 MADM in uncertain environment 
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1.1.1 MADM in exact environment/ crisp environment 

MADM as a methodology officially has started since 1968 when simple additive 

weighting (SAW) strategy was introduced (Mac Crimon, 1968). Many MADM strategies 

have been developed in classical environment such as: Analytic hierarchy process (AHP) 

(Saaty, 1980), Technique for order preference by similarity to the ideal solution TOPSIS 

(Hwang & Yoon, 1981), ELimination Et ChoixTraduisant la REalité (ELECTRE) (Roy, 

1968), COPRAS (Zavadskas & Kaklauskas, 1996), ARAS (Zavadskas & Turskis, 2010), 

VIKOR (Opricovic, 1998), SWARA (Keršulienė et al., 2010), WASPAS (Zavadskas et 

al.,2012), MACBETH (Costa et al., 1994), PROMETHEE (Mareschal et al.,1984), 

MOORA (Brauers & Zavadskas, 2006), MULTIMOORA (Brauers & Zavadskas, 2010), 

etc. 

1.1.2 MADM in uncertain environment 

Three theories can be considered as the mathematical tools (Molodtsov, 1999) to 

deal with uncertainties, namely, theory of probability, theory of fuzzy sets ( Zadeh, 1965) 

and interval mathematics.  Fuzzy set (Zadeh, 1986), intuitionistic fuzzy set (Atanassov, 

1986) and neutrosophic set (1998) studied uncertainty in non- stochastic sense while 

probability theory treats stochastic uncertainty. Neutrosophic set, (Smarandache, 1998), 

generalization of fuzzy set and intuitionistic fuzzy set,   deals with uncertainty in terms 

of three independent membership functions namely, truth membership function, falsity 

membership function, and indeterminacy membership function. Dubois and Prade (1993) 

presented the correlation between fuzzy sets and probability theory, and established that 

fuzziness cannot be reduced to randomness. Similarly, neutrosophic fuzziness cannot be 

reduced to randomness. The concept of neutrosophic set enables formalization and 

reasoning of intangible internal characteristics, typically natural language-based and 

visual image information, as well as incomplete, indeterminate, inconsistent, unreliable, 

imprecise and vague performance and priority data.  Elwahsh et al. (2017) used the 

neutrosophic set for MANETs data case study. Further, Elwahsh et al. (2018) proposed a 

novel approaches for classifying MANETs attacks with a neutrosophic intelligent system 

based on genetic algorithm. Salama et al. (2014) employed neutrosophic set to design 

and implement of neutrosophic data operations based on object oriented programming. 

Salama, El-Ghareeb et al., (2014) developed some software programs for dealing with 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjH4Mue0LrbAhUJbisKHUvJDiwQFggtMAA&url=http%3A%2F%2Fijimt.org%2Fpapers%2F89-M474.pdf&usg=AOvVaw3ME2sTiZd5NADR0mSG9bJ2
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjH4Mue0LrbAhUJbisKHUvJDiwQFggtMAA&url=http%3A%2F%2Fijimt.org%2Fpapers%2F89-M474.pdf&usg=AOvVaw3ME2sTiZd5NADR0mSG9bJ2
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neutrosophic sets. Interval is another non-probabilistic uncertainty formulation employed 

in MADM, where decision makers’ preferences, criterion weights and performance value 

of alternatives are represented by the data ranges. In this thesis, neutrosophic set and its 

extension as well as neutrosophic hybrid sets such as interval neutrosophic sets (Wang et 

al., 2005), bipolar neutrosophic sets (Deli et al., 2015), neutrosophic cubic sets (Ali et al., 

2016) have been employed to deal with indeterminate, inconsistent and incomplete 

information for MADM. In this thesis, uncertain environment is restricted to 

neutrosophic environment, interval neutrosophic environment, bipolar neutrosophic 

environment and neutrosophic cubic set environment. 

Some classic MADM strategies such as TOPSIS (Biswas et al., 2016a), similarity 

measures (Pramanik et al., 2017, Mondal & Pramanik, 2015c), GRA (Biswas et al., 

2014a, 2014b), TODIM (Zhang et al., 2016), cross entropy (Ye, 2013, 15b), VIKOR 

(Bausys & Zavadskas, 2015) have been studied in neutrosophic set environment. In this 

study, we have extended some of the strategies to uncertain environment, especially 

neutrosophic set environment, interval neutrosophic set environment, bipolar 

neutrosophic set environment and neutrosophic cubic set environment. 

1.2 Preliminaries 

In this section, we discuss briefly about neutrosophic sets, interval valued 

neutrosophic sets, bipolar neutrosophic sets, neutrosophic cubic sets. 

1.2.1 Neutrosophic set (NS) (Smarandache, 1998) 

Definition 1.1 Let U be a space of points (objects) with a generic element in U 

denoted by u i.e. uU. Then a neutrosophic set A in U is characterized by truth-

membership function A(u)T , an indeterminacy membership function A(u)I and falsity-

membership function A(u)F . Here A(u)T , A(u)I , A(u)F are the functions from U to ]


0, 

1


[  i.e. A(u)T , A(u)I , A(u)F :U  ]


0, 1


[  that means A(u)T , A(u)I , A(u)F are the 

real standard or non-standard subset of ]


0, 1


[. Neutrosophic set can be expressed as 

A = {<u, ( A(u)T , A(u)I , A(u)F )>: uU}. Since   A(u)T , A(u)I , A(u)F are the subset of  

]


0, 1


[ , then the sum of A(u)T , A(u)I , A(u)F  is lies 
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A A A0 (u) (u) (u) 3T I F
    . 

Definition 1.2 The complement of neutrosophic set A denoted by 
cA and defined 

as 
cA = {< u, cA (u)T , cA (u)I , cA (u)F >: uU}, where cA (u)T = A(u)F , cA (u)I = {1


} - 

A(u)I , cA (u)F = A(u)T . 

Or, 

Another definition for complement of neutrosophic set as follows: 

cA = {< u, cA (u)T , cA (u)I , cA (u)F >: uU}, where cA (u)T = 
A

{ (u)} T1
  , 

cA (u)I = {1


} - A(u)I , cA (u)F = 
A

(u){ } F1
  . 

Definition 1.3 A neutrosophic set A1 is contained in another neutrosophic set A2 

i.e. A1  A2 iff A A1 2
(u) (u)T T , A A1 2

(u) (u)I I and A A1 2
(u) (u)F F ,  uU. 

Definition 1.4 Two neutrosophic sets A1 and A2 are equal iff A1  A2 and A2

A1i.e. A A1 2
(u) (u)T T , A A1 2

(u) (u)I I and A A1 2
(u) (u)F F , uU. 

Definition 1.5 The union of two neutrosophic sets R1 and R2 is a neutrosophic set 

R3 (say) written as A3 = A1A2. 

A3
(u)T = max { A1

(u)T , A2
(u)T }, A3

(u)I  = max A A1 2
{ (u), (u)}I I , A3

(u)F  = min

A A1 2
{ (u), (u)}F F , uU.  

Definition 1.6 The intersection of two neutrosophic sets A1 and A2 denoted by A4 

and written as A4 = A1A2 defined by A4
(u)T  = min { A1

(u)T , A2
(u)T }, A4

(u)I  = min 

A A1 2
{ (u), (u)}I I , A4

(u)F  = max A A1 2
{ (u), (u)}F F , uU. 

1.2.2 Single valued neutrosophic set (SVNS) (Wang et al., 2010) 

Definition 1.7 Let U be a space of points (objects) with a generic element in U 

denoted by u. A single valued neutrosophic set H in U is expressed by H = {< u, ( H(u)T , 

H(u)I , H(u)F )>, uU},where H(u)T , H(u)I , H(u)F : U [0, 1]. 
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Therefore for each uU, H(u)T , H(u)I , H(u)F [0, 1] and 

H H H0 (u) (u) (u) 3T I F    

Definition 1.8 The complement of single valued neutrosophic set A denoted by 

cA and defined as 
cA = {< u, cA (u)T , cA (u)I , cA (u)F >: uU}, where cA (u)T = A(u)F , 

cA (u)I = {1} - A(u)I , cA (u)F = A(u)T . 

Another definition for complement of single valued neutrosophic set as follows: 

cA = {< u, cA (u)T , cA (u)I , cA (u)F >: uU}, where cA (u)T = 
A

{1 (u)} T , cA (u)I

= {1} - A(u)I , cA (u)F = 
A
(u){1} F . 

Definition 1.9 A single valued neutrosophic set A1 is contained in another single 

valued neutrosophic set A2 i.e. A1  A2 iff A A1 2
(u) (u)T T , A A1 2

(u) (u)I I and 

A A1 2
(u) (u)F F ,  uU. 

Definition 1.10 Two single valued neutrosophic sets A1 and A2 are equal iff A1  

A2 and A2A1 i.e. A A1 2
(u) (u)T T , A A1 2

(u) (u)I I and A A1 2
(u) (u)F F ,  uU. 

Definition 1.11 The union of two single valued neutrosophic sets R1 and R2 is a 

neutrosophic set R3 (say) written as A3 = A1A2. 

A3
(u)T  = max { A1

(u)T , A2
(u)T }, A3

(u)I  = max A A1 2
{ (u), (u)}I I , A3

(u)F  = min 

A A1 2
{ (u), (u)}F F , uU.  

Definition 1.12 The intersection of two single valued neutrosophic sets A1 and 

A2 denoted by A4 and written as A4 = A1A2 defined by A4
(u)T  = min { A1

(u)T , 

A2
(u)T }, A4

(u)I  = min A A1 2
{ (u), (u)}I I , A4

(u)F  = max A A1 2
{ (u), (u)}F F , uU. 

Definition 1.13 

Let 1H  and 2H  be any two SVNSs. Then, operations are defined as: 

i. H H H H H H H H1 2 1 2 1 2 1 2 1 2
H H { (u) (u) (u). (u), (u). (u), (u). (u):}.T T T T I I F F     
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ii. 1 2H H 
 

H H H H H H H H H H1 2 1 2 1 2 1 2 1 2
{ (u). (u), (u) (u) (u). (u) , (u) (u) (u). (u)}T T I I I I F F F F   

 

iii. H H1 H 1 11
H { (u)) ,( (u)) ,( (u)) : 0}.1 (1 T I F

        

iv. 1 H H H1 1 1
H { (u)) , (u)) , (u)) : 0}.(T 1 (1 I 1 (1 F
          

1.2.3 Interval neutrosophic set (INS) (Wang et al., 2005) 

Definition 1.13 Assume that U be a space of points (objects) with generic 

elements u U. An INSs J in U is characterized by a truth-membership measure TJ(u), an 

indeterminacy-membership measure IJ(u), and a falsity-membership measure FJ(u), 

where, J J J(u) [ (u), (u)]T T T
  , J J J(u) [ (u), (u)]I I I

  , J J J(u) [ (u), (u)]F F F
  for all u in U. 

Therefore, a INS J can be expressed as J = {u, J J[ (u), (u)]T T
  , J J[ (u), (u)]I I

  , 

J J[ (u), (u)]F F
   | u∈U}. Where, J J(u), (u)T T

  , J J(u), (u)I I
  , J J(u), (u) [0,1]F F

   . 

Definition 1.14 Let 1J = {u, J J1 1
[ (u), (u)]T T

  , J J1 1
[ (u), (u)]I I

  , J J1 1
[ (u), (u)]F F

   | 

u∈U} and J2 = {u, J J2 2
[ (u), (u)]T T

  , J J2 2
[ (u), (u)]I I

  , J J2 2
[ (u), (u)]F F

   | u∈U} be any two 

INSs in U, then 1 2J J iff J J1 2
(u) (u),T T

 
J J1 2

(u) (u)T T
  , J J1 2

(u) (u)I I
  , 

J J1 2
(u) (u)I I

  , J J1 2
(u) (u)F F

  , J J1 2
(u) (u)F F

  for all u∈U. 

Definition 1.15 The complement c
J of an INS J = {u, J J[ (u), (u)]T T

  , 

J J[ (u), (u)]I I
  , J J[ (u), (u)]F F

   | u∈U}  is defined as follows: c
J = {u, JJ

[ (u), (u)]1 T 1 T
   , 

J J
[1 (u), (u)]1 II

  , 
J J

[ (u)](u),1 F1 F


  | u∈U}. 

Definition 1.16 Let 1J = {u, J J1 1
[ (u), (u)]T T

  , J J1 1
[ (u), (u)]I I

  , J J1 1
[ (u), (u)]F F

   | 

u∈U} and 2J = {u, J J2 2
[ (u), (u)]T T

  , J J2 2
[ (u), (u)]I I

  , J J2 2
[ (u), (u)]F F

   | u∈U} be any two 

INSs in U, then 1 2J J iff J J1 2
(u) (u),T T

 
J J1 2

(u) (u),T T
  J J1 2

(u) (u),I I
 

J J1 2
(u) (u),I I

 

J J1 2
(u) (u),F F

 
J J1 2

(u) (u)F F
  for all u∈U. 
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1.2.4 Bipolar neutrosophic set (BNS) (Deli et al., 2015) 

Definition 1.17 Let U be a space of points (objects) with a generic element in U 

denoted by u. A bipolar neutrosophic set H in U is defined as an object of the form 

H H H H H HH {u, T (u), I (u), F (u),T (u),T (u), F (u) :u U}         , 

where, H H HT (u), I (u),F (u):U [0,1]    and H H HT (u), I (u),F (u) :U [ 1,0]     . 

We denote H H H H H HH { u, T (u), I (u),F (u),T (u), I (u),F (u) | u U}         simply 

H = H H H H H HT ,I ,F ,T , I ,F       as a bipolar neutrosophic number (BNN). 

Definition 1.18 Let 1 1 1 1 1 11
{ u, (u), (u), (u), (u), (u), (u) | u U}TH I F T I F

         

and 2 2 2 2 2 2 2{ u, (u), (u), (u), (u), (u), (u) |u U}H T I F T I F
         be any two bipolar 

neutrosophic sets in U. Then 1 2H H iff 1 2(u) (u)T T
  , 1 2(u) (u)I I

  , 1 2(u) (u)F F
  and 

1 2(u) (u)T T
  , 1 2(u) (u)I I

  , 1 2(u) (u)F F
  for all u U.  

Definition 1.19 Let 1 1 1 1 1 11
{ u, (u), (u), (u), (u), (u), (u) :u U}TH I F T I F

         

and 2 2 2 2 2 2 2{u, (u), (u), (u), (u), (u), (u) :u U}H T I F T I F
        be any two bipolar 

neutrosophic sets in U. Then, 1 2H H iff 1 2(u) (u)T T
  , 1 2(u) (u)I I

  , 1 2(u) (u)F F
  and 

1 2(u) (u)T T
  , 1 2(u) (u)I I

  , 1 2(u) (u)F F
  for all u U.  

Definition 1.20 Let 1 1 1 1 1 1 1{u, (u), (u), (u), (u), (u), (u) |u U}H T I F T I F
         and 

2 2 2 2 2 2 2{u, (u), (u), (u), (u), (u), (u) | u U}H T I F T I F
         be any two bipolar neutrosophic sets 

in U. Then, their union is defined as follows: 

1 2 1 2 1 23 1 2

1 2 1 2 1 2

H (u) H (u) H (u) {u, max ( (u), (u)) ,min ( (u), (u)),min ( (u), (u)),T T I I F F

min ( (u), (u)), max ( (u), (u)),max ( (u), (u)) | u U}, for all u U.  T T I I F F

     

     

   

  
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Definition 1.21 Let 1 1 1 1 1 1 1{u, (u), (u), (u), (u), (u), (u) |u U}H T I F T I F
         and 

2 2 2 2 2 2 2{u, (u), (u), (u), (u), (u), (u) |u U}H T I F T I F
         be any two bipolar neutrosophic 

sets in U. Then, their intersection is defined as follows: 

1 2 1 2 1 24 1 2

1 2 1 2 1 2

H (u) H (u) H (u) {u, min ( (u), (u)) ,max ( (u), (u)),max ( (u), (u)),T T I I F F

max ( (u), (u)), min ( (u), (u)),min ( (u), (u)) |u U}for all u U. T T I I F F

     

     

   

  

 

Definition 1.22 Let 1 1 1 1 1 1 1{u, (u), (u), (u), (u), (u), (u) :u U}H T I F T I F
         be a 

bipolar neutrosophic set in U. Then the complement of 1H is denoted by 
c
1H and is 

defined by 

c
1 11 1 1 1 1

H {u, (u), (u),1 (u),{ 1} (u), (u), (u) :u U}1 T 1 I { 1} I { 1} FF T
               

for all u U.  

Definition 1.23 Let 1 1 1 1 1 11h , , , , ,T I F T I F
       and 2 2 2 2 2 22h , , , , ,T I F T I F

        

be any two BNNs in U. Then Hamming distance measure between h1 and h2 is denoted 

by 1 2D(h ,h ) and defined as follows: 

1 2 1 2 1 2 1 2 1 2 1 21 2

1
D(h ,h ) [ ]T T I I F F T T I I F F

6

                          (1.1) 

Definition 1.24 

In decision making situation cost type attribute and benefit type attribute may 

exist simultaneously. Assume that, ijh be a BNN to express the rating value of i-th 

alternative with respect to j-th attribute (cj). If cj belongs to the cost type attributes, then 

ijh should be standardized by employing the complement of BNN ijh . When the attribute 

cj belongs to benefit type attributes, ijh does not need to be standardized, we use the 

following formula of normalization as follows: 

*
ij ij ij ij ij ijijh {1} ,{1} ,{1} ,{ 1} ,{ 1} ,{ 1}T I F T I F
                  (1.2) 
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1.2.5 Neutrosophic cubic set (NCS) (Ali et al., 2016) 

Definition 1.25 Assume that U is a space of points (objects) with generic 

elements .Uu i   A NCS Q in U is a hybrid structure of INS and SVNS that can be 

expressed as follows: 

}.Uu|)u(F),u(I),u(T()],u(F),u(F[)],u(I),u(I[)],u(T),u(T[,u{Q iiQiQiQiQiQiQiQiQiQi    

Here, ( )]u(),u([ iQiQ TT


, )]u(),u([ iQiQ II


, )]u(),u([ iQiQ FF


) and )u(F),u(I),u(T( iQiQiQ  are INS and 

SVNS, respectively, in U. NCS can be simply presented as 

Q Q Q Q Q Q Q Q Q[ (u), (u)],[ (u), (u)],[ (u), (u)],(T (u), I (u),F (u)T T I I F F
       (1.3) 

Equation (1.3) represents neutrosophic cubic number (NCN). 

Definition 1.26 

Let Q Q Q1 i i i i i i iQ Q Q1 1 11 1 1
Q {u , [ (u ), (u )],[ (u ), (u )],[ (u ), (u )],T T I I F F

        

Q i Q i Q i i1 1 1
(T (u ), I (u ),F (u ) | u U}.  and

Q Q Q2 i i i i i i iQ Q Q2 2 22 2 2
Q {u , [ (u ), (u )],[ (u ), (u )],[ (u ), (u )],T T I I F F

      

Q i Q \ i Q i i2 2 2
(T (u ), I (u ),F (u ) | u U}   be any two NCSs in U. Then, 1 2Q Q iff

Q Qi i1 2
(u ) (u ),T T

  i iQ Q1 2
(u ) (u )T T

  , Q Qi i1 2
(u ) (u )I I

  , i iQ Q1 2
(u ) (u )I I

  , 

Q Qi i1 2
(u ) (u )F F

  , i iQ Q1 2
(u ) (u )F F

   and 

Q Q Q Q Q Qi i i i i i1 2 1 2 1 2
(u ) (u ), (u ) (u ), (u ) (u )T T I I F F    for all iu U.  

Definition 1.27 

Let 

Q Q Q1 i i i i i i i Q i Q i Q i iQ Q Q1 1 1 1 1 11 1 1
Q {u , [ (u ), (u )],[ (u ), (u )],[ (u ), (u )], (T (u ), I (u ),F (u ) | u U}.T T I I F F

        

and 

Q Q Q2 i i i i i i i Q i Q \ i Q i iQ Q Q2 2 2 2 2 22 2 2
Q {u , [ (u ), (u )],[ (u ), (u )],[ (u ), (u )], (T (u ), I (u ),F (u ) | u U}T T I I F F

        

 be any two NCSs [59] in U. Then 1 2Q Q iff Q Qi i1 2
(u ) (u ),T T

  i iQ Q1 2
(u ) (u )T T

  , 
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Q Qi i1 2
(u ) (u )I I

  , i iQ Q1 2
(u ) (u )I I

  , Q Qi i1 2
(u ) (u )F F

  , i iQ Q1 2
(u ) (u )F F

   and 

Q Q Q Q Q Qi i i i i i1 2 1 2 1 2
(u ) (u ), (u ) (u ), (u ) (u )T T I I F F    for all .Uu i   

Definition 1.28 

Assume that

Q Q Q Q Q Qi i i i i i i Q i Q i Q i iQ {u , [ (u ), (u )],[ (u ), (u )],[ (u ), (u )],(T (u ), I (u ),F (u ) | u U}T T I I F F
        

be any NCS in U. Then, complement c
Q  of Q is defined as follows: 

c
Q Q Q Qi i i i i

Q Qi i Q i Q i Q i i

Q {u , [ (u ), (u )],[ (u ), (u )],1 T 1 T 1 I 1 I

[ (u ),1 (u )], (1 T (u ),1 I (u ),1 F (u ) | u U}.1 F F

   

 

     

     
 

1.2.6 Neutrosophic crisp set (Salama & Smarandache, 2015) 

Definition 1.29 Assume that U is a non-empty fixed sample space. A neutrosophic crisp 

set B is an object having the form B =  B1, B2, B3   where B1, B2, B3 are subsets of U. 

Definition 1.30 

The object having the form B =  B1, B2, B3   is called:  

(i) A neutrosophic crisp set of type 1 if satisfying B1  B2 = , B1  B3 =   and B2  B3 

= . 

(ii) A neutrosophic crisp set of type 2 if satisfying B1  B2 = , B1  B3 = , B2  B3 =  

and B1  B2  B3 = U. 

(iii). A neutrosophic crisp set of type 3 if satisfying B1  B2  B3 =  and B1  B2  B3 

= U. 

1.2.7 Cross entropy measure 

Cross entropy measure is one of the best way to calculate the divergence of any 

variable from the priori one variable. Majumdar and Samanta (2014) defined an entropy 

measure and presented an MADM strategy in SVNS environment. Ye (2013) proposed 

cross entropy measure in SVNS environment. Ye (2015b) defined improved cross 

entropy measures for SVNSs and INSs.   Assume that H1 and H2 be any two SVNSs in U 

= { 1 2 3 nu ,u ,u ,...,u } . The single-valued cross-entropy of H1and H2 is denoted by CE 

(H1, H2), CE (H1, H2) satisfies the following four properties (Ye, 2013) such as: 
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i. 1 2CE (H , H ) 0 , iu U   

ii. 1 2CE (H , H ) 0 if and only if H Hi i1 2
(u ) (u ),T T

  i iH H1 2
(u ) (u )T T

  , 

H Hi i1 2
(u ) (u )I I

  , i iH H1 2
(u ) (u )I I

  , H Hi i1 2
(u ) (u )F F

  , i iH H1 2
(u ) (u )F F

  for all iu U  . 

iii. 
c c

1 2 1 2CE (H , H ) CE (H , H ) , iu U   

iv. 1 2 2 1CE (H , H ) CE(H , H ) , iu U   

1.2.8 Similarity measure 

Similarity measure is a vital topic in fuzzy set theory. Chen and Hsiao (1995) 

presented comparisons of similarity measures of fuzzy sets. Pramanik and Mondal 

(2015a) studied weighted fuzzy similarity measure based on tangent function for medical 

diagnosis. Hwang and Yang (2013) constructed a new similarity measure between 

intuitionistic fuzzy sets based on lower, upper and middle fuzzy sets. Mondal and 

Pramanik (2015a) developed tangent similarity measures in intuitionistic fuzzy 

environment to deal with medical diagnosis. Ren and Wang (2015) proposed similarity 

measures in interval- valued intuitionistic fuzzy environment and applied it to MADM 

problems. Baccour et al. (2013) presented survey of similarity measures for intuitionistic 

fuzzy sets.  Broumi and Smarandache (2013b) discussed several similarity measures of 

neutrosophic sets. Majumdar and Samanta (2014) introduced some measures of 

similarity and entropy of single valued neutrosophic sets. Aydogdu (2015a) proposed 

similarity and entropy measure of single valued neutrosophic sets. Mondal and Pramanik 

(2015c) extended the concept of intuitionistic tangent similarity measure to neutrosophic 

tangent similarity.  Biswas et al. (2015) studied cosine similarity measure with 

trapezoidal fuzzy neutrosophic numbers to deal with MADM problems. 

Aydogdu (2015b) also defined entropy and similarity measures of interval 

neutrosophic sets.Ye (2014a) proposed a similarity measures under interval neutrosophic 

domain using Hamming distances and Euclidean distances.  Mondal et al. (2018b) 

proposed hybrid binary logarithm similarity measure and established an MAGDM 

strategy in SVNS environment. Mondal et al. (2018a) proposed hyperbolic sine 

similarity measure and developed an MADM strategy in SVNS environment. 
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1.2.9 VIKOR strategy 

The VIKOR is a multi-criteria decision analysis strategy to solve a multi-criteria 

optimization problem. It focuses on ranking and selecting the best alternatives from a set 

of feasible alternatives in the presence of conflicting criteria for a decision problem. The 

compromise solution (Opricovic, 1998; Opricovic & Tzeng, 2004) is the closest to the 

ideal solution, and a compromise means an agreement established by mutual 

concessions. Using the Lp–metric, Opricovic and Tzeng (2007) defined 

   
1

pn p

pi j ij j j
j 1

L /  



          
1 p ;i 1,2,3,....,m.     

In the VIKOR strategy, 
1i

L (as Si) and
i

L


, (as Ri) are utilized to formulate 

ranking measure. The solution obtained by min Si reflects the maximum group utility 

(‘‘majority” rule), and the solution obtained by min Ri indicates the minimum individual 

regret of the “opponent”. 

Suppose that each alternative is evaluated by each criterion function. The 

compromise ranking is prepared by comparing the measure of closeness to the ideal 

alternative. The m alternatives are denoted as A1, A2, A3, ...,Am. For the alternative Ai, 

the rating of the j-th aspect is denoted by
ij

 , i.e. 
ij

  is the value of jth criterion 

function for the alternative Ai; n is the number of criteria. 

 

The compromise ranking algorithm of the VIKOR strategy is presented using the 

following steps: 

Step 1. Determine the best 
j

  and the worst 
j

 values of all criterion functions j 

=1, 2,..., n . If the 

j-th function represents a benefit then: 

j iji
max   , 

j iji
min    
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Step 2.  Compute the values Si and Ri ;i = 1, 2,..., m, by these relations: 

   
n

i j j ij j j
j 1

S w / ,  



      

   i j j ij j jj
R max w / ,        

Here, wj is the weight of the criterion that expresses its relative importance. 

Step 3. Compute the values Qi: i = 1, 2,...,m, using the following relation: 

        i i iQ S S / S S 1 R R / R R .            Here, i
i

S maxS  ,

i
i

S min S   

i
i

R max R  , i
i

R min R  . 

Here, v represents ‘‘the decision making mechanism coefficient” (or ‘‘the 

maximum group utility”). Here we consider v = 0.5. 

Step 4. Preference ranking order of the alternatives is done by sorting the values 

of S, Rand Q in decreasing order. 

Step 5. Determine compromise solution 

Obtain alternative 1A as compromise solution, which is ranked as the best by the 

measure Q (Minimum) if the following two conditions are satisfied: 

Condition 1.Acceptable stability:
2 1 1

Q(A ) Q(A )
(m 1)

 


, where 1A , 2A  are 

the alternatives with first and second position in the ranking list by Q ; m is the number 

of alternatives. 

Condition  2. Acceptable stability in decision making: Alternative 1A must also 

be the best ranked by S  or/and R. This compromise solution is stable within whole 

decision making process. 
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If one of the conditions is not satisfied, then a set of compromise solutions is 

proposed as follows: 

 Alternatives 1A and 2A are compromise solutions if only condition 2 is 

not satisfied, or 

 1A , 2A , 3A ,…, rA  are compromise solutions if condition 1 is not 

satisfied and mA  is decided by constraint m 1 1
Q(A ) Q(A )

(m 1)
 


for maximum m. 

1.3 Organization of the thesis 

The proposed thesis consists of nine chapters. 

Chapter 1: Introduction. 

Chapter 2: NS-cross entropy-based MAGDM under single-valued neutrosophic 

set environment 

Chapter 3: IN-cross entropy based MAGDM strategy in interval neutrosophic 

set environment 

Chapter 4: NC-TODIM-based MAGDM in a neutrosophic cubic set 

environment 

Chapter 5: Neutrosophic cubic MCGDM method based on similarity measure 

Chapter 6: NC-VIKOR based MAGDM strategy in neutrosophic cubic set 

environment 

Chapter 7: NC-cross entropy based MADM strategy in neutrosophic cubic set 

environment 

Chapter 8: VIKOR based MAGDM strategy in bipolar neutrosophic set 

environment 

Chapter 9: Conclusion. 
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1.4 Outline of the work 

The thesis investigates some methods for solving MADM and MAGDM 

problems in neutrosophic environment with following nine chapters. 

Chapter 1 describes a brief discussion on decision making problems in 

neutrosophic set environment. It presents some basic definitions and operations of 

neutrosophic sets, single valued neutrosophic sets, interval neutrosophic sets, bipolar 

neutrosophic sets and neutrosophic cubic sets. 

Chapter 2 proposes a new cross entropy measure in single-valued neutrosophic 

set (SVNS) environment, namely NS-cross entropy, and proves its basic properties. It 

also defines weighted NS-cross entropy measure and investigates its basic properties. It 

develops a novel MAGDM strategy that is free from the drawback of asymmetrical 

behaviour and undefined phenomena. 

Chapter 3 proposes IN-cross entropy measure and proves its basic properties. It 

also develops weighted IN-cross entropy measure and investigates its basic properties. 

Based on the weighted IN-cross entropy measure, it develops a novel MAGDM strategy 

in interval neutrosophic environment. It solves an illustrative example of MAGDM to 

show the feasibility, validity and efficiency of the proposed MAGDM strategy. 

Chapter 4 proposes the score and accuracy functions for neutrosophic cubic sets 

and prove their basic properties. It also develops a strategy for ranking of neutrosophic 

cubic numbers based on the score and accuracy functions. It firstly develops a TODIM in 

the neutrosophic cubic set environment, which call the NC-TODIM. It established a new 

NC-TODIM strategy for solving MAGDM in neutrosophic cubic set environment. It 

illustrates the proposed NC-TODIM strategy for solving an MAGDM problem to show 

the applicability and effectiveness of the developed strategy. It also conducts a sensitivity 

analysis to show the impact of ranking order of the alternatives for different values of the 

attenuation factor of losses for multi-attribute group decision making strategies. 

Chapter 5 defines similarity measure for neutrosophic cubic sets and proves 

some of its basic properties. It presents a new MADM strategy with linguistic variables 

in neutrosophic cubic set environment. Finally, it presents a numerical example to 

demonstrate the usefulness and applicability of the proposed strategy. 
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Chapter 6 proposes VIKOR strategy in neutrosophic cubic set environment, 

namely NC-VIKOR. It first defines NC-VIKOR strategy in neutrosophic cubic set 

environment to handle MAGDM problem, which means it combines the VIKOR with 

neutrosophic cubic number to deal with MAGDM problems. Finally, it solves an 

MAGDM problem using the newly proposed NC-VIKOR strategy to show the 

feasibility, applicability and effectiveness of the proposed strategy. Further, it presents 

sensitivity analysis to show the impact of different values of the decision making 

mechanism coefficient on ranking order of the alternatives. 

Chapter 7 introduces a new cross entropy measure in a neutrosophic cubic set 

(NCS) environment, which is call NC-cross entropy measure. It proves its basic 

properties. It also proposes weighted NC-cross entropy and investigates its basic 

properties. It develops a novel MADM strategy based on a weighted NC-cross entropy 

measure. To show the feasibility and applicability of the proposed MADM strategy, it 

solves an MADM problem. 

Chapter 8 extends the VIKOR strategy to MAGDM with bipolar neutrosophic 

set environment. It first defines VIKOR strategy in bipolar neutrosophic set environment 

to handle MAGDM problems, which means it combines the VIKOR with bipolar 

neutrosophic numbers to deal with MAGDM. Finally, it solves an MAGDM problem 

using the proposed VIKOR strategy in bipolar neutrosophic set environment. Further, it 

presents a sensitivity analysis to show the impact of different values of the decision 

making mechanism coefficient on ranking order of the alternatives. 

Chapter 9 concludes the thesis with some future scope of research. 
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Chapter 2 

 

NS-cross entropy-based MAGDM under single-
valued neutrosophic set environment 

 

2.1 Introduction 

Majumdar and Samanta (2014) defined an entropy measure and presented an 

MADM strategy in SVNS environment. Ye (2013) proposed cross entropy measure in 

the SVNS environment, which is not symmetric straight forward and bears undefined 

phenomena. To overcome the asymmetrical behavior of the cross entropy measure, Ye 

(2013) used a symmetric discrimination information measure for single-valued 

neutrosophic sets. Ye (2015b) defined improve cross entropy measures for SVNSs to 

overcome the drawbacks of undefined phenomena of the cross entropy measure (Ye, 

2013). 

The object of the chapter is to define an NS-cross entropy measure and prove its 

basic properties.It also defines a weighted NS-cross entropy measure in the SVNS 

environment and proves its basic properties. The proposed NS-cross entropy is 

straightforward symmetric. It also bears no undefined behaviour. This chapterdevelops a 

new MAGDM strategy based on weighted NS-cross entropy measure to solve MAGDM 

problems with unknown weight of the attributes and unknown weight of decision-

makers. 

The chapter is organized as follows: Section 2.2 proposes a new NS-cross 

entropy measure between two SVNSs and investigates its basic properties. It also defines 

a weighted NS-cross entropy measure and proves its basic properties. Section 

2.3develops a novel MAGDM strategy based on the proposed weighted NS-cross 

entropy with SVNS information. 

 

 

 

The content of this chapter is based on the paper published in“Information” 2018, 9, 37; 

doi:10.3390/info9020037. 
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In Section 2.4 an illustrative example is solved to demonstrate the applicability 

and efficiency of the developed MAGDM strategy under SVNS environment.Section 2.5 

presents comparative study and discussion. Section 2.6 offers conclusions and the future 

scope of research. 

 

2.2 NS-cross entropy measure 

In this section, we define a new single-valued neutrosophic cross-entropy measure 

for measuring the deviation of single-valued neutrosophic variables from an a priori one. 

 

Definition 2.1 NS-cross entropy measure 

Assume that H1and H2 be any two SVNSs in U = { 1 2 3 nu ,u ,u ,...,u } .Then, the single-

valued cross-entropy of H1 and H2 is denoted by CENS (H1, H2) and defined as follows: 

NS 1 2CE (H , H )  

n Hi iH H Hi i 21 2 1

2 2 2 2i 1

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T1
= 

2
1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u



  
   

  
           

 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
   

  
            

     (2.1) 

 

Example 2.1 Assume that H1= {u, (0.7, 0.3, 0.4)| u ∈U} and H2= {u, (0.6, 0.4, 0.2)| u 

∈U}. Using Equation (2.1), the cross entropy value of H1 and H2 is obtained as

NS 1 2CE (H , H )  = 0.707. 

Theorem 2.1 Single-valued neutrosophic cross entropy NS 1 2CE (H , H ) for any two 

SVNSs 1 2
H , H , satisfies the following properties: 

i. NS 1 2CE (H , H ) 0 , iu U   
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ii. NS 1 2CE  (H , H ) 0 if and only if H Hi i1 2
( ) ( )u uT T , H Hi i1 2

( ) ( )u uI I , 

H Hi i1 2
( ) ( )u uF F , iu U.   

iii. 
c c

NS 1 2 NS 1 2CE (H , H ) CE (H , H ) , iu U  . 

iv. 
NS 1 2 NS 2 1CE (H , H ) CE (H , H ) , iu U  . 

Proof: i.For all values of iu U , H i1
( ) 0uT  , H i2

( ) 0uT  , H Hi i1 2
( ) ( ) 0u uT T  , 

2

H i1
1 ( ) 0uT  , 

2

H i2
1 ( ) 0uT  , iH1

( )) 0(1 T u  , H i2
(1 ( )) 0uT  , 

Hi iH 21
( )) (1 ( )) 0(1 T u uT   , 

2

iH1
1 ( )) 0(1 T u  , 

2

iH2
1 ( )) 0(1 T u  . 

Then, 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
 

       
 

 

Similarly, 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

, and 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
 

       
 

 

Therefore, NS 1 2CE (H , H ) 0 . 

Hence complete the proof.☐ 

ii.
Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
 

       
 
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H Hi i1 2
( ) ( )u uT T 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

 

H Hi i1 2
( ) ( )u uI I  , and 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
 

       
 

 

HH i i21
( ) ( )F u uF  

Therefore, NS 1 2CE  (H , H ) 0 ,iff H Hi i1 2
( ) ( )u uT T H Hi i1 2

( ) ( )u uI I , 

H Hi i1 2
( ) ( )u uF F , iu U.   

Hence complete the proof.☐ 

iii. Now, we have 

c c
NS 1 2CE  (H , H )  

n Hi iH H Hi i21 1 2

2 2 22i 1

H Hi ii i 1 2HH 21

2 ( )) (1 ( ))(1 T 2 ( ) ( )u uT u uT T1
= 

2
1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 T T T(1 Tu u



  
    

  
          

Hi iH H Hi i21 1 2

2 2 22

H Hii i 1 2HH 21

2 ( )) (1 ( ))(1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 (u)1 ( )) 1 ( )) u(1 I I I(1 Iu u

 
   

  
 

      
 

 

Hi iH H Hi i21 1 2

2 2 22

H Hi ii i 1 2HH 21

2 ( )) (1 ( ))(1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 F F F(1 Fu u

 
    

  
           
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n Hi iH H Hi i 21 2 1

2 2 2 2i 1

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T1
= 

2
1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u



  
   

  
           

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

 
   

  
            



Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

SN 1 2

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

CE  (H , H )

Therefore, 
c c

NS 1 2 NS 1 2CE (H , H ) CE  (H , H ) . 

Hence complete the proof.☐ 

iv. Since, 

H H H Hi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T   , H H H Hi i i i1 2 2 1

( ) ( ) ( ) ( )u u u uI I I I   , 

H H H Hi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F   , 

      H H Hi i i iH 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 T u u u uT T T , 

      H H H Hi i i i1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I , 

      H H Hi i i iH 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 F u u u uF F F ,  we have 

2 2 2 2
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2 2 2 2

H H Hi i i iH 2 2 11
1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))(1 F u u u uF F F         

,  iu U.  

Therefore,
NS 1 2 NS 2 1CE (H , H ) CE (H , H ) . 

Hence complete the proof. ☐ 

Definition 2.2 Weighted NS-cross entropy measure 

We consider the weight wi(i = 1, 2, ..., n) for the element ui(i = 1, 2, .., n) with the 

conditions 


 
n

i i
i 1

w [0,1]and w 1. Then the weighted cross entropy between SVNSs H1 

and H2is defined as: 


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1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

     (2.2) 

Theorem 2.2 

Single-valued neutrosophic weighted NS-cross-entropy (defined in Equation (2.2)) 

satisfies the following properties: 

i. 
w
NS 1 2CE (H , H ) 0 , iu U  . 

ii. 
w
NS 1 2CE (H , H ) 0 , if and only if H Hi i1 2

( ) ( )u uT T H Hi i1 2
( ) ( )u uI I , 

H Hi i1 2
( ) ( )u uF F , iu U.   

 

iii. 
w w c c

1 2NS 1 2 NSCE (H , H ) CE  ( , )H H , iu U  . 

iv. 
w w
NS 1 2 NS 2 1CE (H , H )  CE (H , H ) , iu U  . 
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Proof. i. For all values of iu U ,  H i1
( ) 0uT  , H i2

( ) 0uT  , H Hi i1 2
( ) ( ) 0u uT T  , 

2

H i1
1 ( ) 0uT  , 

2

H i2
1 ( ) 0uT  , iH1

( )) 0(1 T u  , H i2
(1 ( )) 0uT  , 

Hi iH 21
( )) (1 ( )) 0(1 T u uT   , 

2

iH1
1 ( )) 0(1 T u  , 

2

iH2
1 ( )) 0(1 T u  , then 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
 

       
 

 

Similarly, 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

and

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
 

       
 

. 

Since,
n

i i
i 1

w [0,1]and w 1


  , therefore, 
w
NS 1 2CE (H , H ) 0 . 

Hence complete the proof.☐ 

ii. Since, 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
 

       
 

 

H Hi i1 2
( ) ( )u uT T  , 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

, 

H Hi i1 2
( ) ( )u uI I  , 
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Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
 

       
 

HH i i21
( ) ( )F u uF and

n

i i
i 1

w [0,1], w 1


  , iw 0 . Therefore, w
NS 1 2CE (H , H ) 0

iff H Hi i1 2
( ) ( )u uT T , H Hi i1 2

( ) ( )u uI I , H Hi i1 2
( ) ( )u uF F , iu U.   

Hence complete the proof.☐ 

iii. Now, we have 



  
    

  
          

w c c
NS 1 2

n Hi iH H Hi i21 1 2
i

2 2 22i 1

H Hi ii i 1 2HH 21

CE  (H , H ) 

2 ( )) (1 ( ))(1 T 2 ( ) ( )u uT u uT T1
= w

2
1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 T T T(1 Tu u

 
   

  
 

      
 

21 1 2

2 2 22

1 221

2 ( )) (1 ( ))(1 2 ( ) ( )

1 ( ) 1 ( )1 ( )) 1 ( ))(1 (1

Hi iH H Hi i

H Hii iHH

I u uI u uI I

uuI I IIu u

 

 
    

  
           

21 1 2

2 2 22

1 221

2 ( )) (1 ( ))(1 2 ( ) ( )

1 ( ) 1 ( )1 ( )) 1 ( ))(1 (1

Hi iH H Hi i

H Hi ii iHH

F u uF u uF F

u uF F FFu u

 



  
   

  
           

n Hi iH H Hi i 21 2 1
i

2 2 2 2i 1

H Hi i i i1 2 HH 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T1
= w

2
1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u
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 
  

  
 

       
 

Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i1 2 HH 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
   

  
            



Hi iH H Hi i 21 2 1

2 2 2 2

H Hi i i i1 2 HH 21

w
NS 1 2

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

CE  (H , H )

Therefore, w w
NS 1 2 NS 1 2CE  (H , H ) CE  (H , H )c c

. 

Hence complete the proof.☐ 

iv.Since H H H Hi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T   , H H H Hi i i i1 2 2 1

( ) ( ) ( ) ( )u u u uI I I I   , 

H H H Hi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F   , 

H H Hi i i iH 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 T u u u uT T T      , 

H H H Hi i i i1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I       , 

H H Hi i i iH 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 F u u u uF F F      ,  

we obtain, 

2 2 2 2

H H H Hi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T       , 

2 2 2 2

H H H Hi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uI I I I       , 

2 2 2 2

H H H Hi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uF F F F       , 

2 2 2 2

H H Hi i i iH 2 2 11
1 ( )) 1 (1 ( )) 1 ( ( ) ) 1 (1 ( )) ,(1 T u u u uT T T         

2 2 2 2

H H H Hi i i i1 2 2 1
1 (1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( )) ,u u u uI I I I            

2 2 2 2

H H Hi i i iH 2 2 11
1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))(1 F u u u uF F F         

, iu U.   
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and 
n

i i
i 1

w [0,1], w 1


  . 

Therefore, w w
NS 1 2 NS 2 1CE  (H , H )  CE  ( H , H ) . 

Hence complete the proof. ☐ 

 

2.3 MAGDM Strategy using the proposed NS-cross entropy 

measure in SVNS environment 

In this section, we develop a new MAGDM strategy using the proposed NS-cross 

entropy measure. 

Description of the MAGDM Problem 

Assume that 1 2 3 mA {A ,A ,A ,...,A }  and 1 2 3 nG {G ,G ,G ,...,G }  be the discrete 

set of alternatives and attributes respectively and 1 2 3 nW {w ,w ,w ,...,w }  be the 

weight vector of attributes jG (j = 1, 2, 3, …,n), where jw 0  and
n

j
j 1

w 1


 . Assume 

that 1 2 3E {E ,E ,E ,...,E } ρ  be the set of decision-makers who are employed to evaluate 

the alternatives. The weight vector of the decision-makers kE (k 1,2,3,..., ) ρ  is denoted 

as 1 2 3{ , , ,..., } ρλ λ λ λ λ , where k 0λ and


 k
k 1

1
ρ

λ . 

Now, we describe the steps of the proposed MAGDM strategy (See Figure 2.1.). 

Step 1. Formulate the decision matrices 

For MAGDM with SVNSs information, the rating values of the alternatives 

iA (i 1,2,3,...,m)  based on the attribute jG ( j 1,2,3,...,n)  provided by the k-th 

decision-maker can be expressed in terms of single valued neutrosophic numbers as 

 k k kk
ij ij ij ijT ,I ,Fa  (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ). We present 

these rating values of alternatives provided by the decision-makers in matrix form as 

follows: 
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1 2 n

k k k
11 12 1n1

k k k k
21 22 2n2

k k k
m1 m2 mnm

     G G ... .G

A ... a a a

M A a a a

. . ... .

A ...a a a

 
 
 
 


 
 
 
 
 

            (2.3) 

Step 2. Formulate priori/ideal decision matrix 

In the MAGDM, the a priori decision matrix has been used to select the best 

alternatives among the set of collected feasible alternatives. In the decision-making 

situation, we use the following decision matrix as a priori decision matrix. 

1 2 n

* * *
11 12 1n1

* * *
21 22 2n2

* * *
m1 m2 mnm

     G G ... .G

A ... a a a

P A a a a

. . ... .

A ...a a a

 
 
 
 


 
 
 
 
 

          (2.4) 

where, 
k k k*

ij ij ij ij
i ii

max(T ),min(I ),min( F )a     for benefit attributes and 

k k k*
ij ij ij ij

i i i
min(T ),max(I ),max( F )a   for cost  attributes(i = 1, 2, 3, …, m; j = 1, 2, 3, …, 

n; k = 1, 2, 3, …, ). 

Step 3. Determinate the weight of decision-makers 

To determine the decision-makers’ weights, we introduce a model based on the 

NS-cross entropy measure. The collective NS-cross entropy measure between 
kM and P 

(Ideal matrix) is defined as follows: 

 
m

c k k
i iNS NS

i 1

1
( ,P) ( ( ),P( )CE M CE M A A

m 

                                                         (2.5) 

where,  
n

k k
i i iNS j jNS i

j 1
( ( ),P( ) CE ( ( ( )), ( )))P(ACE M M G GA A A



   

Now, we introduce the following weight model of the decision-makers:

 

 

c k
NS

K
c k
NS

k 1

1 ( ,P)CE M

1 ( ,P)CE M






ρ

λ            (2.6) 
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where, K0 λ 1   and K
k 1

1



ρ

λ  for k = 1, 2, 3, …, . 

Step 4. Formulate the weighted aggregated decision matrix 

For obtaining one group opinion, we aggregate all the individual decision matrices (
kM ) 

to an aggregated decision matrix (M) using single valued neutrosophic weighted 

averaging (SVNWA) operator  (Ye, 2014b)as follows:  

 1 2 3
ij ij ij ijija SVNSWA ( , , ,..., )a a a a

ρ
λ  

1 2 3
1 ij 2 ij 3 ij ij( a a a ... a )   

ρ
ρλ λ λ λ = k k kk k k

ij ij ij
k 1 k 1 k 1

1 (1 T ) , (I ) , (F )
  

     
ρ ρ ρ

λ λ λ     (2.7) 

Therefore, the aggregated decision matrix is defined as follows: 

1 2 n

1 11 12 1n

2 21 22 2n

m m1 m2 mn

     G G ... .G

A a a ... a

M A a a a

. . ... .

A a a ... a

 
 
 
 
 
 
 
 

            (2.8) 

where, ij ij ij ija T ,I ,F  , (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ) 

Step 5. Determinate the weight of attributes 

To find the weight of attributes, we introduce a model based on the NS-cross 

entropy measure. The collective NS-cross entropy measure between M (Weighted 

aggregated decision matrix) and P (Ideal matrix) for each attribute is defined as: 

 
m

j
i iNSNS j j

i 1

1
(M,P) (M( (G )),P( (G ))CE CE A A

m 

         (2.9) 

where, i = 1, 2, 3, …, m; j= 1, 2, 3, …, n. 

Now, we define a weight model for attributes as follows: 

 

 

j
NS

j n
j
NS

J 1

1 (M,P)CE
w

1 (M,P)CE







                   (2.10) 

where, j0 w 1   and 
n

j
j 1

w 1


  for j = 1, 2, 3, …, n. 
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Step 6. Calculate the weighted NS-cross entropy measure 

Using Equation (2.2), we calculate the weighted cross entropy value between 

weighted aggregated matrix and priori matrix. The cross entropy values can be presented 

in matrix form as follows: 

 
 
 
 

  
 
 
 
 

w
NS 1

w
NS 2

NS w
CE

w
NS m

CE  (A )

CE  (A )

M ...............

.................

CE  (A )

                                                                        (2.11) 

Step 7. Rank the priority 

Smaller value of the cross entropy reflects that an alternative is closer to the ideal 

alternative. Therefore, the preference priority order of all the alternatives can be 

determined according to the increasing order of the cross entropy values 
w
NS iCE (A ) (i = 

1, 2, 3, …,m).The smallest cross entropy value indicates the best alternative and the 

greatest cross entropy value indicates the worst alternative. 

Step 8. Select the best alternative 

From the preference rank order (from step 7), we select the best alternative. 

 

2.4 Illustrative example 

In this section, we solve an illustrative example of MAGDM adapted from (He & 

Liu, 2013) to reflect the feasibility, applicability and efficiency of the proposed strategy 

under the SVNS environment. 

Now, we use the example (He & Liu, 2013)for cultivation and analysis. A venture 

capital firm intends to make an evaluation and selection of the best enterprise from the 

five enterprises (alternatives) with the investment potential 

The alternatives are: 

(1) Automobile company (A1) 

(2) Military manufacturing enterprise (A2) 



 

NS-cross entropy-based MAGDM under single-valued neutrosophic set environment  Chapter 2 

30 
 

 

Figure 2.1 Decision-making procedure of the proposed MAGDM strategy
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(3) TV media company (A3) 

(4) Food enterprises (A4) 

(5) Computer software company (A5) 

The four attributes are: 

(1) Social and political factor (G1) 

(2) The environmental factor (G2)  

(3) Investment risk factor (G3) 

(4) The enterprise growth factor (G4). 

The investment firm makes a panel of three decision-makers. 

Step 1. Formulate the decision matrices 

We represent the rating values of alternatives iA  (i = 1, 2, 3, 4, 5) with respect to the 

attributes jG (j = 1, 2, 3, 4) provided by the decision-makers kE  (k = 1, 2, 3) in matrix 

form as follows: 

Decision matrix for decision-maker 1E  

1 2 3 4

1

1 2

3

4

     G G G G

A (0.9,0.5,0.4) (0.7,0.4,0.4) (0.7,0.3,0.4) (0.5,0.4,0.9)

A (0.7,0.2,0.3) (0.8,0.4,0.3) (0.9,0.6,0.5) (0.9,0.1,0.3)
M

A (0.8,0.4,0.4) (0.7,0.4,0.2) (0.9,0.7,0.6) (0.7,0.3,0.3)

A (0.5,0.8,0.7) (0.6,0.



5

3,0.4) (0.7,0.2,0.5) (0.5,0.4,0.7)

A (0.8,0.4,0.3) (0.5,0.4,0.5) (0.6,0.4,0.4) (0.9,0.7,0.5)

 
 
 
 
 
 
 
 
 
 

   (2.12) 

 

Decision matrix for decision-maker 2E  

1 2 3 4

1

2 2

3

4

     G G G G

A (0.7,0.2,0.3) (0.5,0.4,0.5) (0.9,0.4,0.5) (0.6,0.5,0.3)

A (0.7,0.4,0.4) (0.7,0.3,0.4) (0.7,0.3,0.4) (0.6,0.4,0.3)
M

A (0.6,0.4,0.4) (0.5,0.3,0.5) (0.9,0.5,0.4) (0.6,0.5,0.6)

A (0.7,0.5,0.3) (0.6,0.



5

3,0.6) (0.7,0.4,0.4) (0.8,0.5,0.4)

A (0.9,0.4,0.3) (0.6,0.4,0.5) (0.8,0.5,0.6) (0.5,0.4,0.5)

 
 
 
 
 
 
 
 
 
 

   (2.13) 
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Decision matrix for decision-maker 3E  

1 2 3 4

1

3 2

3

4

     G G G G

A (0.7,0.2,0.5) (0.6,0.4,0.4) (0.7,0.4,0.5) (0.9,0.4,0.3)

A (0.6,0.5,0.5) (0.9,0.3,0.4) (0.7,0.4,0.3) (0.8,0.4,0.5)
M

A (0.8,0.3,0.5) (0.9,0.3,0.4) (0.8,0.3,0.4) (0.7,0.3,0.4)

A (0.9,0.3,0.4) (0.6,0.



5

3,0.4) (0.5,0.2,0.4) (0.7,0.3,0.5)

A (0.8,0.3,0.3) (0.6,0.4,0.3) (0.6,0.3,0.4) (0.7,0.3,0.5)

 
 
 
 
 
 
 
 
 
 

            (2.14) 

Step 2. Formulate priori/ideal decision matrix 

A priori/ideal decision matrix  

1 2 3 4

1

2

3

4

     G G G G

A (0.9,0.2,0.3) (0.7,0.4,0.4) (0.9,0.3,0.4) (0.9,0.4,0.3)

A (0.7,0.2,0.3) (0.9,0.3,0.3) (0.9,0.3,0.3) (0.9,0.1,0.3)
P

A (0.8,0.3,0.4) (0.9,0.3,0.2) (0.9,0.3,0.4) (0.7,0.3,0.3)

A (0.9,0.3,0.3) (0.6,0.3



5

,0.4) (0.7,0.2,0.4) (0.7,0.3,0.4)

A (0.9,0.3,0.3) (0.6,0.4,0.3) (0.8,0.3,0.4) (0.9,0.3,0.5)

 
 
 
 
 
 
 
 
 
 

   (2.15) 

Step 3. Determine the weight of decision-makers 

Using Equations (2.5) and (2.6), we determine the weights of the three decision-

makers as follows: 

1

(1 0.9)
λ 0.33

3.37


  , 2

(1 1.2)
λ 0.25

3.37


  , 1

(1 .07)
λ 0.42

3.37


  . 

Step 4. Formulate the weighted aggregated decision matrix 

Using Equation (2.7), the weighted aggregated decision matrix is presented as 

follows: 

                             Weighted Aggregated decision matrix 

1 2 3 4

1

2

3

4

     G G G G

A (0.8,0.3,0.4) (0.6,0.4,0.4) (0.8,0.4,0.4) (0.7,0.4,0.5)

A (0.7,0.3,0.4) (0.8,0.3,0.4) (0.8,0.4,0.4) (0.8,0.2,0.3)
M

A (0.8,0.4,0.4) (0.8,0.3,0.3) (0.9,0.5,0.5) (0.7,0.3,0.4)

A (0.7,0.5,0.5) (0.6,0.3



5

,0.4) (0.6,0.2,0.4) (0.7,0.4,0.5)

A (0.8,0.4,0.4)(0.6,0.4,0.4) (0.7,0.4,0.4) (0.8,0.5,0.5)

 
 
 
 
 
 
 
 
 
 

    (2.16) 
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Step 5. Determinate the weight of the attributes 

Using Equations (2.9) and (2.10), we determine the weight of the attributes as 

follows: 

 
1

1 0.26
w 0.16

25


  ,

 
2

1 0.11
w 0.37

25


  ,

 
3

1 0.20
w 0.20

25


  ,

 
4

1 0.15
w 0.27.

25


   

Step 6. Calculate the weighted SVNS cross entropy matrix 

Using Equation (2.2) and weight of attributes, we calculate the weighted NS-cross 

entropy values between ideal matrix and weighted aggregated decision matrix. 

NS w
CE

0.195

0.198

M 0.168

0.151

0.184

 
 
 
 
 
 
 
 

         (2.17) 

Step 7. Rank the priority 

The cross entropy values of alternatives are arranged in increasing order as follows: 

0.151 < 0.168 < 0.184 < 0.195 < 0.198. 

Alternatives are then preference ranked as follows:A4 > A3> A5> A1> A2. 

Step 8. Select the best alternative 

From step 7, we identify that A4 is the best alternative. Hence, Food enterprises (A4) 

is the best alternative for investment. 

In Figure 2.2, we draw a bar diagram to represent the cross entropy values of 

alternatives which shows that A4 is the best alternative according our proposed strategy. 

 

Figure 2.2 Bar diagram of alternatives versus weighted NS-cross entropy values 

of alternatives. 
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In Figure 2.3, we represent the relation between cross entropy values and acceptance 

value of alternatives. The range of acceptance level for five alternatives is taken by five 

points. The high acceptance level of alternatives indicates the best alternative for 

acceptance and low acceptance level of alternative indicates the worst acceptance 

alternative. 

 

Figure 2.3 Relation between weighted NS-cross entropy values and acceptance level 

line of alternatives. 

We see from Figure 2.3 that alternative A4 has the smallest cross entropy value 

and the highest acceptance level. Therefore A4 is the best alternative for acceptance. 

Figure 2.3 indicates that alternative A2 has the highest cross entropy value and the lowest 

acceptance value that means A2 is the worst alternative. Finally, we conclude that the 

relation between cross entropy values and acceptance value of alternatives is opposite in 

nature. 

2.5 comparative study and discussion 

In literature only two MADM strategies based on cross entropy (Ye, 2013, 

2015b) have been proposed in SVNS environment. MADGM strategy based on cross 

entropy is yet to appear.  So the proposed MAGDM is novel and non-comparable with 

the existing cross entropy under SVNS environment. 

i. The MADM strategies (Ye, 2013, 2015b) are not applicable for MAGDM 

problems. The proposed MAGDM strategy is free from such drawbacks. 
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ii. Ye (2013) proposed cross entropy that does not satisfy straightforwardlythe 

symmetrical property and is undefined for some situations but the proposed 

strategy satisfies symmetric property and is free from undefined phenomenon. 

iii. The strategies (Ye, 2013, 2015b) cannot deal with the unknown weight of the 

attributes whereas the proposed MADGM strategy can deal with the unknown 

weight of the attributes 

iv. The strategies (Ye, 2013, 2015b) are not suitable for dealing with the 

unknown weight of decision-makers, whereas the essence of the proposed 

NS-cross entropy-based MAGDM is that it is capable of dealing with the 

unknown weight of the decision-makers. 

2.6 Conclusion 

In this chapter, we have defined a novel cross entropy measure in SVNS 

environment. The proposed cross entropy measure in SVNS environment is free from the 

drawbacks of asymmetrical behaviour and undefined phenomena. It is capable of dealing 

with the unknown weight of attributes and the unknown weight of decision-makers. We 

have proved the basic properties of the NS-cross entropy measure. We also defined 

weighted NS-cross entropy measure and proved its basic properties. Based on the 

weighted NS-cross entropy measure, we have developed a novel MAGDM strategy to 

solve neutrosophic MAGDM problems. We have at first proposed a novel MAGDM 

strategy based on NS-cross entropy measure with technique to determine the unknown 

weight of attributes and the unknown weight of decision-makers.  

Other existing cross entropy measures (Ye, 2013, 2015b) can deal only with the 

MADM problem with single decision-maker and known weight of the attributes. So in 

general, our proposed NS-cross entropy-based MAGDM strategy is not comparable with 

the existing cross-entropy-based MADM strategies (Ye, 2013, 2015b) under the single-

valued neutrosophic environment.  

Finally, we solve an MAGDM problem to show the feasibility, applicability and 

efficiency of the proposed MAGDM strategy.  
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The proposed NS-cross entropy-based MAGDM can be applied in teacher 

selection, pattern recognition, weaver selection, medical treatment selection options, and 

other practical problems. In future study, the proposed NS-cross entropy-based MAGDM 

strategy can be also extended to neutrosophic crisp set environment (Salama & 

Smarandache, 2015; 2016) and the interval neutrosophic set environment (Wang et al., 

2005). 
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Chapter 3 

 

IN-cross entropy based MAGDM strategy in 
interval neutrosophic set environment  

 

3.1 Introduction 

Wang et al. (2005) introduced interval neutrosophic set (INS) considering truth 

membership, indeterminate membership and falsity membership as interval number in 

[0, 1]. Broumi and Smarandache (2013a) defined correlation coefficient of INSs and 

proved its basic properties. Zhang et al.(2015) defined correlation coefficient for interval 

neutrosophic numbers (INNs) and applied it MAGDM problems.  Zhang et al. (2016) 

presented an outranking strategy for MADM in INS environment. Recently, Huang et al. 

(2017) employed VIKOR strategy to solve MAGDM problem with INN. Ye (2014a) 

defined similarity measure in INS environmentto solve MADM problem. Pramanik and 

Mondal (2015d) extended the single valued neutrosophic grey relational analysis strategy 

to interval neutrosophic environment to deal with MADM problem. Aiwu et al. (2015) 

proposed an MADM strategy based on generalized weighted aggregation operator with 

INSs. Zhang et al. (2014) proposed an MADM strategy based on two interval 

neutrosophic number aggregation operators.Ye (2015b) defined an improved cross 

entropy measure for INSsand employed it to solve MADM problem. Tian et al. (2015) 

proposed a cross entropy measure with INSs and TOPSIS for solving MADM problems. 

 

 

 

The content of this chapter is based on the paper published in“Neutrosophic Sets and Systems” 18, 43-

57, 2017. 
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Sahin (2017) defined two cross entropy measures with INSs based on fuzzy cross 

entropy measure and single valued neutrosophic cross entropy measure for solving 

MADM problem. Sahin(2017), Ye (2015b), Tian et al. (2015) proposed cross entropy 

measures under the interval-valued neutrosophic set environment, which are suitable 

only for single decision maker. So, multiple decision makers cannot participate in their 

strategies in (Tian et al., 2015; Ye, 2015b; Sahin, 2017). 

In this chapter we define IN-cross entropy measure in INS environment and prove 

its basic properties. The proposed IN-cross entropy measure is straightforward 

symmetric. We define a new weighted IN-cross entropy measure in the INS environment 

and prove its basic properties. It is straightforward symmetric. In this chapter, we 

develop a new MAGDM strategy based on weighted IN cross entropy measure to solve 

MAGDM problems. Also, we illustrate the proposed strategy by solving a numerical 

MAGDM problem. 

The chapter unfolds as follows: Section 3.2 presents the definition of proposed IN-cross 

entropy measure, weighted IN-cross entropy measure and their basic properties. Section 

3.3 devotes to develop a MAGDM strategy with proposed weighted IN-cross entropy 

measure. Section 3.4 solves an MAGDM problem to show the feasibility, validity and 

efficiency of the proposed strategy. Section 3.5 presents conclusion and future scope of 

research. 

 

3.2 IN-cross-entropy measure 

In this section, we define a new interval neutrosophic cross-entropy measure for 

measuring the deviation of interval neutrosophic variables from an a priori one. 

Definition 3.1 IN-cross-entropy measure 

Assume that J1and J2 be any two INSs in U = {
1 2 3 nu ,u ,u ,...,u } .  Then, the interval 

neutrosophic cross-entropy measure of J1and J2 is denoted by CEIN (J1, J2) and defined as 

follows:  
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      (3.1) 

 

Theorem 3.1 

Interval-valued neutrosophic cross entropy 
IN 1 2CE (J , J ) for any two INSs 1 2J , J of U, 

satisfies the following properties: 

i. IN 1 2CE (J , J ) 0 , iu U.   

ii. IN 1 2CE (J , J ) 0 if and only if J Ji i1 2
(u ) (u ),T T

  i iJ J1 2
(u ) (u )T T

  , J Ji i1 2
(u ) (u )I I

  , 

i iJ J1 2
(u ) (u )I I

  , J Ji i1 2
(u ) (u )F F

  , i iJ J1 2
(u ) (u )F F

  for all iu U.   
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2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
 

        
 

 

J Ji i1 2
( ) ( )u uF F

    
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i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
  

  
 

        
 

 

i iJ J1 2
( ) ( )u uF F

    

So, 
IN 1 2CE (J , J ) 0 if and only if J Ji i1 2

(u ) (u ),T T
  i iJ J1 2

(u ) (u )T T
  , J Ji i1 2

(u ) (u )I I
  , 

 i iJ J1 2
(u ) (u )I I , J Ji i1 2

(u ) (u )F F
  , i iJ J1 2

(u ) (u )F F
  for all iu U.   

Hence complete the proof.☐. 

iii. We have,

c c
IN 1 2

Ji iJ J Ji i21 1 2
n

2 2 22
i 1 J Ji iJ i i 1 2J1 2

CE  (J , J )

2 ( ( )) (1 ( ))1 T 2 ( ) ( )u uT u uT T
1

= 
1 ( ) 1 ( )4 1 (1 ( )) 1 ( ( )) u u1 T T Tu uT

   

  


  
    
   
  

       
 




i i i iJJ J J21 1 2

2 2 22

i ii i J JJ J 1 21 2

2 ( ( )) (1 ( ))1 T 2 ( ) ( )u uT u uT T

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 T u uT Tu uT

   

  

 
   

  
 

       
 

 

Ji iJ J Ji i21 1 2

2 2 22

J Ji iJ i i 1 2J1 2

2 ( ( )) (1 ( ))1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 I I Iu uI

   

  

 
   

  
 

       
 

 

i i i iJJ J J21 1 2

2 2 22

i ii i J JJ J 1 21 2

2 ( ( )) (1 ( ))1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 I u uI Iu uI

   

  

 
   

  
 

       
 

 

Ji iJ J Ji i21 1 2

2 2 22

J Ji iJ i i 1 2J1 2

2 ( ( ) ) (1 ( ))1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 F F Fu uF

   

  

 
   

  
       
 

 

i i i iJJ J J21 1 2

2 2 22

i ii i J JJ J 1 21 2

2 ( ( ) ) (1 ( )) 2 ( ) ( )1 F u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 F u uF Fu uF

   

  

 
    

  
       
 
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Ji iJ J Ji i 21 2 1
n

2 2 22

J Ji ii 1 J i i1 2 J1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
1

= 
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 T4 u uT

  

  


  
   

   
           




i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 T u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
   

  
        
 

 

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
 

        
 

 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
  

  
 

        
 

 

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
 

        
 

 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
  


  
          

=

IN 1 2CE  (J , J ).  

Hence complete the proof.☐ 

iv. 
IN 1 2CE (J , J ) =  

Ji iJ J Ji i 21 2 1
n

2 2 22
i 1 J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T
1

1 ( ) 1 ( )4 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

  


  
   
   
  

        
 




i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
  

  
 

        
 
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Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
 

        
 

 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
  

  
 

        
 

 

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
 

        
 

 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
  


  
          

 

J i iJ J Ji i 22 1 1
n

2 2 2 2
i 1 J Ji i Ji i2 1 J 12

2 (1 ( )) ( ( ) )1 T2 ( ) ( ) u uTu uT T
1

= 
1 ( ) 1 ( )4 1 ( ( )) 1 (1 ( ))u uT T 1 T u uT

 

   


  
   
   
  

       
 




 

i ii i JJ J J22 1 1

2 2 2 2

i i i iJ J JJ2 1 12

2 (1 ( )) ( ( ))1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( ( )) 1 (1 ( ))1 Tu uT T u uT

 

  

 
  

  
 

       
 

J i iJ J Ji i 22 1 1

2 2 2 2

J Ji i Ji i2 1 J 12

2 (1 ( )) ( ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 ( ( )) 1 (1 ( ))u uI I 1 I u uI

 

   

 
  

  
 

       
 

 

i ii i JJ J J22 1 1

2 2 2 2

i i i iJ J JJ1 2 12

2 (1 ( )) ( ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 ( ( )) 1 (1 ( ))1 Iu uI I u uI

 

  

 
  

  
 

       
 
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iJ i J i i2 J J21 1

2 2 2 2

J Ji i Ji i2 1 J 12

2 ( )( ) F 2 (1 ( )) ( ( ))1 FuuF u uF

1 ( ) 1 ( ) 1 ( ( )) 1 (1 ( ))u uF F 1 F u uF

  

   

 
   

  
 

       
 

 

i ii i JJ J J22 1 1

2 2 2 2

i i i iJ J JJ2 1 12

2 (1 ( )) ( ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( ( )) 1 (1 ( ))1 Fu uF F u uF

 

  

 
  


  
         

 

IN 2 1CE (J , J ).  

Hence complete the proof.☐ 

Definition 3.2 Weighted IN-cross-entropy measure 

We consider the weight iw  (i = 1, 2, 3,…, n) of iu  (i = 1, 2, 3, …, n) with 

n

i i
i 1

w [0,1]and w 1.


   

Then the weighted cross entropy measure between 1 2J  and J is defined as follows: 

w
IN 1 2CE (J , J ) =  

n Ji iJ J Ji i 21 2 1
i

2 2 22i 1

J Ji i J i i1 2 J1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T1
w

4
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

   

 
   
   
           

 

  

  

 
  

  
 

        
 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

 

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
 

        
 

 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
  

  
 

        
 
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Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
 

        
 

 

  

  

 
  


  
          

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

 (3.2) 

Theorem 3.2 

Interval neutrosophic weighted cross-entropy measure w

IN 1 2
CE  (J , J )  satisfies the 

following properties: 

w
IN 1 2i. CE (J , J ) 0 , iu U.   

ii.
w

IN 1 2CE (J , J ) 0 , if and only if J Ji i1 2
(u ) (u ),T T

  i iJ J1 2
(u ) (u )T T

  , J Ji i1 2
(u ) (u )I I

  , 

i iJ J1 2
(u ) (u )I I

  , J Ji i1 2
(u ) (u )F F

  , i iJ J1 2
(u ) (u )F F

  for all iu U.   

iii.
c cw w

IN 1 2 IN 1 2CE (J , J ) CE ( , )J J , iu U.   

iv. 
w w

IN 1 2 IN 2 1CE (J , J ) CE ( J , J ) , iu U.   

 

Proof:  

i. For all values of iu U , J i1
( ) 0uT

  , J i2
( ) 0uT

  , J Ji i1 2
( ) ( ) 0u uT T

   , 

2

J i1
1 ( ) 0uT

  , 

2

J i2
1 ( ) 0uT

  , iJ1
( ( ) ) 01 T u


 , J i2

(1 ( )) 0uT
  , Ji iJ 21

( ( )) (1 ( )) 01 T u uT
    , 

2

iJ1
1 ( ( )) 01 T u


  , 

2

J i2
1 (1 ( )) 0uT

    

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

  

 
  
   
 

        
 
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and iJ1
( ) 0uT

  , iJ2
( ) 0uT

  , i iJ J1 2
( ) ( ) 0u uT T

   , 
2

iJ1
1 ( ) 0uT

  , 

2

iJ2
1 ( ) 0uT

  , 

iJ1
( ( ) ) 01 T u


 , iJ2

(1 ( )) 0uT
  , i iJJ 21

( ( )) (1 ( )) 01 T u uT
    , 

2

iJ1
1 ( ( )) 01 T u


  , 

2

iJ2
1 (1 ( )) 0uT

    

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0.

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
  

   
 

        
 

 

Similarly, we have  

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  
  
 

        
 

,       

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
  
  
 

        
 

,                

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  
  
 

        
 

and 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0.

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
  
  
 

        
 

 

 Since, 
n

i i
i 1

w [0,1], w 1


  , we have, 
w
IN 1 2CE (J , J ) 0 . 

Hence complete the proof.☐ 
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ii. 

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

  

 
  
  
 

        
 

 

J Ji i1 2
( ) ( )u uT T

  

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
  
  
 

        
 

 

J i iJ1 2
( ) ( )T u uT

   

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  
  
 

        
 

 

J Ji i1 2
( ) ( )u uI I

    

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
  
  
 

        
 

 

J i iJ1 2
( ) ( )I u uI

   

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  
  
 

        
 

 

J Ji i1 2
( ) ( )u uF F

    

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
  
  
 

        
 

 

i iJ J1 2
( ) ( )u uF F

   , for all values of
iu U.

 

Since,
n

i i
i 1

w [0,1], w 1


  ,
iw 0 , we have  
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w
IN 1 2CE  (J , J ) 0 iff J Ji i1 2

(u ) (u ),T T
  i iJ J1 2

(u ) (u )T T
  , J Ji i1 2

(u ) (u )I I
  , 

i iJ J1 2
(u ) (u )I I

  , J Ji i1 2
(u ) (u )F F

  , i iJ J1 2
(u ) (u )F F

   and 

J J J J J Ji i i i i i1 2 1 2 1 2
(u ) (u ) , (u ) (u ) , (u ) (u )T T I I F F   for all iu U. ☐

 

iii. We have,  
w c c
IN 1 2CE  (J , J )  

ci i i ic c cJn J J J11 2 2
i

2 2 2i 1 2

ci i i ic c c JJ J J 21 2 1

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Tu u u uT T T
1

= w
4

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu u u uT T T

  


  

 
   
 

   
 

        
  

i i i ic c c cJ J J J1 2 1 2

2 2 2 2

i i i ic c c cJ J J J1 2 1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Tu u u uT T T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu u u uT T T

  

  

 
   
 

 
 

        
  

+ 

ci i i ic c cJJ J J11 2 2

2 2 2 2

ci i i ic c c JJ J J 21 2 1

2 ( ) ( ) 2 ( ( )) (1 ( ))1 Iu u u uI I I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu u u uI I I

  

  

 
   
 

 
 

        
  

+ 

i i i ic c c cJ J J J1 2 1 2

2 2 2 2

i i i ic c c cJ J J J1 2 1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Iu u u uI I I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu u u uI I I

  

  

 
   
 

  
 

        
  

ci i i ic c cJJ J J11 2 2

2 2 2 2

ci i i ic c c JJ J J 21 2 1

i i i ic c c cJ J J J1 2 1 2

2 2

i ic cJ J1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu u u uF F F

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1u uF F

  

  

  

 

 
   
 

  
 

        
  

  



   

2 2

i ic cJ J1 2

(1 ( )) 1 ( ( ))1 Fu uF


 
 
 
 
 

    
  
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n Ji iJ J Ji i21 1 2
i

2 2 22i 1

J Ji iJ i i 1 2J1 2

2 ( ( )) (1 ( ))1 T 2 ( ) ( )u uT u uT T1
 = w

4
1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 T T Tu uT

   

   

 
    
   
          

 

i i i iJJ J J21 1 2

2 2 22

i ii i J JJ J 1 21 2

2 ( ( )) (1 ( ))1 T 2 ( ) ( )u uT u uT T

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 T u uT Tu uT

   

  

 
   

  
 

       
 

 

Ji iJ J Ji i21 1 2

2 2 22

J Ji iJ i i 1 2J1 2

2 ( ( )) (1 ( ))1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 I I Iu uI

   

  

 
   

  
 

       
 

i i i iJJ J J21 1 2

2 2 22

i ii i J JJ J 1 21 2

2 ( ( )) (1 ( ))1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 I u uI Iu uI

   

  

 
   

  
 

       
 

Ji iJ J Ji i21 1 2

2 2 22

J Ji iJ i i 1 2J1 2

2 ( ( )) (1 ( ))1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 F F Fu uF

   

  

 
   

  
 

       
 

21 1 2

2 2 22

1 21 2

2 ( ( ) ) (1 ( ))1 2 ( ) ( )

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1

   

  

 
   


  
         

i i i iQQ Q Q

i ii i Q QQ Q

F u uF u uF F

F u uF Fu uF

 

n Ji iJ J Ji i 21 2 1
i

2 2 22i 1

J Ji i J i i1 2 J1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T1
= w

4
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

   

 
   
   
           

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
  

  
 

        
 

 

Ji iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
 

        
 
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i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( )) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
  

  
 

        
 

Qi iJ J Ji i 21 2 1

2 2 22

J Ji i J i i1 2 J1 2

2 ( ( )) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
 

        
 

i ii i JJ J J 21 2 1

2 2 22

i i i iJ J J J1 2 1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
  


  
          

w
IN i1 2(J , J ), U.CE u    

 

iv. Since, 

i i i iJ J J J1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T

      , i i i iJ J J J1 2 2 1
( ) ( ) ( ) ( )u u u uI I I I

      ,

i i i iJ J J J1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F

      ,

1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))         i i i iJ J J Ju u u uT T T T ,

i i i iJ J J J1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I

          ,

i i i iJ J J J1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uF F F F

          . 

Then, we obtain  

2 2 2 2

i i i iJ J J J1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T

          ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uI I I I

          ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uF F F F

          ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uT T T T

              ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uI I I I

              , 
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2 2 2 2

i i i iJ J J J1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uF F F F

              ,

iu U.   

Similarly, i i i iJ J J J1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T

      , i i i iJ J J J1 2 2 1
( ) ( ) ( ) ( )u u u uI I I I

      ,

i i i iJ J J J1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F

      ,

i i i iJ J J J1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uT T T T

          ,

i i i iJ J J J1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I

          ,

i i i iJ J J J1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uF F F F

          , then 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T

          ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uI I I I

          ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uF F F F

          ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uT T T T

              ,

2 2 2 2

i i i iJ J J J1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uI I I I

              , 

2 2 2 2

i i i iJ J J J1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uF F F F

              , iu U.   

And 
n

ii
i 1

w [0,1], 1w


  , iw 0 . 

 So, 
w w
IN 1 2 IN 2 1CE (J , J ) CE ( J , J ). ☐ 

 

3.3 Multi attribute group decision making strategy using IN-

cross entropy measure in interval neutrosophic set 

environment 

In this section we develop a novel MAGDM strategy based on proposed IN- 

cross entropy measure.       

Description of the MAGDM problem: 



 

IN-cross entropy based MAGDM strategy in interval neutrosophic set environment             Chapter 3 

53 
 

Assume that 1 2 3 mA {A ,A ,A ,...,A } and 1 2 3 nG {G ,G ,G ,...,G } be the discrete set of 

alternatives and attributes respectively. Let 1 2 3 nW {w ,w ,w ,...,w } be the weight 

vector of attributes jG  (j = 1, 2, 3, …, n), where jw 0 and 
n

j
j 1

w 1


 . Let 

1 2 3E {E ,E ,E ,...,E } ρ be the set of decision makers. The weight vector of the decision 

makers
k

E (k 1,2,3,..., )  is 1 2 3{ , , ,..., } ρλ λ λ λ λ , where k
k 1

0 and 1


 
ρ

λ λ . 

Now, we describe the steps of the proposed MAGDM strategy. 

Step 1. Formulate the decision matrices 

For MAGDM with INSs information, the rating values of the alternatives 

i
A (i 1,2,3,...,m) on the basis of criterion jG ( j 1,2,3,...,n) provided by the k-th 

decision maker can be expressed in terms of INN as

      k k k k k kk
ij ij ij ij ij ij ij[ T , T ],[ I , I ],[ F , F ]a  (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 

3, …, )   .  We present these rating values of alternatives provided by the decision 

makers in matrix form as follows: 

1 2 n
k k k
11 12 1n1

k k k k
21 22 2n2

k k k
m1 m2 mnm

     G G ... .G

A ... a a a

M A a a a
. . ... .

A ...a a a

 
 
 
 
 
 
 
 

           (3.3) 

Step 2. Formulate the weighted aggregated decision matrix 

For obtaining one group opinion, we aggregate all individual decision matrices k( M )  to 

an aggregated decision matrix (M) using interval-valued neutrosophic weighted 

Aggregation (INNWA) operator (Zhang et al., 2014) as follows:  

1 2 3
ij ij ij ijija INNWA ( , , ,..., )a a a a 

ρ
λ  

1 2 3
1 ij 2 ij 3 ij ij( a a a ... a )   

ρ
ρλ λ λ λ =

k k k kk k k k
ij ij ij ij

k 1 k 1 k 1 k 1
[1 (1 T ) ,1 (1 T ) ],[ ( I ) , ( I ) ] ,   

   

       
ρ ρ ρ ρ

λ λ λ λ

k kk k
ij ij

k 1 k 1
[ ( F ) , ( F ) ] 

 

 
ρ ρ

λ λ
                                                                                   (3.4)  
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(i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ). 

Therefore, the aggregated decision matrix is defined as follows: 

1 2 n

1 11 12 1n

2 21 22 2n

m m1 m2 mn

     G G ... .G

A a a ... a

M A a a a

. . ... .

A a a ... a

 
 
 

 
 
 
 
 

           (3.5) 

Step 3. Formulate priori/ ideal decision matrix 

In the MAGDM processes, the priori decision matrix is used to select the best alternative 

among the set of collected feasible alternatives. In the decision making strategy,  we use 

the following decision matrix as priori decision matrix. 

1 2 n
* * *
11 12 1n1
* * *
21 22 2n2

* * *
m1 m2 mnm

     G G ... .G

A ... a a a

P A a a a
. . ... .

A ...a a a

 
 
 
 
 
 
 
 

        (3.6) 

Where, *
ij [1,1],[0,0],[0,0]a   for benefit type attributes and *

ij [0,0],[1,1],[1,1]a  

for cost type attributes, (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n) 

Step 4. Formulate the weighted IN-cross entropy matrix  

Using equation (3.2), we calculate weighted cross entropy value between aggregate 

matrix and priori matrix. The cross entropy value is presented in matrix form as follows: 

w
IN 1
w
IN 2

INS w
CE

w
IN m

CE  (A )

CE  (A )

M .................

..................

CE  (A )

 
 
 
 
 
 
  
 

           (3.7) 

Step 5. Rank the priority 

Smaller value of the cross entropy reflects that an alternative is closer to the ideal 

alternative. Therefore, the priority order of all the alternatives is determined according to 

the increasing order of the cross entropy values 
w
IN iCE  (A ) (i = 1, 2, 3,…, m). Smallest 
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cross entropy value indicates the best alternative and the greatest cross entropy value 

indicates the worst alternative.  

 

3.4 Illustrative example 

In this section, we provide an illustrative example of MAGDM problems to reflect the 

validity and efficiency of the proposed strategy in INS environment. 

Now, we solve an illustrative example adapted from (He & Liu, 2013) for cultivation and 

analysis. A venture capital firm intends to make evaluation and selection to five 

enterprises with the investment potential: 

1) Automobile company (A1) 

2) Military manufacturing enterprise (A2) 

3) TV media company (A3) 

4) Food enterprises (A4) 

5) Computer software company (A5) 

On the basis of four attributes namely: 

1) Social and political factor (G1) 

2) The environmental factor (G2)  

3) Investment risk factor (G3) 

4) The enterprise growth factor (G4). 

 

The investment firm makes a panel of three decision makers 
1 2 3E {E ,E ,E }  having their 

weights vector {0.42,0.28,0.30}   and weights vector of attributes is

W {0.24, 0.25, 0.23, 0.28}.  

The steps of decision making strategy to rank alternatives are presented below: 

Step 1. Formulate the decision matrices 

The decision maker presents the rating values of alternative iA  (i = 1, 2, 3, 4, 5) with 

respect to the attribute jG  (j = 1, 2, 3, 4) in terms of interval neutrosophic numbers 

provided by the decision makers kE  (k = 1, 2, 3) matrix form as follows: 

 

 

 



 

IN-cross entropy based MAGDM strategy in interval neutrosophic set environment             Chapter 3 

56 
 

Decision matrix for decision maker 1E  

1 2 3 4

1

1 2

     G G G G

A [.7,.9],[.3,.4],[.3,.4] [.6,.7],[.3,.4],[.4,.5] [.6,.7],[.2,.3],[.2,.4] [.4,.5],[.3,.4],[.7, .8]

A [.6,.7],[.1,.2],[.2,.3] [.7,.8],[.2,.4],[.2,.3] [.7,.9],[.5,.6],[.4,.5] [.7,
M

       

      


3

4

.9],[.1,.2],[.1, .3]

A [.6,.8],[.2,.4],[.3,.4] [.5,.7],[.3,.4],[.1,.2] [.8,.9], [.5,.7],[.3,.6] [.6,.7],[.1,.3],[.2,.3]

A [.4,.5],[.7,.8],[.6,.7] [.3,.6],[.2,.3],[.3,.4] [.6,.7],[.1, .2],[.4,.5]



       

      

5

[.4,.5],[.3,.4],[.6,7]

A [.7,.8],[.3,.4],[.2,.3] [.4,.5],[.2,.4],[.3,.5] [.5,.6],[.2,.4],[.3,.4] [.7,.9],[.6,.7],[.4,.5]

 
 
 
 
 
 
 
 
         

                       (3.8) 

Decision matrix for decision maker 2E  

1 2 3 4

1

2 2

     G G G G

A [.6,.7],[.1,.2],[.2,.3] [.3,.5],[.2,.4],[.4,.5] [.7,.9],[.3,.4],[.3,.5] [.4,.6],[.4,.5],[.2, .3]

A [.4,.7],[.2,.4],[.3,.4] [.6,.7],[.2,.3],[.3,.4] [.5,.7],[.1,.3],[.3,.4] [.4,
M

       

      


3

4

.6],[.3,.4],[.2, .3]

A [.3,.6],[.2,.4],[.3,.4] [.4,.5],[.2,.3],[.3,.5] [.8,.9], [.2,.5],[.3,.4] [.5,.6],[.3,.5],[.3,.6]

A [.5,.7],[.3,.5],[.1,.3] [.5,.6],[.1,.3],[.4,.6] [.4,.7],[.1, .4],[.3,.4]



       

      

5

[.6,.8],[.3,.5],[.3,4]

A [.6,.9],[.3,.4],[.2,.3] [.3,.6],[.3,.4],[.2,.5] [.6,.8],[.3,.5],[.,4.6] [.3,.5],[.3,.4],[.4,.5]

 
 
 
 
 
 
 
 
         

 

                                                                                                                                       (3.9) 

Decision matrix for decision maker 3E  

1 2 3 4

1

3 2

     G G G G

A [.4,.7],[.1,.2],[.3,.5] [.3,.6],[.2,.4],[.3,.4] [.6,.7],[.2,.4],[.3,.5] [.8,.9],[.2,.4],[.1, .3]

A [.3,.6],[.4,.5],[.4,.5] [.7,.9],[.1,.3],[.3,.4] [.5,.7],[.2,.4],[.2,.3] [.6,
M

       

      


3

4

.8],[.2,.4],[.3, .5]

A [.7,.8],[.1,.3],[.4,.5] [.8,.9],[.1,.3],[.3,.4] [.6,.8], [.2,.3],[.3,.4] [.6,.7],[.2,.3],[.3,.4]

A [.6,.9],[.2,.3],[.2,.4] [.5,.6],[.1,.3],[.2,.4] [.3,.5],[.1, .2],[.2,.4]



       

      

5

[.5,.7],[.2,.3],[.3,5]

A [.7,.8],[.1,.3],[.2,.3] [.5,.6],[.2,.4],[.1,.3] [.4,.6],[.1,.3],[.2,.4] [.5,.7],[.2,.3],[.3,.5]

 
 
 
 
 
 
 
 
         

 

 (3.10) 

Step 2. Formulate the weighted aggregated decision matrix 

Using equation (3.4), the aggregated decision matrix is presented below: 

    Aggregated decision matrix

1 2 3 4

1

2

     G G G G

A [.6,.8],[.2,.3],[.3,.4] [.5,.6],[.2,.4],[.4,.4] [.6,.8],[.2,.3],[.2,.4] [.6,.7],[.3,.4],[.3, .4]

A [.5,.7],[.2,.3],[.3,.4] [.7,.8],[.2,.3],[.2,.4] [.6,.8],[.2,.4],[.3,.4] [.6,.
M

       

      


3

4

8],[.2,.3],[.2, .3]

A [.6,.8],[.2,.4],[.3,.4] [.6,.8],[.2,.3],[.2,.3] [.8,.9], [.3,.5],[.3,.5] [.6,.7],[.2,.3],[.2,.4]

A [.5,.7],[.4,.5],[.3,.5] [.4,.6],[.1,.3],[.3,.4] [.5,.6],[.1, .2],[.3,.4] [



       

      

5

.5,.7],[.3,.4],[.4,.5]

A [.7,.8],[.2,.4],[.2,.3] [.4,.6],[.2,.4],[.2,.4] [.5,.7],[.2,.4],[.3,.4] [.6,.8],[.4,.5],[.4,.5]

 
 
 
 
 
 

 
         

                                                                                                                                     (3.11) 
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Step 3. Formulate priori/ ideal decision matrix   

      Priori/ ideal decision matrix    

1 2 3 4

1

1 2

3

     G G G G

A [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0]

A [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0]
M

A [1,1],[0,0],[0,0] [1,1],

       

       


  

4

5

[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0]

A [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0]

A [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],[0,0] [1,1],[0,0],

    

       

       [0,0]

 
 
 
 
 
 
 
  

            (3.12)         

Step 4. Calculate the weighted IN-cross entropy matrix 

Using equation (3.2), we calculate the interval neutrosophic weighted cross entropy 

values between ideal matrixes (3.12) and weighted aggregated decision matrix (3.11).  

IN w
CE

0.86

0.77

M 0.78

0.95

0.90

 
 
 

 
 
 
 
 

            (3.13) 

Step 5. Rank the priority 

The position of cross entropy values of alternatives arranging in increasing order is 0.77 

< 0.78 < 0.86 < 0.90 < 0.95. Since, the smaller valueof cross entropy indicatesthat the 

alternative is closer to the ideal alternative.  Thus the ranking priority of alternatives is 

A2 > A3> A1> A5> A4. Hence, military manufacturing enterprise (A2) is the best 

alternative for investment. 
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Figure 3.1 Bar diagram of alternatives versus cross entropy values of alternatives 

 

3.5 Conclusion 

In this chapter we have defined IN-cross entropy measure in INS environment 

which is free from the asymmetry and undefined phenomena. We have proved the basic 

properties of the cross entropy measures. We have also defined weighted IN- cross 

entropy measure and proved its basic properties. Based on the weighted IN-cross entropy 

measure, we have proposed a novel MAGDM strategy. Finally, we solve an MAGDM 

problem to show the feasibility and efficiency of the proposed MAGDM making 

strategy. The proposed IN-cross entropy based MAGDM strategy can be employed to 

solve a variety of problems such as logistics center selection, teacher selection, 

renewable energy selection, fault diagnosis, etc. 



 

NC-TODIM-based MAGDM in a neutrosophic cubic set environment  Chapter 4 

59 
 

Chapter 4 

 

NC-TODIM-based MAGDM in a neutrosophic 
cubic set environment 

 

4.1 Introduction  

TODIM (an acronym in Portuguese for interactive multi-criteria decision making 

strategy named Tomada de decisaointerativa e multicritévio) is an important MADM 

strategy, since it considers the decision makers’ bounded rationality. Firstly, Gomes and 

Lima (1992) introduced the TODIM strategy based on prospect theory (Kahneman, 

1979). Krohling and Souza (2012) defined the fuzzy TODIM strategy to solve MADM 

problems. Several researchers applied the TODIM strategy in various fuzzy MADM or 

MAGDM problems (Liu & Teng, 2014; Tosun & Akyu, 2015; Gomes et al., 2013). Fan 

et al. (2013) introduced the extended TODIM strategy to deal with the hybrid MADM 

problems. Krohling et al. (2013) extended the TODIM strategy from fuzzy environment 

to intuitionistic fuzzy environment. Wang (2015) introduced TODIM strategy into multi-

valued neutrosophic set environment. Zhang et al. (2016) proposed the TODIM strategy 

for MAGDM problems with neutrosophic number (NN) environment. Ji et al. (2016) 

proposed the TODIM strategy under a multi-valued neutrosophic environment and 

employed it to solve personal selection problems. Xu et al. (2017) developed the TODIM 

strategy in a single valued neutrosophic setting and extended it into interval neutrosophic 

setting. Neutrosophic TODIM studied by Xu et al., (2017) is capable of dealing with 

only single-valued neutrosophic information or interval neutrosophic information. 

Neutrosophic cubic set (NCS)is capable of expressing of the interval neutrosophic 

information and neutrosophic information in the process of MADGM.  

 

 

 

 

The content of this chapter is based on the paper published in “Information” 2017, 8(4), 149; 

doi:10.3390/info8040149. 

http://dx.doi.org/10.3390/info8040149
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In the NCS environment, the TODIM strategy is yet to appear. Motivated by these, 

we initiate the study of TODIM in the NCS environment, which we call NC-TODIM. To 

apply NCSs to MADGM problems, we introduce some basic operations of neutrosophic 

cubic (NC) numbers and the score, and accuracy functions of NC- numbers, and the 

ranking strategy of NC numbers. 

In this Chapter, we develop a TODIM strategy (for short, NC-TODIM strategy) for 

MAGDM in the NCS environment. The proposed NC-TODIM strategy is employed to 

solve an illustrative numerical example of an MAGDM.  

The remainder of the chapter is divided into six sections that are organized as 

follows: Section 4.2 presents comparison strategy for any two NC-numbers. Section 4.3 

is devoted to present the proposed NC-TODIM strategy. Section 4.4 presents an 

illustrative numerical example of MAGDM in the NCS environment. Section 4.5 is 

devoted to analyzing the ranking order with different values of attenuation factors of 

losses. Section 4.6 presents a comparative analysis between the developed strategy and 

other existing strategies in the NCS environment. Section 4.7 presents the conclusion and 

the future scope of research. 

 

4.2 Comparison strategy of two NC-numbers 

Definition 4.1 Score function. Let ©1 be a NC-number in a non-empty set G. Then, a 

score function of ©1, denoted by 1Sc( )© is defined as: 

1Sc( )© = 1 2 1 2 1 22 a a 2b 2b c c 1 a 2b c1
[( ) ( )]

2 4 2

        
        (4.1) 

where, ©1= <[a1, a2], [b1, b2], [c1, c2], (a, b, c) > and 1Sc( )© [–1, 1]. 

Proposition 4.1 

Score function of two NC-numbers lies between −1 to 1. 

Proof. Using the definition of INS and NS, we have all a1, a2, b1, b2, c1, c2, a, b, and c

[0,1] . 

Since, 

10 a 1  , 20 a 1         

 1 20 a a 2     

1 22 2 a a 4                            (4.2) 



 

NC-TODIM-based MAGDM in a neutrosophic cubic set environment  Chapter 4 

61 
 

10 b 1  10 2b 2   , and 20 b 1   

20 2b 2    

12 2 0b     

22 2 0b    

1 24 2b 2b 0                          (4.3) 

10 c 1 
11 c 0    

20 1c 
21 c 0    

1 22 c c 0                                      (4.4) 

Adding Equation (4.2), Equation (4.3) and Equation (4.4), we obtain  

1 2 1 2 1 24 2 a a 2b 2b c c 4         ,  

1 2 1 2 1 22 a a 2b 2b c c
1 1

4

     
                        (4.5) 

Again,  

0 a 1  1 1 a 2                                                                                                  (4.6) 

0 b 1  0 2b 2   ,  

0 c 1   , 

0 2b c 3    ,  

3 2b c 0                                                                                                            (4.7) 

Adding Equation (4.6) and Equation (4.7), we obtain  

2 1 a 2b c 2      ,  

1 a 2b c
1 1

2

  
                                                                                             (4.8) 

Adding Equation (4.5) and Equation (4.8) and dividing by 2, we obtain  

1 2 1 2 1 22 a a 2b 2b c c 1 a 2b c1
1 [( ) ( )] 1

2 4 2

        
     

1Sc( )© [–1, 1]. 

Hence the proof is complete. □ 

Example 4.1 Let 1©  and 2©  be two NC-numbers in G, presented as follows: 

1©  = <[0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4)>and  
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2©  = <[0.56, 0.70], [0.27, 0.42], [0.15, 0.26], (0.7, 0.3, 0.6)>.  

Then, by using Definition (4.1), we obtain 1©( )Sc  = −0.01 and 2©( )Sc  = 0.07, In this 

case, we can say that 2 1© © . 

Definition 4.2 Accuracy function 

Let ©1 be an NC-number in a non-empty set G, an accuracy function of ©1 is defined as: 

)©(Ac 1  = ½[½(a1 + a2 − b2(1 − a2) − b1(1 − a1) − c2(1 − b1) − c1(1 − b2) + a − b(1 − a) − 

c(1 − b)                                                                                                                          (4.9) 

Here, 1Ac(© )[–1, 1]. 

When the value of 1Ac(© )  increases, we say that the degree of accuracy of the NC-

number ©1increases. 

Proposition 4.2  

Accuracy function of two NC-numbers lies between −1 to 1. 

Proof. The values of accuracy function depend upon  

1 2 2 2 1 1 2 1 1 2

1
{ (a a b (1 a ) b (1 a ) c (1 b ) c (1 b )) and{a b(1 a) c(1 b)}
2

              

The values of  

1 2 2 2 1 1 2 1 1 2

1
{ (a a b (1 a ) b (1 a ) c (1 b ) c (1 b ))}
2

         and 

{a b(1 a) c(1 b)}    lie between −1 to 1 from (Şahin, 2014).  

Thus,   11 Ac(© ) 1 . 

Hence the proof is completed. 

Example 4.2 Let 1©  and 2©  be two NC-numbers in G presented as follows: 

1©  = <[0.41, 0.52], [0.10, 0.18], [0.06, 0.17 ], (0.48, 0.11, 0.11)> and 

2©  <[0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) . 

Then, by applying Definition 4.2, we obtain 1Ac(© )  = 0.14 and 2Ac(© )  = 0.30.  

With respect to the score function Sc and the accuracy function Ac , a strategy for 

comparing NC-numbers can be defined as follows: 

Comparison strategy of two NC-numbers 

Let ©1 and ©2 be any two NC-numbers. Then we define comparison strategy as follows: 

 

i. If 1Sc(© ) >
2Sc(© ) , then ©1>©2       (4.10) 
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ii.If 1Sc(© ) =
2Sc(© )  and 1Ac(© ) > 2Ac(© ) , then ©1>©2                                (4.11) 

iii.If 1Sc(© ) =
2Sc(© )  and )(Ac © 1 = )(Ac © 2 , then ©1= ©2    (4.12) 

Example 4.3 Let ©1 and ©2be two NC-numbers in G, presented as follows: 

1©  = <[0.23, 0.29], [0.37, 0.46], [0.34, 0.42 ], (0.26, 0.26, 0.26)>  

and 2©  = <[0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28)> . 

Then, applying Definition 4.1, we obtain 1(© )Sc  = 0.13 and 
2(© )Sc  = 0.13. Applying 

Definition 4.2, we obtain 1Ac(© )  = −0.20 and 2Ac(© )  = −0.18. In this case, we say 

that alternative 2© > 1© . (Score values and Accuracy values taking correct up to two 

decimal places). 

Definition 4.3 Let ©1and ©2 be any two NC-numbers, then the distance between them is 

defined by  

∂ (©1, ©2) = 

1 1 2 2 1 1 2 2 1 1 2 2

1
[ a d a d b e b e c f c f a d b e c f ]

9
                  

                                                                                                                                     (4.13)     

where, ©1= <[a1, a2], [b1, b2], [c1, c2], (a, b, c)> and ©2= <[d1, d2], [e1, e2], [f1, f2], (d, e, 

f)>. 

Example 4.4 Let ©1and ©2be two NC-numbers in G presented as follows: 

1©  = <[0.66, 0.75], [0.25, 0.32], [0.17, 0.34], (0.53, 0.17, 0.22)> 

and 2©  = < [0.35, 0.55], [0.12, 0.25], [0.12, 0.20], (0.60, 0.23, 0.43)> 

Then, we obtain ∂ (©1, ©2) = 0.12. 

Definition 4.4 Let ij©  =       ij ij ij ijij ij{ [ , ],[ , ],[ , ],(t,i,f) }t t i i f f  be a neutrosophic cubic 

value, which is used to evaluate i-th alternative with respect to j-th criterion. The 

normalized form of ©ij is defined as follows: 
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ij©


= {<
ij ij

1 1
m m2 2 2 22 2

ij ijij ij
i 1 i 1

tt

t t t t

[ , ]

( ( ) ( ) ) ( ( ) ( ) )



   

 
  

,
ij ij

1 1
m m2 2 2 22 2

ij ijij ij
i 1 i 1

ii

i i i i

[ , ]

( ( ) ( ) ) ( ( ) ( ) )



   

 
  

, 

ij ij

1 1
m m2 2 2 22 2

ij ijij ij
i 1 i 1

ff

f f f f

[ , ]

( ( ) ( ) ) ( ( ) ( ) )



   

 
  

,

ij ij ij

1 1 1
m m m2 2 2 2 2 2 2 2 22 2 2

ij ij ij ij ij ijij ij ij
i 1 i 1 i 1

t i f

t t ti f i f i f

[ , , ] }.

( ( ) ( ) ( ) ) ( ( ) ( ) ( ) ) ( ( ) ( ) ( ) )
  
  



     

  (4.14) 

A conceptual model of the evolution of the neutrosophic cubic set is shown in Figure 4.1.  

 

 

Figure 4.1 Evolution of the neutrosophic cubic set. 

 

4.3 NC-TODIM based MAGDM in a NCS environment 

Assume that A = {A1, A2, …, Am} (m ≥ 2) and C = {C1, C2, …, Cn} (n ≥ 2) are the 

discrete set of alternatives and attributes respectively. W = {W1, W2, …,Wn} is the 

weight vector of attributes Cj (j = 1, 2, …, n), where Wj> 0 and 1W
n

1j
j



. Let E = {E1, E2, 
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…,Er} be the set of decision makers and 1 2 rγ γ γγ { , ,..., }  be the weight vector of 

decision makers, where kγ > 0 and 
r

k
k 1

γ 1

  . 

NC-TODIM Strategy 

Now, we describe the NC-TODIM strategy to solve the MAGDM problems with 

NC-numbers. The NC-TODIM strategy consists of the following steps: 

Step 1. Formulate the decision matrix  

Assume that k
M = k

ij m n©( )


be the decision matrix, where k
ij© = <

k k
ijij ,RG > is the 

rating value provided by the k-th (Ek) decision maker for alternative Ai, with respect to 

attribute Cj. The matrix form of k
M  is presented as: 

k
M  = 

 
 
 
 
 
 
  
 

1 2 n

k k k
11 12 1n1

k k k
21 22 2n2

k k k
m1 m2 mnjm

© © ©

© © ©

© © ©

     C C ... C

A ... 

A

. . . . .

A ...

                   (4.15) 

Step 2. Normalize the decision matrix  

The MAGDM problem generally consists of cost criteria and benefit criteria. So, the 

decision matrix needs to be normalized. For cost criterion Cj, we use the Definition 4.4 to 

normalize the decision matrix (Equation (4.15)) provided by the decision makers. For 

benefit criterion Cj we don’t need to normalize the decision matrix. When Cj is a cost 

criterion, the normalized form of decision matrix (see Equation (4.15)) is presented 

below. 

k
M  =

  

  

  

 
 
 
 
 
 
 
 
 

1 2 n

k k k
11 12 1n1

k k k
21 22 2n2

k k k
m1 m2 mnjm

     C C ... C

A ... © © ©

A ...© © ©

 . . . ... .

A ...© © ©

                       (4.16) 

Here k
ij©  is the normalized form of the NC-number. 

Step 3. Determine the relative weight of each criterion 

The relative weight Wch of each criterion is obtained by the following equation. 
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C
ch

h

W
W

W
                   (4.17) 

where, hW  = max {W1, W2, …, Wn}.  

Step 4. Calculate score values 

Using Equation (4.1), calculate the score value k
ijSc( )©
  (i = 1, 2, …, m; j = 1, 2, 

…, n) of k
ij© for the cost criterion Cj. Using Equation (4.1), calculate the score value 

k

ij
)Sc(©  (i = 1, 2, …, m; j = 1, 2, …, n) of k

ij© for the benefit criterion Cj. 

Step 5. Calculate accuracy values 

Using Equation (4.9), calculate the accuracy value k
ijAc( )©
  (I = 1, 2, …, m; j= 1, 

2, …, n) of ©
k

ij
 for the cost criterion Cj. Using Equation (4.9), calculate the accuracy 

value 
k
ijAc( )©  (I = 1, 2, …, m; j = 1, 2, …, n) of ©

k
ij for the benefit criterion Cj.  

Step 6.  Formulate the dominance matrix 

Calculate the dominance of each alternative Ai over each alternative Aj with respect 

to the criteria C1, C2, …, Cn of the k-th decision maker Ek by the following Equation 

(4.18) and Equation (4.19). 

 

(For cost criteria) 

k k k kk Ch
c i j ic jc ic jcn

ch
c 1

k k
ic jc

n

ch
c 1 k k k k

ic jc ic jc
Ch

W( , ) ( ( , ) , if© © © ©Ψ A A
W

0 ,if © ©

W
1

( ( , ) , if© © © ©
α W

   



 

    


   





  




    


                             (4.18) 
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(For benefit criteria) 

Ch k k k kk
c i j ic jc ic jcn

ch
c 1

k k
ic jc

n

ch
c 1 k k k k

ic jc ic jc
Ch

W
© © © ©Ψ A A

W

© ©

W

© © © ©
W

( , ) ( ( , ) , if  

0 , if

1
( ( , , ) , if  

α










   





  




   


                                        (4.19) 

where, parameter α  represents the attenuation factor of losses and must be positive. 

Step 7. Formulatethe individual overall dominance matrix 

Using Equation (4.20), calculate the individual total dominance matrix of each 

alternative Ai over each alternative Aj under the criterion Cj. 



  
nk k

i j c i j
c 1

( , ) ( , )φ A A Ψ A A                                                                              (4.20) 

Step 8. Aggregate the dominance matrix 

Using Equation (4.21), calculate the collective overall dominance of alternative Ai 

over each alternative Aj. 



 
m

k
i j i jk

k 1
φ( , ) ( , )γ λA A A A                                                                              (4.21) 

Step 9. Calculate global values 

We present the global value of each alternative as follows: 

  

   

 



 

n n

i j i j
j 1 j 11 i m

i n n

i j i j
j 1 j 11 i m1 i m

φ( , ) ( φ( , ))A A min A A
Ω

( φ( , )) ( φ( , ))max A A min A A

                                               (4.22) 

Step 10.  Rank the priority 

Sorting the values of Ωi  provides the rank of each alternative. A set of alternatives can 

be preference-ranked according to the descending order of Ωi . The highest global value 

corresponds to the best alternative.  

A conceptual model of the NC-TODIM strategy is shown in Figure 4.2  
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Figure 4.2 A flow chart of the proposed neutrosophic cubic set (NC)-TODIM 

strategy. 

 

4.4 Illustrative example  

In this section, an MAGDM problem is adapted from the study (He & Liu, 2013) in 

the NCS environment. An investment company wants to select the best alternative 

among the set of feasible alternatives. The feasible alternatives are  

1. Car company (A1) 

2. Food company (A2) 

3. Computer company (A3) 

4. Arms company (A4). 

The best alternative is selected based on the following criteria: 

1. Risk analysis (C1) 

2. Growth analysis (C2) 

3. Environmental impact analysis (C3). 
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An investment company forms a panel of three decision makers {E1, E2, E3} who 

evaluate four alternatives in decision making process. The weight vector of attributes and 

decision makers are considered as W = (0.4, 0.35, 0.25)
T
, γ  = (0.32, 0.33, 0.35)

T
 

respectively. 

The proposed strategy is presented using the following steps: 

Step 1. Formulate the decision matrix  

Formulate the decision matrices 
k(k 1,2,3)M   using the rating values of 

alternatives with respect to three criteria provided by the three decision makers in terms 

of NC-numbers. Assume that the NC-number k
ij©  = < k k

ij ijRG , > presents the rating value 

provided by the decision maker Ek for alternative Ai with respect to attribute Cj. Using 

these rating values k
ij© ( k = 1, 2, 3; i = 1, 2, 3, 4; j = 1, 2, 3), three decision matrices k

M

= 
k
ij 4 3( )©  ( k = 1, 2, 3) are constructed (see Equations (4.23)–(4.25)). 

 

Decision matrix for E1 

M
1
 = 

























>.12) .12, (.57, .21], [.10, .21], [.10, .49], [.38,<>.28) .28, (.28, .48], [.39, .50], [.40, .28], [.22,<>.37) .32, (.21, .59], [.42, .55], [.45, .23], [.17,<

>.31) .31, (.31, .52], [.41, .52], [.41, .27], [.22,<>.22) .16, (.44, .39], [.19, .30], [.20, .45], [.34,<>.26) .26, (.26, .42], [.34, .45], [.36, .29], [.23,<

>.12) .12, (.57, .21], [.10, .21], [.10, .49], [.38,<>.28) .28, (.28, .48], [.39, .50], [.40, .28], [.22,<>.21) .16, (.43, .34], [.17, .27], [.18, .46], [.35,<

>.31) .31, (.31, .52], [.41, .52], [.41, .27], [.22,<>.11) .11, (.50, .19], [.10, .20], [.10, .51], [.40,<  >.11) .11, (.48, .17], [.06, .18], [.10, .52], [.41,< 

C

A

A

A

A

CC

4

3

2

1

321

                                                                                                                                     (4.23) 

Decision matrix for E2  

M
2
 = 

1 2 3

1

2

                       C C C

 A <[.17, .23], [.46, .55], [.42, .59], (.21, .32, .37)> <[.25, .31], [.35, .44], [.35, .44], (.28, .28, .28)> <[.34, .43], [.13, .27], [.13, .27], (.49, .11, .11)>

A <[.23, 

3

.29], [.37, .46], [.34, .42], (.26, .26, .26)> <[.25, .31], [.35, .44], [.35, .44], (.28, .28, .28)><[.34, .43], [.13, .27], [.13, .27], (.49, .11, .11)>

A <[.41, .52], [.10, .18], [.10, .17], (.48, .11

4

,.11)> <[.44, .57], [.10, .17], [.10, .17], (.51, .11,.11)><[.19, .24], [.53, .67], [.53, .67], (.27, .27, .27)>

 A <[.35, .46], [.20, .28], [.17, .34], (.42, .16, .21)> <[.25, .31], [.35, .44], [.35, .44], (.28, .28, .28)><[.34, .43], [.13, .27], [.13, .27], (.49, .11, .11)>

 
 
 
 
 
 
  
 

                                                                                                                                     (4.24) 

Decision matrix for E3 



 

NC-TODIM-based MAGDM in a neutrosophic cubic set environment  Chapter 4 

70 
 

M
3
 = 

1 2 3

1

2

C C C

A  <[.22, .27], [.42, .52], [.42, .52], (.28, .28, .28)> <[.22, .28], [.40, .50], [.39, .48], (.28, .28, .28)><[.41, .52], [.10, .18], [.10, .17], (.48, .11, .11)

A  <[.22, .27], [.42, .52], [.42



3

, .52], (.28, .28, .28) <[.40, .51], [.10, .20], [.10, .19], (.50, .11,.11)> <[.23, .29], [.36, .45], [.34, .42], (.26, .26, .26)

A  <[.38, .49], [.10, .21], [.10, .21], (.50, .11, .11) <[.34, .45], [.

 



4

20, .30], [.19, .39], (.44, .16, .22)> <[.38, .49], [.10, .21], [.10, .21], (.50, .11, .11)

 A <[.38, .49], [.10, .21], [.10, .21], (.50, .11, .11) <[.22, .28], [.40, .50], [.39, .48], (.28, .28, .28)>



 <[.17, .23], [.45, .54], [.42, .59], (.21, .32, .37)

 
 
 
 
 
 
 

 
 
 

                                                                                                                                     (4.25) 

Step 2. Normalize the decision matrix 

Since all the criteria are benefit type, we do not need to normalize the decision 

matrix. 

Step 3. Determine the relative weight of each criterion 

Using Equation (4.17), we obtain the relative weight vector Wch  of criteria as 

follows: 

chW  = (1, 0.875, 0.625)
T
.  

Step 4. Calculate score values 

The score values of each alternative relative to each criterion obtained by Equation 

(4.1) are presented in the Tables (4.1)–(4.3). 

 

Table 4.1 Score values for M1  Table 4.2 Score values for M
2
 

 

 

 

 

 

 

 

Table 4.3 Score values for M
3
 

 

 

 

 

 

 

 C1 C2 C3 

A1 −0.03 0.13 0.49 

A2 0.13 0.13 0.49 

A3 0.56 0.60 −0.04 

A4 0.39 0.13 0.49 

 C1 C2 C3 

A1 0.56 0.54 0.06 

A2 0.40 0.09 0.54 

A3 0.50 0.38 0.06 

A4 −0.03 0.09 0.54 

 C1 C2 C3 

A1 0.07 0.09 0.56 

A2 0.07 0.52 0.13 

A3 0.51 0.37 0.39 

A4 0.51 0.09 −0.03 
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Step 5. Calculate accuracy values 

The accuracy values of each alternative relative to each criterion are presented in 

Tables 4.4–4.6. 

Table 4.4 Accuracy values for M
1
   Table 4.5 Accuracy values for M

2
 

 C1 C2 C3 

A1 0.14 0.30 −0.24 

A2 0.12 −0.23 0.32 

A3 −0.20 0.09 −0.24 

A4 −0.38 −0.23 0.32 

Table 4.6 Accuracy values for M
3
 

 C1 C2 C3 

A1 −0.24 −0.23 0.41 

A2 −0.24 0.30 −0.20 

A3 0.26 0.09 0.12 

A4 0.26 −0.23 −0.38 

 

Step 6. Formulate the dominance matrix 

Using Equation (4.19), we construct dominance matrix for α  = 1. The dominance 

matrices are represented in matrix form (See Equations (4.26)–(4.34)). 

The dominance matrix 1
1  

1
1 = 

1 2 3 4

1

2

3

4

A A A A

A 0 0.18 0.30  0.35

A 0.46 0 0.58 0.30 

A  - 0.74 0.23 0 0.19

 A 0.88 0.74 0.47 0

 
 
 
  
 
 
    

                                                                (4.26) 

The dominance matrix 1
2  

1
2  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0.29 0.18  0.28

A 0.82 0 0.69 0 

A  - 0.51 0.24 0 0.29

 A 0.81 0 0.65 0

 
 
 
  
 
 
 

  

                                                                        (4.27) 

 C1 C2 C3 

A1 −0.38 −0.18 0.21 

A2 −0.20 −0.18 0.21 

A3 0.14 0.36 −0.21 

A4 0.12 −0.18 0.21 
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The dominance matrix 1
3  

1
3  = 

1 2 3 4

1

2

3

4

A A A A

A 0 -1 0  -1

A 0.25 0 0.26 0 

A  0 1 0 1

 A 0.25 0 0.26 0

 
 
 
 
 

  
 
 

                                                                        (4.28) 

The dominance matrix 2
1  

2
1  = 

1 2 3 4

1

2

3

4

A A A A

A 0 -0.46 0.88 0.74

A 0.18 0 0.75 0.58 

A  0.35 0.09 0 0.04

 A 0.30 0.23 0.19 0

 
 

  
  
 
 
 
 

                                                                  (4.29) 

 

The dominance matrix 2
2  

2
2  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0 0.84 0

A 0 0 0.84 0 

A  0.29 0.29 0 0.29

 A 0 0 0.84 0

 
 

 
 
 
 
 

 

                                                                       (4.30) 

The dominance matrix 2
3  

2
3  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0 0.26 0

A 0 0 0.26 0 

A   1 1 0 1

 A 0 0 0.26 0

 
 
 
 
 

   
 
 

          (4.31) 

The dominance matrix 3
1  

3
1  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0 0.78 0.78

A 0 0 0.78 0.78 

A   0.31 0.31 0 0

 A 0.31 0.31 0 0

 
 

  
  
 
 
 
 

      (4.32) 
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The dominance matrix 3
2  

3
2  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0.83 0.65 0

A 0.29 0 0.18 0.29 

A   0.23 0.51 0 0.23

 A 0 0.83 0.65 0

 
 

  
 
 

 
 

  

       (4.33) 

The dominance matrix 3
3  

3
3  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0.94 0.59 1.1

A 0.23 0 0.73 0.15 

A  -0.59 0.18 0 0.23

 A 1.1 0.58 0.94 0

 
 

   
 
 
 
 

   

                                                                  (4.34) 

 

Step 7. Formulate the individual overall dominance matrix 

The individual overall dominance matrix is calculated by the Equation (4.20) and the 

dominance matrices are represented in matrix form (see Equations (4.35)–(4.37)). 

First decision maker’s overall dominance matrix 
1

φ  

1


1 2 3 4

1

2

3

4

A A A A

A 0 0.53 0.47 0.37

= A 1 0 1 0.30 

A  -1.3 0.53 0 0.52

 A 1.5 0.74 0.86 0

 
 

  
  
 

  
 

   

        (4.35) 

Second decision maker’s overall dominance matrix 2
  

2


1 2 3 4

1

2

3

4

A A A A

A 0 0.46 1.5 0.74

A 0.18 0 1.3 0.58 

A  -0.36 0.62 0 0.67

 A 0.30 0.23 0.39 0

 
 

   
   
 

  
 

 

                                       (4.36) 
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Third decision maker’s overall dominance matrix 3
  

3
  = 

1 2 3 4

1

2

3

4

A A A A

A 0 1.8 2 1.9

A 0.52 0 1.3 0.34 

A -0.05 0.02 0 0.46

 A 0.79 . 1.1 1.6 0

 
 

   
  
 

 
 

   

                                                  (4.37) 

Step 8. Aggregate the dominance matrix 

Using Equation (4.21), the aggregate dominance matrix φ  is constructed (see Equation 

(4.38)) as follows: 

  = 

1 2 3 4

1

2

3

4

A A A A

A 0 0.94 1.1 0.53

A 0.10 0 1.23 0.22 

A -0.54 0.38 0 0.23

 A 0.64 . 0.55 0.96 0

 
 

   
   
 

  
 

   

                             (4.38)  

 

Step 9. Calculate global values 

Using Equation (4.22), we calculate the values of i  (i = 1, 2, 3, 4) and represented in 

Table 4.7. 

Table 4.7 Global values of alternatives 

Ai A1 A2 A3 A4 

i  0.49 0.61 1 0 

Step 10. Rank the priority 

Since 3 > 2 > 1 > 4 , alternatives are then preference ranked as follows: A3> A2> 

A1> A4.  

Hence A3 is the best alternative. 

From the illustrative example, we see that the proposed NC-TODIM strategy is more 

suitable for real scientific and engineering applications because it can handle hybrid 

information consisting of INS and SVNS information simultaneously to cope with 

indeterminate and inconsistent information. Thus, NC-TODIM extends the existing 
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decision-making strategies and provides a sophisticated mathematical tool for decision 

makers.  

 

4.5 Rank of alternatives with different values of   

Table 4.8 shows that the ranking order of alternatives depends on the values of the 

attenuation factor, which reflects the importance of the attenuation factor in the NC-

TODIM strategy.  

Table 4.8 Global values and ranking of alternatives for different values of  

Values of   Global Values of Alternative ( i ) Rank Order of Ai 

0.5 
1  = 0, 2  = 0.89, 

3Ω  = 1, 4  = 0.46  

3 > 2 > 4 > 1  

A3> A2> A4> A1 

1 
1  = 0.49, 2  = 0.61, 

3Ω  = 1, 4  = 0  

3 > 2 > 1 > 4  

A3> A2> A1> A4 

1.5 
1  = 0, 2  = 0.72, 

3Ω  = 1, 4  = 0.44  

3 > 2 > 4 > 1  

A3> A2> A4> A1 

2 
1  = 0, 2  = 1, 

3Ω  = 0.81, 4  = 0.38  

2 > 3 > 4 > 1  

A2> A3> A4> A1 

3 
1  = 0, 2  = 0.56, 

3Ω  = 1, 4  = 0.45  

3 > 2 > 4 > 1  

A3> A2> A4> A1 

4.6 Analysis on influence of the parameter α  to ranking order 

The impact of parameter   on ranking order is examined by comparing the ranking 

orders taken with varying the different values of . When   = 0.5, 1, 1.5, 2, 3, ranking 

order are presented in Table 8. We draw Figures 3 and 4 to compare the ranking order 

for different values of . When   = 0.5,   = 1.5 and   = 3, the ranking order is 

unchanged and A3 is the best alternative, while A1 is the worst alternative. When   = 1, 

the ranking order is changed and A3 is the best alternative and A4 is the worst alternative. 

For   = 2, the ranking order is changed and A2 is the best alternative and A1 is the worst 

alternative. From Table 4.8, we see that A3 is the best alternative in four cases and A1 is 

the worst for four cases.  
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Figure 4.3 Global values of the alternatives for different values of attenuation factor   = 

0.5, 1, 1.5, 2, 3. 

 

Figure 4.4 Ranking of the alternatives for   = 0.5, 1, 1.5, 2, 3. 

 

4.7 Comparative analysis and discussion 

On comparing with the existing neutrosophic decision making strategies (Pramanik, 

Biswas et al., 2017; Sahin, and Küçük, 2015; Ye, 2015a; Biswas et al. 2016a,; Sahin, and 

Liu, 2016, 2017; Sahin, 2017; Xu et al., 2017; Liu, and Wang, 2014, 2016; Liu, and 

Tang, 2016;Liu, 2016; Liu et al., 2014) we see that the decision information used in the 
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proposed NC-TODIM strategy is NC numbers, which comprises of interval neutrosophic 

information and single-valued neutrosophic information simultaneously; whereas the 

decision information in the existing literature is either SVNSs or INSs. Since NC 

numbers comprises of much more information, the NC numbers based on the TODIM 

strategy proposed in this chapter is more elegant, typical and more general in 

applications, while the existing neutrosophic decision-making strategies cannot deal with 

the NC number decision-making problem. 

The first decision making paper in NCS environment was studied by Banerjee et al. 

(2017). On comparison with existing GRA-based NCS decision making strategies 

(Banerjee et al., 2017), we observe that the proposed NC-TODIM strategy uses the score, 

and accuracy functions, while the decision making-strategy in (Banerjee et al., 2017) 

uses Hamming distances for weighted grey relational coefficients and standard (ideal) 

grey relational coefficients, and ranks the alternatives based on the relative closeness 

coefficients. Hence, the proposed NC-TODIM strategy is relatively simple in the 

decision making process.  

The decision making strategy proposed by Lu, and Ye (2017) cannot deal with 

group decision makers while the proposed NC-TODIM strategy is more sophisticated as 

it can deal with single as well as group decision makers in the NCS environment.  

On comparison with extended TOPSIS (Pramanik, Dey et al., 2017) with 

neutrosophic cubic information, we observe that nine components involve. Therefore, 

calculation of a weighted decision matrix, a neutrosophic cubic positive ideal solution 

(NCPIS), and a neutrosophic cubic negative ideal solution, the distance measures of 

alternatives from NCPIS and NCNIS (NCNIS,) and entropy weight, and use of an  

aggregation operator are lengthy, time consuming, and hence expensive. The proposed 

NC-TODIM strategy is free from different kinds of typical aggregation operators. The 

calculations required for the proposed strategy are relatively straightforward and time-

saving. Therefore, the final ranking obtained by the proposed strategy is more conclusive 

than those produced by the other strategies, and it is evident that the proposed astrategy 

is accurate and reliable. 

On comparison with the strategy proposed by Zhan et al. (2017), we see that they 

employ score, accuracy, and certainty functions, and a weighted average operator and 

weighted geometric operator of NCSs for decision making problem involving only a 

single decision maker. This reflects that the strategy introduced by Zhan et al. (2017) is 

only applicable for decision making problems involving single decision maker. 
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However, our proposed NC-TODIM strategy is more general as it is capable of dealing 

with group decision-making problems. 

A comparative study is conducted with the existing strategy (Pramanik, Dalapati, 

Alam, Roy et al., 2017) for group decision making under a NCS environment (See Table 

4.9). Since the philosophy oftwo strategies are different, the obtained results (ranking 

order) are different. At a glance, it cannot be said which strategy is superior to the other. 

However, on comparison with similarity measure-based strategy studied in (Pramanik, 

Dalapati, Alam, Roy et al., 2017), we observed that ideal solutions are needed for 

ranking of alternatives but in a real world ideal solution, this is an imaginary case, which 

means that an indeterminacy arises automatically, whereas in our proposed NC-TODIM 

strategy we can calculate the rank of the alternatives based on global values of 

alternatives. So, the proposed NC-TODIM strategy is relatively easy to implement and 

apply for solving MAGDM problems.  

Table 4.9 Ranking order of alternatives using three different decision making 

strategies in the neutrosophic cubic set (NCS) environment. 

Proposed NC-TODIM Strategy Similarity Measure (Pramanik, Dalapati, 

Alam, Roy et al., 2017) 

1  = 0, 2  = 0.89, 3  = 1, 4  = 

0.46 

1  = 0.20, 2  = 0.80, 3  = 0.22, 4  = 0.19 

Ranking order: A3> A2> A4> A1 Ranking order: A2> A3> A1> A4 

 

4.8 Conclusion 

In this study, we proposed a score function and an accuracy function, and 

established their properties. We developed a NC-TODIM strategy, which is capable for 

tackling MAGDM problems affected by uncertainty and indeterminacy represented by 

NC numbers. The standard TODIM, in its original formulation, is only applicable to a 

crisp environment. Existing neutrosophic TODIM strategies deal with single valued 

neutrosophic information or interval neutrosophic information. Therefore, proposed NC-

TODIM strategy demonstrates the advantages of presenting and manipulating MAGDM 

problems with NCSs comprising of the hybrid information of INSs and NSs. 

Furthermore, NC-TODIM strategy that considers the risk preferences of decisionmakers 

is significant to solve MAGDM problems. The proposed NC-TODIM strategy is verified 

to be applicable, feasible, and effective by solving an illustrative example regarding the 
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selection problem of investment alternatives. In addition, we investigate the influence of 

attenuation factor of losses   on ranking the order of alternatives.  

The contribution of this study can be concluded as follows. First, this study utilized 

NCSs to present the interval neutrosophic information and neutrosophic information in 

the MAGDM process. Second, the NC-TODIM strategy established in this chapter is 

simpler and easier than the existing strategy proposed by Pramanik, Dalapati, Alam, Roy 

et al. (2017) for group decision making with neutrosophic cubic information based on 

similarity measure and demonstrates the main advantage of its simple and easy group 

decision making process. Third, TODIM strategy has been extended to the NCS 

environment.Fourth, we defined the NC number. Fifth, we defined the score and 

accuracy functions and proved their basic properties. Sixth, we developed the ranking of 

NC numbers using score and accuracy functions. Therefore, two functions namely, score 

function, accuracy function, and proofs of their basic properties, ranking of NC numbers, 

and NC-TODIM strategy for MAGDM are the main contributions of the chapter. Several 

directions for future research are generated from this study. First, this study employs the 

NC-TODIM strategy to deal with MAGDM. In addition to MAGDM, MAGDM 

problems in a variety of other fields can be solved using the NC-TODIM strategy, 

including logistics center selection, personnel selection, teacher selection, renewable 

energy selection, medical diagnosis, image processing, fault diagnosis, etc. Second, this 

study considers the risk preferences of decision makers i.e., the essence of TODIM, 

while the interrelationship between criteria are ignored. In future research, the NC-

TODIM strategy will be improved to address this deficiency. Third, the proposed 

strategy can only deal with crisp weights of attributes and decision makers, rather than 

NCS, which reflects its main limitation. This limitation will be effectively addressed in our 

future research. Fourth, in our illustrative example, three criteria are considered as an 

example. However, in real world group decision making problems, many other criteria 

should be included. A comprehensive framework for MAGDM problem comprising of all 

relevant criteria should be designed based on prior studies and the proposed NC-TODIM 

strategy in future research. Finally, we conclude that the developed NC-TODIM strategy 

offers a novel and effective strategy for decision makers under the NCS environment, and 

will open up a new avenue of research into the neutrosophic hybrid environment. 
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Chapter 5 

 

Neutrosophic cubic MAGDM method based on 
similarity measure 

 

5.1 Introduction 

Similarity measure is a vital topic in fuzzy set theory, Chen and Hsiao (1995) 

presented comparisons of similarity measures of fuzzy sets. Pramanik and Mondal 

(2015a) studied weighted fuzzy similarity measure based on tangent function for medical 

diagnosis. Hwang and Yang (2013) constructed a new similarity measure between 

intuitionistic fuzzy sets based on lower, upper and middle fuzzy sets. Mondal and 

Pramanik (2015a) developed tangent similarity measures in intuitionistic fuzzy 

environment to deal with medical diagnosis. Ren and Wang (2015) proposed similarity 

measures in interval- valued intuitionistic fuzzy environment and applied it to MADM 

problems. Baccour et al. (2013) presented survey of similarity measures for intuitionistic 

fuzzy sets.  Baroumi and Smarandache (2013b) discussed several similarity measures of 

neutrosophic sets. Majumdar and Samanta (2014) introduced some measures of 

similarity and entropy of single valued neutrosophic sets. Aydogdu (2015a) proposed 

similarity and entropy measure of single valued neutrosophic sets.  Mondal and 

Pramanik (2015c) extended the concept of intuitionistic tangent similarity measure to 

neutrosophic environment. Biswas et al. (2015) studied cosine similarity measure with 

trapezoidal fuzzy neutrosophic numbersto deal with MADM problems.  

 

 

 

 

 

 

The content of this chapter is based on the paper published in“Neutrosophic Sets and Systems” 16, 44-

56, 2017.  
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Aydogdu (2015b) also defined entropy and similarity measures of interval neutrosophic 

sets.Ye (2014a) proposed a similarity measures under interval neutrosophic domain 

using Hamming distance and Euclidean distance. Pramanik and Mondal (2015b) 

proposed cosine similarity measure of rough neutrosophic set and applied it to medical 

diagnosis problems. Pramanik and Mondal (2015c) developed cotangent similarity 

measure of rough neutrosophic sets to deal with medical diagnosis. 

In neutrosophic cubic set environment, similarity measure is yet to appear. To fill the 

research gap, we define similarity measures in neutrosophic cubic set environment and 

develop an MAGDM strategy in neutrosophic cubic set setting. The decision makers’ 

weights and criteria (attributes) weights are described by neutrosophic cubic numbers 

using linguistic variables. The ranking of alternatives is presented in descending order. 

Finally, anillustrative numerical example MAGDMproblem in neutrosophic cubic set 

environment is solved to show the effectiveness of the proposed strategy.  

Rest of the chapter is presented as follows. Section 5.2devotes to define similarity 

measure for neutrosophic cubic sets and prove their basic properties. Section 5.3 presents 

a MAGDM strategy based on similarity measure in neutrosophic cubic set environment. 

Section 5.4 presents a numerical example for a MAGDM problem. Finally, section 5.5 

presents conclusion and future scope of research. 

 

5.2 Similarity measure of NCS 

We define similarity measure for neutrosophic cubic set. 

Definition 5.1  

Let Q1 and Q2 be two NCSs in G. Similarity measure for Q1and Q2 is defined as a 

mapping  

SM: NCS (G) × NCS (G) [0, 1] that satisfies the following properties: 

5.1 0  SM (Q1, Q2) 1 

5.2 SM (Q1, Q2) = 1 iff Q1 = Q2 

5.3 SM (Q1, Q2) = SM (Q2, Q1) 

5.4 If Q1   Q2Q3 then SM (Q1, Q3)  SM (Q1, Q2) and SM (Q1, Q3)  SM (Q2, Q3) for 

all Q1, Q2, Q3 NCS (G). 



 

Neutrosophic cubic MAGDM method based on similarity measure Chapter 5 

82 
 

Similarity measure for two NCSs Q1 and Q2 expressed as 

SM (Q1, Q2) =
n

i

i 1

D1
(1 )

n 9

 ,  

where Di = (│ G1t
 (gi) - G2t

 (gi)│+ │
G1t
 (gi) - G2

t
 (gi)│+ │ G1i

 (gi) - G2i
 (gi)│+ │

G1
i
 (gi) - 

G2
i
 (gi)│+ │ G1f

 (gi) - G2f
 (gi)│+ │

G1
f
 (gi) - G2

f
 (gi)│+ │ R1t (gi) - R2t (gi)│+ │ R1i (gi) - 

R2i (gi)│+ │ R1f (gi) - R2f (gi)│). 

We now prove that the similarity measure satisfies the four stated properties: 

Property 5.1 

0  SM (Q1, Q2) 1 

Proof: If Di has extreme value i.e. Di = 0 or 9, then SM (Q1, Q2) = 1 or 0       (5.1) 

If Di lies between 0 and 9 i.e0<Di<9, then 0<
9

D
i <1 

 0> - iD

9
> - 1 

Adding 1 each part of the above inequality, we obtain 

0< 1 - iD

9
<1 

n

i 1

1
0

n 

 <
n

i

i 1

D1
(1 )

n 9

 <
n

i 1

1
1

n 

 =1 0<
n

i

i 1

D1
(1 )

n 9

 <1 

 0<SM (Q1, Q2) <1              (5.2)   

Combining (5.1) and (5.2), we get 0  SM (Q1, Q2) 1  

Property 5.2 

SM (Q1, Q2) = 1 iff Q1 = Q2 

Proof: 

If Q1 = Q2 , then Di = 0 by the definition of equality. 

SM (Q1, Q2) = )

n

1i
9

iD
1(

n

1



 = 1.☐ 
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Property 5.3  

 SM (Q1, Q2) = SM (Q2, Q1) 

Proof: SM (Q1, Q2) =
n

i

i 1

D1
(1 )

n 9

  ,  

where Di(Q1, Q2) = (│ G1t
 (gi) - G2t

 (gi)│+ │ t 1G
~


(gi) - t 2G
~
 (gi)│+ │ i 1G

~
 (gi) - i 2G

~
 (gi)│+ │ i 1G

~


(gi) - i
2G

~
 (gi)│+ │ f 1G

~
 (gi) - f 2G

~
 (gi)│+ │ f 1G

~
 (gi) - f 2G

~
 (gi)│+ │ t 1R (gi) - t 2R (gi)│+ │ i 1R (gi) 

- i 2R (gi)│+ │ f 1R (gi) - f 2R (gi)│) 

since,│ t 1G
~
 (gi) - t 2G

~
 (gi)│=│ t 2G

~
 (gi) - t 1G

~
 (gi)│,│ t 1G

~


(gi) - t 2G
~
 (gi)│= │ t 2G

~


(gi) - t 1G
~
 (gi)│,│

i 1G
~
 (gi) - i 2G

~
 (gi)│=│ i 2G

~
 (gi) - i 1G

~
 (gi)│,│ i 1G

~
 (gi) - i

2G
~
 (gi)│=│ i

2G
~
 (gi) - i 1G

~
 (gi)│,│ f 1G

~
 (gi) - 

f 2G
~
 (gi)│= │ f 2G

~ (gi) - f 1G
~
 (gi)│,│ f 1G

~
 (gi) - f 2G

~
 (gi)│=│ f 2G

~
 (gi) - f 1G

~
 (gi)│,│ t 1R (gi) - t 2R

(gi)│= │ t 2R (gi) - t 1R (gi)│,│ i 1R (gi) - i 2R (gi)│=│ i 2R (gi) - i 1R (gi)│,│ f 1R (gi) - f 2R (gi)│= │

f 2R (gi) - f 1R (gi)│. 

 Di (Q1, Q2) = Di (Q2, Q1) 

Therefore, SM (Q1, Q2) = SM (Q2, Q1).☐ 

Property 5.4 

If Q1   Q2Q3 , then SM (Q1, Q3)  SM (Q1, Q2) and SM (Q1, Q3)  SM (Q2, Q3) for 

all Q1, Q2, Q3 NCS (G). 

Proof: 

Let Q1   Q2Q3 then, 

t 1G
~
 (gi)  t 2G

~
 (gi)  t 3G

~
 (gi) , t 1G

~


(gi)  t 2G
~
 (gi)  t 3G

~
 (gi), i 1G

~
 (gi)  i 2G

~
 (gi)  i 3G

~
 (gi) 

i 1G
~
 (gi)  i

2G
~
 (gi),  i

3G
~
 (gi), f 1G

~
 (gi)  f 2G

~
 (gi)  f 3G

~
 (gi), f 1G

~
 (gi)  f 2G

~
 (gi)  f 3G

~
 (gi) 

t 1R (gi)  t 2R (gi) t 3R (gi), i 1R (gi) i 2R (gi) i 3R (gi), f 1R (gi) f 2R (gi) f 3R (gi)             (5.3)                   

 

Now  Di(Q1, Q2) = (│ t 1G
~
 (gi) - t 2G

~
 (gi)│+ │ t 1G

~


(gi) - t 2G
~
 (gi)│+ │ i 1G

~
 (gi) - i 2G

~
 (gi)│+ │ i 1G

~


(gi) - i
2G

~
 (gi)│+ │ f 1G

~
 (gi) - f 2G

~
 (gi)│+ │ f 1G

~
 (gi) - f 2G

~
 (gi)│+ │ t 1R (gi) - t 2R (gi)│+ │ i 1R

(gi) - i 2R (gi)│+ │ f 1R (gi) - f 2R (gi)│) 
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And   Di(Q1, Q3) = (│ t 1G
~
 (gi) - t 3G

~
 (gi)│+ │ t 1G

~


(gi) - t 3G
~
 (gi)│+ │ i 1G

~
 (gi) - i 3G

~
 (gi)│+ │ i 1G

~


(gi) - i
3G

~
 (gi)│+ │ f 1G

~
 (gi) - f 3G

~
 (gi)│+ │ f 1G

~
 (gi) - f

3G
~
 (gi)│+ │ t 1R (gi) - t 2R (gi)│+ │ i 1R

(gi) - i 3R
(gi)│+ │ f 1R (gi) - f 3R

(gi)│) 

From (5.3), we conclude that  

Di (Q1, Q3)   Di (Q1, Q2) 


i 1 3D (Q ,Q )

9
 i 1 2D (Q ,Q )

9
 

 - i 1 3D (Q ,Q )

9
 i 1 2D (Q ,Q )

9
  

 [ i 1 3D (Q ,Q )
1 ]

9
  [ i 1 2D (Q ,Q )

1
9

 ] 


n n

i 1 3 i 1 3

i 1 i 1

D (Q ,Q ) D (Q ,Q )1 1
[1- ] [1 ]

n 9 n 9 

    

 SM (Q1, Q3)  SM (Q1, Q2) 

Similarly, we can shows that SM (Q1, Q3)  SM (Q2, Q3). 

This completes the proof. ☐ 

 

5.3 MAGDM strategy based on similarity measure in NCS 

environment 

In this section we propose a new MAGDM strategy based on similarity measure in NCS 

environment. Assume that 1 2 3 n{ , , ,..., }      be a set of n alternatives with criteria 

1 2 3 m{ , , ,..., }       and 1 2 3 rE {E ,E ,E ,...,E } be the r Experts/decision makers. Let 

1 2 3 rΨ { , , ,..., }Ψ Ψ Ψ Ψ  be the weight vector of decision makers, where k > 0 and

r

k
k 1

1


  .  Proposed MAGDM strategy is presented using the following steps: 

Step1. Formation of ideal NCS decision matrix 

Ideal NCS decision matrix is an important matrix for similarity measure of MAGDM. 

Here we construct an ideal NCS matrix in the form 
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M= 

1 2 m

1 11 12 1m

2 21 22 2m

n n1 n2 nm

     ... ...

Q Q ... Q

Q Q Q

. . ... .

Q Q ... .Q

   
 
 
 
 
 
  

                     (5.4) 

Where, ijQ [1,1],[0,0],[0,0],(1,0,0)  for benefit type attributes and 

ijQ [0,0],[1,1],[1,1],(0,1,1)  for cost type attributes, (i = 1, 2, 3, …,n; j = 1, 2, 3, …, 

m) 

Step 2. Construction of NCS decision matrix 

Since r decision makers are involved in the decision making process, the k-th (k = 1, 2, 

3,…, r) decision maker provides the evaluation information of the alternative i (i= 1, 2, 

3,…, n) with respect to criterion j  (j= 1, 2, 3,…, m) in terms of the neutrosophic cubic 

numbers (NCNs). The k-th decision matrix denoted by M
k
 (See Equation (5.5)) is 

constructed as follows: 

M
k
=<Q

k
ij >=

1 2 m

k k k
1 11 12 1m

k k k
2 21 22 2m

k k k
n n1 n2 nm

     ... ...

Q Q ... Q

Q Q Q

. . ... .

Q Q ... .Q

   
 
 
 
 
 
 

 

                    (5.5) 

where k = 1, 2, 3,…, r. i = 1, 2, 3,…, n. j = 1, 2, 3,…, m. 

Step 3. Determination of attribute weight 

Every decision maker provides their own opinion regarding to the attribute weight in 

terms of linguistic variables that can be converted into NCNs. Let k jw ( ) be the attribute 

weight for the attribute j given by the k-th decision maker in term of NCS. We convert 

kw ( )  into fuzzy number as follows: 

F
k j( )w  = 

kj

j

V
(1 ),if

9

0 otherwise

 
  
 
 
 

          (5.6) 



 

Neutrosophic cubic MAGDM method based on similarity measure Chapter 5 

86 
 

where kjV = 

2 2 2 2
k kk kj j j j

2 2 2
k k kj j j

2 2
k kj j

(1 ( )) (1 ( )) ( ( )) ( ( ))t t i i

( ( )) ( ( )) (1 ( ))tf f

( ( )) ( ( ))i f

   

 

         
  

       
 

     

 

Then aggregate weight for the criterion j can be determined as: 

r
F
k j

k 1
j rr

F
k j

k 1 k 1

(1 (1 ( ))w
W

(1 (1 ( ))w



 

  



   

           (5.7) 

Here,
r

j
k 1

W 1


 . 

Step 4. Calculation of weighted similarity measure  

We now calculate weighted similarity measure between ideal matrix M and M
k
 as 

follows: 

 w k k
iS M, M    

=  
T

k k k
1 2 n, ,...,   =

n
km
ij

j
j 1

i 1

1 D
(1 ) W

m 9


 
 

 
         (5.8) 

Here, k =1, 2, 3,…, r. 

Step 5. Ranking of alternatives 

In order to rank alternatives, we propose the formula (see Equation (5.9)): 

r
k
ii k

k 1

                           (5.9) 

We arrange alternatives according to the descending order values of i . The highest 

value of i (i= 1, 2, 3,…, n) reflects the best alternative.  

5.4 Numerical example 

We solve an MAGDM problem adapted from (He & Liu, 2013) to demonstrate the 

applicability and effectiveness of the proposed method. Assume that an investment 

company wants to invest a sum of money in the best option. The investment company 

forms a decision making committee comprising of three experts/decision makers {E1, E2, 

E3}with weight vector Ψ {0.25,0.4,0.35} to make a panel of four alternatives to invest 
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money. The alternatives are Car company ( 1 ), Food company ( 2 ), Computer 

company ( 3 ) and Arms company ( 4 ). Decision makers take decision based on the 

criteria namely, risk analysis ( 1 ), growth analysis ( 2 ), environment impact ( 3 ) and 

criterion weights are provided by the decision makers in terms of linguistic variables that 

can be converted into NCNs (See Table 5.1). 

 

Table 5.1 Linguistic term for rating of attribute/ criterion  

Linguistic terms NCN 

Very important (VI) <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> 

Important (I) <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> 

Medium (M) <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> 

Unimportant (UI) <[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)> 

Very unimportant (VUI) <[.1, .2], [.6, .8], [.7, .9], (.2, .8, .9)> 

Step 1. Formation of ideal NCS decision matrix 

We construct ideal NCS decision matrix (See Equation (5.10).  

M=       (5.10) 

Step 2. Construction of NCS decision matrix 

The NCS decision matrices are constructed for four alternatives with respect to the three 

criteria.  

 

 

 

 

 

 

































)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[4

)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[3

)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[2

)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[)0,0,1(],0,0[],0,0[],1,1[1

321     
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Decision matrix for E1 in NCS form 

M
1
 =  

1 2 3

1

2

<[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)>

<[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.4, .5], [.4,

  





3

 .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

<[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5

4

, .5)>

<[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

 
 
 
 
 
 
  

 

Decision matrix for E2 in NCS form 

M
2
 =  

1 2 3

1

2

                       

 <[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

<[.4, .5], [.4, .5], [.4, .5], (.5,

  





3

 .5, .5)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

<[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.4, .5], [.4, 

4

.5], [.4, .5], (.5, .5, .5)>

 <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

 
 
 
 
 
 
  

 

Decision matrix for E3 in NCS form 

M
3
 =  



































>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

4

3

2

1

321

 

Step 3. Determination of attribute weight 

The linguistic terms shown in Table 5.1 are used to evaluate each attribute. The 

importance of each attribute for every decision maker is rated with linguistic terms 

shown in Table 5.2 Linguistic terms are converted into NCN (See Table 5.3.). 

Table 5.2 Attribute rating in linguistic variables 

 1  2  3  

E1 VI M I 

E2 VI VI M 

E3 M VI M 
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Table 5.3 Attribute rating in NCS 

 1  2  3  

E1 <[.7, .9], [.1, .2], [.1, .2], (.9, 

.2,.2)> 

<[.4, .5], [.4, .5], [.4, .5], (.5, .5, 

.5)> 

<[.6, .8], [.2, .3], [.2, .4], (.8, .3, 

.4)> 

E2 <[.7, .9], [.1, .2], [.1, .2], (.9, 

.2,.2)> 

<[.7, .9], [.1, .2], [.1, .2], (.9, 

.2,.2)> 

<[.4, .5], [.4, .5], [.4, .5], (.5, .5, 

.5)> 

E3 <[.4, .5], [.4, .5], [.4, .5], (.5, .5, 

.5)> 

<[.7, .9], [.1, .2], [.1, .2], (.9, 

.2,.2)> 

<[.4, .5], [.4, .5], [.4, .5], (.5, .5, 

.5)> 

Using Equation (5.6) and Equation (5.7), we obtain the attribute weights as follows:

1 2 3w 0.36, w 0.37, w 0.27.                                 (5.11) 

Step 4. Calculation of weighted similarity measures 

We now calculate weighted similarity measures using the Equation (5.8). 

S
w
( 1M, M ) = 

0.25

0.22

0.19

0.24

 
 
 
 
 
 

, S
w
( 2M, M ) = 

0.18

0.20

0.25

0.22

 
 
 
 
 
 

, S
w
( 3M, M ) = 

0.20

0.21

0.25

0.20

 
 
 
 
 
 

                       (5.12) 

Step 5. Ranking of alternatives 

Using Equation (5.9), we rank the alternatives according to the descending value of 
i (i 

= 1, 2, 3, 4). 

We obtain
1 2 3 40.202, 0.206, 0.232, 0.216       , Therefore the ranking order is

3 4 2 1       3 4 2 1    . 

Hence Computer company ( 3 ) is the best alternative for money investment. 

 

5.5 Conclusion 

In this chapter we have defined similarity measure between neutrosophic cubic 

sets and proved its basic properties. We have developed a new multi attribute group 

decision making strategy based on the proposed similarity measure. We also provide an 

illustrative example for multi attribute group decision making to show its applicability 

and effectiveness. We have employed linguistic variables to present criterion weights 

and presented conversion of linguistic variables into neutrosophic cubic numbers. We 
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have also proposed a conversion formula for neutrosophic cubic number into fuzzy 

number. The proposed strategy can be applied to other MAGDM problems in 

neutrosophic cubic set environment.  We also hope that the proposed strategy will open 

up a new direction of research work in neutrosophic cubic set environment. 
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Chapter 6 

 

NC-VIKOR based MAGDM strategy in 
neutrosophic cubic set environment 

 

6.1 Introduction 

Opricovic (1998) proposed the VIKOR strategy for an MAGDM problem with 

conflicting attributes (Opricovic & Tzeng, 2004, 2007). Bausys and Zavadskas (2015) 

extended the VIKOR strategy to interval neutrosophic set (INS) environment and applied 

it to solve MADM problem. Further, Hung et al. (2017) proposed VIKOR method for 

interval neutrosophic MAGDM. Pouresmaeil et al. (2017) proposed an MAGDM 

strategy based on TOPSIS and VIKOR in single valued neutrosophic set (SVNS) 

environment. Hu et al. (2017) proposed interval neutrosophic projection based VIKOR 

strategy and applied it for doctor selection. Selvakumari et al. (2017) proposed VIKOR 

Method for decision making problem using octagonal neutrosophic soft matrix.VIKOR 

strategy in neutrosophic cubic set (NCS) environment is yet to appear in the literature.To 

fill up the research gap, we propose a new NC-VIKOR strategy to deal with MAGDM 

problems in NCS environment. We also introduce a neutrosophic cubic number 

aggregation operator and prove its basic properties.We solve an MAGDM problem based 

on proposed NC-VIKOR strategy. 

The remainder of the Chapter is organized as follows: Section 6.2 develops a novel 

MAGDM strategy based on NC-VIKOR to solve the MADGM problems with NCS 

environment. 

Section 6.3, solves an illustrative numerical example using the proposed NC-VIKOR in 

NCS environment. Then, Section 6.4 presents the sensitivity analysis. The conclusion of 

the whole chapter and further direction of research are presented in Section 6.5. 

 

The content of this chapter is based on the paper published in “Neutrosophic Sets and Systems” 20, 95-

108, 2018. 
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6.2 VIKOR strategy for solving MAGDM problem in NCS 

environment 

Assume that 1 2 3 r{ , , ,..., }      be a set of r alternatives and 

1 2 3 s{ , , ,..., }       be a set of s attributes. Assume that 1 2 3 sW {w , w , w ,..., w }  be 

the weight vector of the attributes, where kw 0 and
s

k
k 1

w 1


 . Assume that

1 2 3 M
E {E ,E ,E ,...,E }   be the set of M decision makers and 1 2 3 M{ , , ,..., }      be the 

set of weight vector of decision makers, where p  0 and
M

p
p 1

1


  .  

The proposed MAGDM strategy consists of the following steps: 

Step 1. Construction of the decision matrix 

Let DM
p = 

p
r sij( )a   (p = 1, 2, 3, …,t) be the p-th decision matrix, where information about 

the alternative i  provided by the decision maker or expert pE with respect to attribute 

j (j = 1, 2, 3, …, s). The p-th decision matrix denoted by p
DM  (See Equation (6.1)) is 

constructed as follows: 

1 2 s
p p p

p 1 11 12 1s
p p p

2 21 22 2s

p p p

r r1 r2 rs

     
...

a a ... a
DM

a a ... a

. . . .

a a ... a

 
   
 
 
 
 
  

         (6.1) 

Here p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

 

Step 2. Normalization of the decision matrix 

We use Equation (1.2) for normalizing the cost type attributes and benefit type attributes. 

After normalization, the normalized decision matrix (Equation (6.1)) is represented as 

follows (see Equation (6.2)): 
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          (6.2) 

Here, p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step 3. Aggregated decision matrix 

For obtaining group decision, we aggregate all the individual decision matrices (

pDM ,p 1,2,...,M) to an aggregated decision matrix (DM) using the neutrosophic cubic 

numbers weighted aggregation (NCNWA) operator as follows:  

1 2 M
ij ij ij ija NCNWA (a , a ,..., a )  1 2 3 M

1 ij 2 ij 3 ij M ij( a a a ... a )     =

M M M M
(p) (p) (p) (p)

p p p pij ij ij ij
p 1 p 1 p 1 p 1

[ , ],[ , ],t t i i
   

   


       

M M M M M

(p) (p) (p) (p) (p)
p p p p pij ij ij ij ij

p 1 p 1 p 1 p 1 p 1

[ , ], ( , , ]tf f i f
 

    


          


                   (6.3) 

The NCNWA operator satisfies the following properties: 

6.1 Idempotency 

6.2 Monotonicity 

6.3 Boundedness 

Property 6.1 Idempotency 

If all 1 2 M
ij ij ija , a ,... , a a are equal, then 

1 2 M

ij ij ij ij
a NCNWA (a , a ,... ,a ) a


   

Proof: Since,
1 2 M
ij ij ija a ... a a    ,using the Equation (6.3), we obtain 

1 2 M
ij ij ij ija NCNWA (a a ... a )  1 2 3 M

1 ij 2 ij 3 ij M ij( a a a ... a )     =

1 2 3 M( a a a ... a)     =
M M M M

p p p p
p 1 p 1 p 1 p 1

[t , t ],[ i , i ],   

   


       


 


M M M M M

p p p p p
p 1 p 1 p 1 p 1 p 1

[ f , f ], ( t , i , f ] [t , t ],[i , i ],[ f , f ], ( t, i, f ]) a.       

    


           


 

  

































p

rs
*p

2r
*p

r1
*

r

p

s2
*p

22
*p

21
*

2

p

s1
*p

12
*p

11
*

1

s21

p

aaa

aaa

aaa

....

......

 ...

...

DM
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Property 6.2 Monotonicity 

Assume that 1 2 M
ij ij ij{a , a ,..., a }and *1 *2 *M

ij ij ij{a , a ,..., a }be any two set of collections of M 

neutrosophic cubic numbers with the condition p*

ij

p

ij aa  (p = 1, 2,..., M), then 

1 2 M *1 *2 *M
ij ij ij ij ij ijNCNWA (a ,a ,..., a ) NCNWA (a ,a ,..., a ).   

Proof: 

From the given condition
*(p)(p)

ij ijt t
  , we have 

*(p)(p)
ij pp ij

tt
    

M M *(p)(p)
pp ij ij

p 1 p 1

tt


 

    . 

From the given condition
*(p)(p)

ij ijt t
  , we have

*(p)(p)
ij pp ij

tt
    









M

1p
p

)p(*

ij

M

1p

)p(
ijp

tt . 

From the given condition
*(p)(p)

ij iji i
  , we have

*(p)(p)
ij pp ij

ii
    

M M *(p)(p)
pp ij ij

p 1 p 1

ii


 

    . 

From the given condition,
*(p)(p)

ij iji i
  , we have 

*(p)(p)
ij pp ij

ii
    

M M *(p)(p)
pp ij ij

p 1 p 1

ii


 

    . 

From the given condition, 
*(p)(p)

ij ijf f
  , we have

*(p)(p)
ij pp ij

ff
    

M M *(p)(p)
pp ij ij

p 1 p 1

ff


 

    . 

From the given condition,
*(p)(p)

ij ijf f
  , we have

*(p)(p)
ij pp ij

ff
    

M M *(p)(p)
pp ij ij

p 1 p 1

ff


 

    . 

From the given condition
*(p)(p)

ij ijt t , we have 
*(p)(p)

ij pp ij
tt    

M M *(p)(p)
pp ij ij

p 1 p 1

tt
 

    . 

From the given condition
*(p)(p)

ij iji i , we have 
*(p)(p)

ij pp ij
ii    
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M M *(p)(p)
pp ij ij

p 1 p 1

ii
 

    . 

From the given condition
*(p)(p)

ij ijt t , we have
*(p)(p)

ij pp ij
ff    

M M *(p)(p)
pp ij ij

p 1 p 1

ff
 

     

From the above relations, we obtain

1 2 M *1 *2 *M
ij ij ij ij ij ijNCNWA (a ,a ,..., a ) NCNWA (a ,a ,..., a ).   

Property6.3 Boundedness 

Let
1 2 M
ij ij ij{a , a ,...,a } be any collection of M neutrosophic cubic numbers. 

If 
(p) (p) (p) (p) (p) (p)

ij ij ij ij ij ij
p p p pp p

[max{t },[max{t }],[min{ }, min{ }],[min{ }, min{ }],a i i f f
       

p p p
ij ij ij

p pp
(max{ }, min{ }, min{ })t i f   

(p) (p) (p) (p) (p) (p)
ij ij ij ij ij ij

p p p pp p

p p p
ij ij ij

p p p

[min{t },[min{t }],[max{ },max{ }],[max{ },max{ }],a i i f f

(min{ },max{ },max{ }) .t i f

     



 

Then, 
- 1 2 M

ij ij ija NCNWA (a a ... a ) a
  . 

Proof:  

From Property 6.1 and Property 6.2, we obtain 

1 2 M
ij ij ijNCNWA (a ,a ,..., a ) NCNWA (a ,a ,..., a ) a   

   and 

1 2 M
ij ij ijNCNWA (a ,a ,..., a ) NCNWA (a , a ,..., a ) a .   

    

So, we have
- 1 2 M

ij ij ija NCNWA (a ,a ,..., a ) a .
   

Therefore, the aggregated decision matrix is defined as follows: 

1 2 s

1 11 12 1s

2 21 22 2s

r r1 r2 rs

     ...

a a ... a

DM a a ... a

. . . . .

a a ... a

   
 
 

  
 
 
  

                     (6.4) 

Here, i = 1, 2, 3, …, r; j = 1, 2, 3, …, s; p =1, 2, …., M. 
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Step 4. Define the positive ideal solution and negative ideal solution 

ij ijij ij ij ij ij ij ij ij
i i i i i ii i i

a [max ,max ],[min i ,min i ],[min f ,min i ], (max t ,min f ,min f )t t
                (6.5) 

ij ijij ij ij ij ij ij ij ij
i i ii i i i i i

a [min ,min ],[max i ,max i ],[max f ,max i ], (min t ,max f ,max f )t t
                 (6.6)  

Step 5. Compute i  and iZ  

i and iZ represents the average and worst group scores for the alternative Ai respectively 

with the relations   

*
s j ij ij

i
j 1 ij ij

w D(a ,a )

D(a ,a )



 



                                                                                                    (6.7)    

*
j ij ij

i
j

ij ij

w D(a ,a )
Z max

D(a ,a )



 

  
  

  

                                                                                          (6.8)    

Here, wjis the weight of j . 

The smaller value of i corresponds to the better average and the smaller value of iZ

represents worse group scores for alternative Ai. 

Step 6. Calculate the values of i (i = 1, 2, 3, …, r) 

i i

i

( ) (Z )Z
(1 )

( ) ( )Z Z

 

   

  
    

  
                                                                              (6.9)   

Here, i i i i
i i

min , max       , i i i i
i i

Z min Z , Z max Z                              (6.10)   

and   depicts the decision making mechanism coefficient. If 0.5  , it is for “the 

maximum group utility”; If 0.5  , it is “ the minimum regret”; and it is both if 0.5  . 

Step 7. Rank the priority of alternatives 

Rank the alternatives by i , i  and iZ  according to the rule of traditional VIKOR 

strategy.  

Step 8. Determine the compromise solution 

Obtain alternative 1Φ as a compromise solution, which is ranked as the best by the 

measureφ (Minimum) if the following two conditions are satisfied: 
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Condition 1. Acceptable stability: 2 1 1
φ(Φ ) φ(Φ )

(r 1)
 


, where 1Φ , 2Φ  are the 

alternatives with first and second position in the ranking list by φ ;  r is the number of 

alternatives. 

Condition 2. Acceptable stability in decision making: Alternative 1Φ must also be the 

best ranked by   or/and Z. This compromise solution is stable within whole decision 

making process. 

If one of the conditions is not satisfied, then a set of compromise solutions is proposed as 

follows: 

 Alternatives 1Φ and 2Φ are compromise solutions if only condition 2 is not 

satisfied, or 

 1Φ , 2Φ , 3Φ ,…, rΦ  are compromise solutions if condition 1 is not satisfied 

and rΦ  is decided by constraint 
r 1 1

φ(Φ ) φ(Φ )
(r 1)

 


for maximum r. 

 

6.3 Illustrative example 

To demonstrate the feasibility, applicability and effectiveness of the proposed strategy, 

we solve an MAGDM problem adapted from (He & Liu, 2013). We assume that an 

investment company wants to invest a sum of money in the best option. The investment 

company forms a decision making board involving of three members (E1, E2, E3) who 

evaluate the four alternatives to invest money. The alternatives are Car company ( 1 ), 

Food company ( 2 ), Computer company 3( )  and Arms company ( 4 ). Decision 

makers take decision to evaluate alternatives based on the attributes namely, risk factor (

1 ), growth factor ( 2 ), environment impact ( 3 ). We consider three criteria as 

benefit type based on Pramanik, Dalapati, Alam et al., 2017. Assume that the weight 

vector of attributes is TW (0.36,0.37,0.27) and weight vector of decision makers or 

experts is T(0.26,0.40,0.34)  . Now, we apply the proposed MAGDM strategy using 

the following steps. 
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Step 1. Construction of the decision matrix 

We construct the decision matrices as follows: 

Decision matrix for DM
1
 in neutrosophic cubic number form: 

1 2 3

1

2

<[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)>

<[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.4, .5], [.4,

  





3

 .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

<[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5

4

, .5)>

<[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

 
 
 
 
 
 
  

                                                                                                                                     (6.11)               

 Decision matrix for DM
2
 in neutrosophic cubic number form: 

1 2 3

1

2

                       

 <[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

<[.4, .5], [.4, .5], [.4, .5], (.5,

  





3

 .5, .5)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

<[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.4, .5], [.4, 

4

.5], [.4, .5], (.5, .5, .5)>

 <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

 
 
 
 
 
 
  

           (6.12) 

Decision matrix for DM
3
 in neutrosophic cubic number form: 

1 2 3

1

2

 <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)>

 <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.7, .9], [.

  





3

1, .2], [.1, .2], (.9, .2,.2)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)>

 <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.6, .8], [.2, .3], [.2, .4], (.8, .3, .4)> <[.6, .8], [.2, .3], [.2, .4], (.8, 

4

.3, .4)>

 <[.7, .9], [.1, .2], [.1, .2], (.9, .2,.2)> <[.4, .5], [.4, .5], [.4, .5], (.5, .5, .5)> <[.3, .4], [.5, .6], [.5, .7], (.4, .6, .7)>

 
 
 
 
 
 
 
 

                                                                                                                                     (6.13) 

Step 2. Normalization of the decision matrix 

Since all the criteria are considered as benefit type, we do not need to normalize the 

decision matrices (DM
1
, DM

2
, DM

3
). 

Step 3. Aggregated decision matrix 

Using Equation (6.3), the aggregated decision matrix of (6.11, 6.12, 6.13) is presented 

below: 

1 2 3

1

2

<[.44, .56], [.36, .46], [.36, .51], (.56, .46,.50)> <[.48, .60], [.32, .42], [.32, .42], (.60, .42,.42)> <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)>

<[.45, .58], [.35, .45], [.35, .

  





3

47], (.58, .45, .47)> <[.50, .64], [.30, .40], [.30, .40], (.64, .40, .40)> <[.60, .76], [.20, .30], [.20, .30], (.76, .30,.30)>

<[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)> <[.64, .84], [.16, 

4

.26], [.16, .32], (.84, .26, .32)> <[.47, .60], [.33, .43], [.33, .47], (.60, .43, .47)>

<[.56, .73], [.24, .34], [.24, .41], (.73, .34, .41)> <[.40, .50], [.40, .50], [.40, .50], (.50, .50, .50)> <[.56 , .73], [.24, .34], [.24, .37], (.73, .34,.37)>

 
 
 
 
 
 
 
 

                                                                                                                                     (6.14) 
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Step 4. Define the positive ideal solution and negative ideal solution 

The positive ideal solution ija
= 

1 2 3

<[.62, .80], [.18, .28], [.18, .28], (.8 0, .28,.28)> <[.64, .84], [.16, .26], [. 16, .32], (.84, .26,.32)> <[.62, .80], [. 18, .28], [.18, .28], (.80, .28, .28)>

  

and the negative ideal solution    ija 

1 2 3

<[.44, .56], [.36, .46], [.36, .51], (.56, .46,.50)> <[.40, .50], [.40, .50], [.40, .50], (.50, .50,.50)> <[.47, .60], [.33, .43], [.33, .43], (.60, .43, .47)>

  

 

Step 5. Compute i  and iZ  

Using Equation (6.9) and Equation (6.10), we obtain 

1

0.36 0.2 0.37 0.16 0.27 0
0.43,

0.37 0.25 0.16

       
         

     
 

2

0.36 0.18 0.37 0.14 0.27 0.02
0.42,

0.37 0.25 0.16

       
         

     
 

3

0.36 0 0.37 0 0.27 0.19
0.32,

0.37 0.25 0.16

       
         

     
 

4

0.36 0.08 0.37 0.25 0.27 0.07
0.57.

0.37 0.25 0.16

       
         

     
 

And 1

0.36 0.2 0.37 0.16 0.27 0
Z max , , 0.24,

0.37 0.25 0.16

        
       

      
 

2

0.36 0.18 0.37 0.14 0.27 0.02
Z max , , 0.21,

0.37 0.25 0.16

        
       

      
 

3

0.36 0 0.37 0 0.27 0.19
Z max , , 0.32,

0.37 0.25 0.16

        
       

      
 

4

0.36 0.08 0.37 0.25 0.27 0.07
Z max , , 0.37.

0.37 0.25 0.16

        
       

      
 

Step 6. Calculate the values of i  

Using Equations (6.11), (6.12) and 0.5  , we obtain

1

(0.43 0.32) (0.24 0.21)
0.5 0.5 0.31,

0.25 0.16

 
       

2

(0.42 0.32) (0.21 0.21)
0.5 0.5 0.2,

0.25 0.16

 
       
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3

(0.32 0.32) (0.32 0.21)
0.5 0.5 0.34,

0.25 0.16

 
       

4

(0.57 0.32) (0.37 0.21)
0.5 0.5 1

0.25 0.16

 
      . 

Step 7. Rank the priority of alternatives 

The preference ranking order of the alternatives is presentedin Table 6.1 

Table 6.1 Preference ranking order and compromise solution based on  , Z and   

 
1  2  3  4  Ranking Compromise 

solution 

  0.43 0.42 0.32 0.57 
2 1 3 4  2  

Z 0.24 0.21 0.32 0.37 
2 1 3 4  2  

( 0.5)  

 

0.31 0.20 0.34 1 
2 1 3 4  2  

Step 8: Determine the compromise solution 

The preference ranking order based on in decreasing order and alternative with best 

position is 2 with 2( )  = 0.20, and second best position 1 with 1( )  = 0.31. 

Therefore,  1 2( ) ( ) 0.11 0.333       (since, r = 4; 1/(r-1) = 0.333), which does not 

satisfy the condition 1 

(
2 1 1

φ(Φ ) φ(Φ )
(r 1)

 


), but alternative 2 is the best ranked by , Z, which satisfies 

the condition 2. 

Therefore, we obtain the compromise solution as follows: 

1 2( ) ( ) 0.11 0.333      , 

3 2( ) ( ) 0.14 0.333      , 

4 2( ) ( ) 0.80 0.333      . 

So 1 2 3, ,   are compromise solutions. 

 

6.4 The influence of parameter   

Table 6.1shows how the ranking order of alternatives i( ) changes with the change 

of the value of   



 

NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment Chapter 6 

101 
 

Table 6.2 Values of i (i = 1, 2, 3, 4) and ranking of alternatives for different values 

of  . 

Values of   Values of i  Preference order  

 = 0.1 
1φ = 0.22, 2φ = 0.04, 3φ = 0.62, 4φ = 1 2 1 3 4  

 = 0.2 
1φ = 0.24, 2φ = 0.08, 3φ = 0.55, 4φ = 1 2 1 3 4  

 = 0.3 
1φ = 0.26, 2φ = 0.12, 3φ = 0.48, 4φ = 1 2 1 3 4  

 = 0.4 
1φ = 0.29, 2φ = 0.16, 3φ = 0.41, 4φ = 1 2 1 3 4  

 = 0.5 
1φ = 0.31, 2φ = 0.2, 3φ = 0.34, 4φ = 1 2 1 3 4  

 = 0.6 
1φ = 0.34, 2φ = 0.24, 3φ = 0.28, 4φ = 1 2 3 1 4  

 = 0.7 
1φ = 0.36, 2φ = 0.28, 3φ = 0.21, 4φ = 1 3 2 1 4  

 = 0.8 
1φ = 0.39, 2φ = 0.32, 3φ = 0.14, 4φ = 1 3 2 1 4  

 = 0.9 
1φ = 0.42, 2φ = 0.36, 3φ = 0.07, 4φ = 1 3 2 1 4  

 

Figure 6.1 represents the graphical representation of alternatives ( iA ) versus i (i = 

1, 2, 3, 4) for different values of  . 
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Figure 6.1 Graphical representation of ranking of alternatives for different values of . 
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6.5 Conclusion 

In this chapter, we have extended the traditional VIKOR strategy to NC-VIKOR 

in neutrosophic cubic set environment. We introduced neutrosophic cubic number 

weighted aggregation (NCNWA) operator and proved its three basic properties. We 

developed a novel NC-VIKOR based MAGDM strategy in neutrosophic cubic set 

environment. Finally, we solve a MAGDM problem to show the feasibility, applicability 

and efficiency of the proposed MAGDM strategy. We have presented a sensitivity 

analysis to show the impact of different values of the decision making mechanism 

coefficient on ranking order of the alternatives. The proposed NC-VIKOR based 

MAGDM strategy can be employed to solve a variety of problems such as logistics 

center selection (Pramanik, Dalapati et al., 2016, 2018), teacher selection (Pramanik & 

Mukhopadhyaya, 2011), renewable energy selection (San Cristóbal, 2011), fault 

diagnosis (Ye, 2016), brick selection (Mondal, & Pramanik, 2014a, 2015d), weaver 

selection (Dey et al., 2015), etc. 
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Chapter 7 

 

NC-cross entropy based MADM strategy in 
neutrosophic cubic set environment 

 

 

7.1 Introduction 
 

Ye (2013) defined cross entropy for SVNSs and employed it solve to MADM 

problems. To remove the drawbacks of cross entropy (2013), Ye (2015b) proposed 

improved cross entropy for SVNSs. In the same study, Ye (2015b) also proposed new 

cross entropy for INSs. Tian et al. (2015) proposed a cross entropy for interval 

neutrosophic set (INS) environments and employed it to MADM problems. Sahin (2017) 

proposed an interval neutrosophic cross entropy measure based on fuzzy cross entropy 

and single valued neutrosophic cross entropy measures and applied it to MADM 

problems. Recently, Pramanik, Dalapati, Alam, Smarandache  et al. (2018) proposed a 

novel cross entropy, namely, NS-cross entropy in SVNS environment and proved its 

basic properties. In the same research, Pramanik, Dalapati, Alam, Smarandacheet al. 

(2018) also proposed weighted NS-cross entropy and employed it to MAGDM problem. 

Furthermore, Dalapati et al. (2017) extended NS-cross entropy in INS environments and 

employed it for solving MADM problems. Pramanik, Dey et al. (2018) developed two 

new MADM strategies based on cross entropy measures in bipolar neutrosophic set 

(BNS) and interval BNS environment. 

Cross entropy measure is yet to appear in NCS environment. Since MADM strategy 

based on cross entropy is not studied in the literature, we move to propose a 

comprehensive NC-cross entropy-based strategy for tackling MADM in the NCS 

environment. This study develops a novel NC-cross entropy-based MADM strategy.  

 

 

The content of this chapter is based on the paper published in “Mathematics”, 6, 67, 

2018.doi:10.3390/math6050067. 
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The remainder of the Chapter is presented as follows: Section proposes an NC-cross 

entropy measure and weighted NC-cross entropy measure and establishes their basic 

properties. Section 7.3devotes to develop MADM strategy using NC-cross entropy. 

Section 7.4 provides an illustrative numerical example to show the applicability and 

validity of the proposed strategy in NCS environments. Section 7.5 presents briefly the 

contribution of the chapter. Section 7.6 offers conclusion and the future scope of 

research. 

 

7.2 NC-Cross-entropy measure in NCS environment 

Definition 7.1 NC-cross entropy measure 

Let 1Q and 2Q be any two NCSs in 1 2 3 nU {u ,u ,u ,..., u } . Then, neutrosophic cubic 

cross-entropy measure of Q1and Q2 is denoted by NC 1 2CE (Q ,Q )  and defined as 

follows: 

NC 1 2

Qi iQ Q Qi i 21 2 1
n

2 2 22

Q Qi ii 1 Q i i1 2 Q1 2

ii iQ Q Q1 2 1

2 2

i iQ Q1 2

CE (Q , Q )

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
1

= 
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 T8 u uT

2 ( ( ) )2 ( ) ( ) 1 T uu uT T

1 ( ) 1 ( )u uT T

  

  


 

 

   
    

    
            




 


  

iQ2

22

i iQ Q1 2

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

(1 ( ))uT

1 (1 ( )) 1 ( ( ))1 Tu uT

2 ( ( ) ) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI





  

  

 
 

 
     
 

 
  

  
        
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

Qi iQ Q Qi i 21 2 1

2 2 2

Q Qi i Q i1 2 Q1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 (u uF F uF

  

  

  

  

 
   

  
        
 

 


      
2

i( ))1 F u

 
 

 
 
 
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i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i iQQ1 2 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

        

 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i iQQ1 2 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
     
             

 (7.1) 

Theorem 7.1 Let  Q ,Q 21  be any two NCSs in U. The NC-cross entropy measure

NC 1 2CE (Q , Q ) satisfies the following properties:  

i. NC 1 2CE  (Q , Q ) 0 , iu U.   

ii. NC 1 2CE (Q , Q ) 0 iff Q Qi i1 2
(u ) (u ),T T

  i iQ Q1 2
(u ) (u )T T

  , Q Qi i1 2
(u ) (u )I I

  , 

i iQ Q1 2
(u ) (u )I I

  , Q Qi i1 2
(u ) (u )F F

  , i iQ Q1 2
(u ) (u )F F

   and Q Qi i1 2
(u ) (u ),T T

Q Q Q Qi i i i1 2 1 2
(u ) (u ), (u ) (u )I I F F  , iu U.   

iii. c c
NC 1 2 NC 1 2CE (Q , Q ) CE  (Q , Q ) , iu U.   

iv. NC 1 2 NC 2 1CE (Q , Q ) CE (Q , Q ) , iu U.   

Proof of Theorem 7.1 

i. For all values of iu U , Q i1
( ) 0uT  , Q i2

( ) 0uT  , Q Qi i1 2
( ) ( ) 0u uT T  ,  

2

Q i1
1 ( ) 0uT  ,

2

Q i2
1 ( ) 0uT  , iQ1

( )) 0(1 T u  , Q i2
(1 ( )) 0uT  ,  

Qi iQ 21
( )) (1 ( )) 0(1 T u uT   , 

2

iQ1
1 ( )) 0(1 T u  , 

2

iQ2
1 ( )) 0(1 T u  . 

Then,  
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Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

  (7.2) 

Similarly,  

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i i1 2 QQ 2

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))u (1 II I (1 Iu u

 
  

  
       
 

            (7.3) 

and 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
       
 

      (7.4) 

Again, 

For all values of iu U , Q i1
( ) 0uT

  , Q i2
( ) 0uT

  , Q Qi i1 2
( ) ( ) 0u uT T

   , 

2

Q i1
1 ( ) 0uT

  , 
2

Q i2
1 ( ) 0uT

  , iQ1
( ( ) ) 01 T u


 , Q i2

(1 ( )) 0uT
  , 

Qi iQ 21
( ( ) ) (1 ( )) 01 T u uT
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2
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
  , 

2
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1 (1 ( )) 0uT
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Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT
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  

 
  

   
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 

    (7.5) 

and iQ1
( ) 0uT

  , iQ2
( ) 0uT

  , i iQ Q1 2
( ) ( ) 0u uT T

   , 
2

iQ1
1 ( ) 0uT

  , 

2

iQ2
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 , iQ2

(1 ( )) 0uT
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, 
2

iQ1
1 ( ( ) ) 01 T u


  , 

2

iQ2
1 (1 ( )) 0uT
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i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 T u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  
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 
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   
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 

  (7.6) 

Similarly, we can show that  
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  

 
   

  
        
 

  (7.8)

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
        
 

    (7.9) 

and 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

   (7.10) 

Adding Equation (7.2) to Equation (7.10), we obtain NC 1 2CE (Q , Q ) 0 . 

ii. 
Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

Q Qi i1 2
( ) ( )u uT T                                                      (7.11) 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i1 2 QQ 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0,

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
       
 

 

Q Qi i1 2
( ) ( )u uI I            (7.12) 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
       
 

 

QQ i i21
( ) ( )F u uF , For all values of iu U .        (7.13) 

Again,  
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Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

  

 
  

  
        
 

Q Qi i1 2
( ) ( )u uT T

         (7.14)
 

i iJQi iQ Q Q211 2

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
  

  
        
 

 

i iQ Q1 2
( ) ( )T u uT

 
            (7.15) 

- -- -
Qi iQ Q Qi i 21 2 1

2 2 22- - --
Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) -(1- ( ))1-I2 ( ) - ( ) u uIu uI I
+ 0

1+ ( ) + 1+ ( ) 1+ (1- ( )) + 1+ ( ( ))u uI I 1-Iu uI

 
 

 
 
 

 

Q Qi i1 2
( ) ( )u uI I

             (7.16)
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
   

  
        
 

 

i iQ Q1 2
( ) ( )I u uI

    (7.17)

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
        
 

 

Q Qi i1 2
( ) ( )u uF F

            (7.18)
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

 

i iQ Q1 2
( ) ( )u uF F

   , for all values of iu U.                                       (7.19)  

From, Equation (7.11) to Equation (7.19), we obtain NC 1 2CE (Q , Q ) 0 iff

Q Qi i1 2
(u ) (u ),T T

  i iQ Q1 2
(u ) (u )T T

  , Q Qi i1 2
(u ) (u )I I

  , i iQ Q1 2
(u ) (u )I I

  , 

Q Qi i1 2
(u ) (u )F F

  , i iQ Q1 2
(u ) (u )F F

   and 

Q Q Q Q Q Qi i i i i i1 2 1 2 1 2
(u ) (u ), (u ) (u ), (u ) (u )T T I I F F    for all iu U.   
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iii. 

We have, c c
NC 1 2CE (Q , Q )  

ci i i ic c cQQ Q Q11 2 2
n

2 2 2 2
i 1

ci i i ic c c QQ Q Q 21 2 1

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Tu u u uT T T

1
= 

8 1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu u u uT T T

  

  

   
     
   

    
   

            



i i i ic c c cQ Q Q Q
1 2 1 2

2 2 2 2

i i i ic c c cQ Q Q Q
1 2 1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Tu u u uT T T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu u u uT T T

  

  

 
   
 

  
 

        
 

 

ci i i ic c cQQ Q Q11 2 2

2 2 2 2

ci i i ic c c QQ Q Q 21 2 1

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Iu u u uI I I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu u u uI I I

  

  

 
   
 

  
 

        
 

i i i ic c c cQ Q Q Q
1 2 1 2

2 2 2 2

i i i ic c c cQ Q Q Q
1 2 1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Iu u u uI I I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu u u uI I I

  

  

 
   
 

  
 

        
 

 

ci i i ic c cQQ Q Q11 2 2

2 2 2 2

ci i i ic c c QQ Q Q 21 2 1

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu u u uF F F

  

  

 
   
 

  
 

        
 

 

i i i ic c c cQ Q Q Q
1 2 1 2

2 2 2 2

i i i ic c c cQ Q Q Q
1 2 1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu u u uF F F

  

  

 
   
 

  
 

        
 

 

cc c c Qi iQ Q Qi i 21 2 1

2 2 2 2
c c ccQ Qi i i iQQ1 2 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
 

       
 
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cc c c Qi iQ Q Qi i 21 2 1

2 2 2 2
c c ccQ Qi i iQQ1 2 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
 

       
 

 

cc c c Qi iQ Q Qi i 21 2 1

2 2 2 2
c c ccQ Qi i i iQQ1 2 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
     
             

Qi iQ Q Qi i21 1 2
n

2 2 22

Q Qi ii 1 Q i i 1 2Q1 2

2 ( ( ) ) (1 ( ))1 T 2 ( ) ( )u uT u uT T
1

= 
1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 T T T8 u uT

   

  


   
    

    
           




i i i iQQ Q Q21 1 2

2 2 22

i ii i Q QQ Q 1 21 2

2 ( ( ) ) (1 ( )) 2 ( ) ( )1 T u uT u uT T

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 T u uT Tu uT

   

  

 
   

  
       
 

 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi iQ i i 1 2Q1 2

2 ( ( ) ) (1 ( ))1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 I I Iu uI

   

  

 
   

  
       
 

 

i i i iQQ Q Q21 1 2

2 2 22

i ii i Q QQ Q 1 21 2

2 ( ( ) ) (1 ( )) 2 ( ) ( )1 I u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 I u uI Iu uI

   

  

 
   

  
       
 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi iQ i i 1 2Q1 2

2 ( ( ) ) (1 ( ))1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 F F Fu uF

   

  

 
   

  
       
 

i i i iQQ Q Q21 1 2

2 2 22

i ii i Q QQ Q 1 21 2

2 ( ( ) ) (1 ( )) 2 ( ) ( )1 F u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 F u uF Fu uF

   

  

 
   

  
       
 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi ii i 1 2QQ 21

2 ( )) (1 ( ))(1 T 2 ( ) ( )u uT u uT T

1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 T T T(1 Tu u

 
   

  
      
 
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Qi iQ Q Qi i21 1 2

2 2 22

Q Qii i 1 2QQ 21

2 ( )) (1 ( ))(1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 (u)1 ( )) 1 ( )) u(1 I I I(1 Iu u

 
   

  
      
 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi ii i 1 2QQ 21

2 ( )) (1 ( ))(1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 F F F(1 Fu u

 
     

  
       

  

 

Qi iQ Q Qi i 21 2 1
n

2 2 22

Q Qi ii 1 Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
1

= 
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 T8 u uT

  

  


   
    

    
            




i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 T u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
   

  
        
 

 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
        
 

 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
   

  
        
 

 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
        
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i1 2 QQ 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
       
 

 



 

NC-cross entropy based MADM strategy in neutrosophic cubic set environment  Chapter 7 

112 
 

Qi iQ Q Qi i 21 2 1
NC 1 2

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
CE (Q , Q ).

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
     

  
        

  

iv. 

Since, iu U  , for a single valued part, we obtain: 

Q Q Q Qi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T   , Q Q Q Qi i i i1 2 2 1

( ) ( ) ( ) ( )u u u uI I I I   , 

Q Q Q Qi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F   , 

Q Q Qi i i iQ 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 T u u u uT T T      , 

Q Q Q Qi i i i1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I       , 

Q Q Qi i i iQ 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 F u u u uF F F      . 

Then, 

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T       , 

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uI I I I       ,

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uF F F F       , 

2 2 2 2

Q Q Qi i i iQ 2 2 11
1 ( )) 1 (1 ( )) 1 ( ( )) 1 (1 ( ))(1 T u u u uT T T          , 

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 (1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))u u u uI I I I           , 

2 2 2 2

Q Q Qi i i iQ 2 2 11
1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))(1 F u u u uF F F          , 

iu U.   

For the interval neutrosophic part, we obtain 

i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T

      , i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( )u u u uI I I I

      , 

i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F

      , 

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uT T T T

          , 
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i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I

          , 

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uF F F F

          . 

Then, we obtain
2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T

          , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uI I I I

          , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uF F F F

          , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uT T T T

              , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uI I I I

              , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uF F F F

              , 

iu U.   

Similarly, i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T

      , i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( )u u u uI I I I

      , 

i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F

      , 

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uT T T T

          ,

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I

          , 

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uF F F F

          , then 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T

          , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uI I I I

          , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uF F F F

          , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uT T T T

              , 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uI I I I

              , 
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2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uF F F F

              , iu U.   

Thus, NC 1 2 NC 2 1CE  (Q , Q ) CE (Q , Q ) .□ 

Definition 7.2 Weighted NC-cross-entropy measure 

We consider the weight iw  (i = 1, 2, 3,…, n) of ui  (i = 1, 2, 3, …, n) with 

n

i i
i 1

w [0,1]and w 1.


  Then, a neutrosophic cubic weighted cross entropy measure 

between 21 Qand Q can be defined as w
NC 1 2CE  (Q , Q )  

n Qi iQ Q Qi i 21 2 1
i

2 2 22i 1
Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T1
= w

8
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

   

 
   

   
        
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 T u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
   

  
        
 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
        
 

 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

Qi iQ Q Qi i 21 2 1

2 2 2

Q Qi i Q i1 2 Q1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 (u uF F uF

  

  

  

  

 
   

  
        
 

 


      
2

i( ))1 F u

 
 

 
 
 

 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 
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Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i1 2 QQ 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
       
 

 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
   

  
       
 

    (7.20) 

Theorem 7.2 Let 1 2Q , Q be any two NCSs in U. Then, weighted NC-cross entropy 

measure w
NC 1 2CE (Q , Q ) satisfies the following properties:  

i. w
NC 1 2CE (Q , Q ) 0 , iu U.   

ii.
w
NC 1 2CE (Q , Q ) 0 iff Q Qi i1 2

(u ) (u ),T T
  i iQ Q1 2

(u ) (u )T T
  , Q Qi i1 2

(u ) (u )I I
  , 

i iQ Q1 2
(u ) (u )I I

  , Q Qi i1 2
(u ) (u )F F

  , i iQ Q1 2
(u ) (u )F F

   and Q Qi i1 2
(u ) (u ) ,T T

Q Q Q Qi i i i1 2 1 2
(u ) (u ), (u ) (u )I I F F  , iu U.   

iii.
w w c c
NC 1 2 NC 1 2CE (Q , Q ) CE (Q , Q ) , iu U.   

iv. 
w w
NC 1 2 NC 2 1CE (Q , Q ) CE (Q , Q ) , iu U.   

Proof of Theorem 7.2 

i. 

For all values of iu U , Q i1
( ) 0uT  , Q i2

( ) 0uT  , Q Qi i1 2
( ) ( ) 0u uT T  , 

2

Q i1
1 ( ) 0uT  , 

2

Q i2
1 ( ) 0uT  , iQ1

( )) 0(1 T u  , Q i2
(1 ( )) 0uT  , 

Qi iQ 21
( )) (1 ( )) 0(1 T u uT   , 

2

iQ1
1 ( )) 0(1 T u  , 

2

iQ2
1 ( )) 0(1 T u  . 

Then, 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

  (7.21) 
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Similarly,  

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i i1 2 QQ 2

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))u (1 II I (1 Iu u

 
  

  
       
 

          (7.22) 

and 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
       
 

    (7.23) 

Again, for all values of iu U , Q i1
( ) 0uT

  , Q i2
( ) 0uT

  , Q Qi i1 2
( ) ( ) 0u uT T

   , 

2

Q i1
1 ( ) 0uT

  ,
2

Q i2
1 ( ) 0uT

  , iQ1
( ( ) ) 01 T u


 , Q i2

(1 ( )) 0uT
  , 

Qi iQ 21
( ( ) ) (1 ( )) 01 T u uT

    ,
2

iQ1
1 ( ( ) ) 01 T u


  , 

2

Q i2
1 (1 ( )) 0uT

    

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

  

 
  

   
        
 

 (7.24) 

and 

iQ1
( ) 0uT

  , iQ2
( ) 0uT

  , i iQ Q1 2
( ) ( ) 0u uT T

   , 
2

iQ1
1 ( ) 0uT

  , 

2

iQ2
1 ( ) 0uT

  , 

iQ1
( ( ) ) 01 T u


 , iQ2

(1 ( )) 0uT
  , i iQQ 21

( ( ) ) (1 ( )) 01 T u uT
    ,

2

iQ1
1 ( ( ) ) 01 T u


  , 

2

iQ2
1 (1 ( )) 0uT

    

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 T u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
   

   
        
 

 (7.25) 
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Similarly, we can show that 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
        
 

  (7.26)

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
   

  
        
 

      (7.27) 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
        
 

   (7.28) 

and 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

   (7.29)  

Adding Equation (7.21) to Equation (7.29), and using
n

i i
i 1

w [0,1], w 1


  , we have 

w
NC 1 2CE  (Q , Q ) 0.  

Hence, this completes the proof.☐ 

ii. 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

 

Q Qi i1 2
( ) ( )u uT T            (7.30) 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i1 2 QQ 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
       
 

 

Q Qi i1 2
( ) ( )u uI I              (7.31) 



 

NC-cross entropy based MADM strategy in neutrosophic cubic set environment  Chapter 7 

118 
 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
       
 

 

QQ i i21
( ) ( )F u uF , For all values of iu U .      (7.32) 

Again,  

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

  

 
  

  
        
 

 

Q Qi i1 2
( ) ( )u uT T

             (7.33) 

i iJQi iQ Q Q211 2

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
  

  
        
 

 

i iQ Q1 2
( ) ( )T u uT

             (7.34) 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 I2 ( ) ( ) u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
        
 

 

Q Qi i1 2
( ) ( )u uI I

              (7.35) 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

  

  

 
   

  
        
 

 

i iQ Q1 2
( ) ( )I u uI

           (7.36)

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uF F 1 Fu uF

  

  

 
  

  
        
 

 

Q Qi i1 2
( ) ( )u uF F

             (7.37) 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F
0

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

 

i iQ Q1 2
( ) ( )u uF F

   , for all values of iu U.       (7.38) 
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Using Equation (7.30) to Equation (7.38) and
n

i i
i 1

w [0,1], w 1


  , iw 0 , we have 

w
NC 1 2CE (Q , Q ) 0 iff Q Qi i1 2

(u ) (u ),T T
  i iQ Q1 2

(u ) (u )T T
  , Q Qi i1 2

(u ) (u )I I
  , 

i iQ Q1 2
(u ) (u )I I

  , Q Qi i1 2
(u ) (u )F F

  , i iQ Q1 2
(u ) (u )F F

  and Q Qi i1 2
(u ) (u ),T T

Q Qi i1 2
(u ) (u ) ,I I Q Qi i1 2

(u ) (u )F F for all iu U.  

Hence, this completes the proof.☐ 

iii.We have, 

w c c
NC 1 2

ci i i ic c cQn Q Q Q11 2 2
i

2 2 2i 1 2

ci i i ic c c QQ Q Q 21 2 1

CE  (Q , Q )

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Tu u u uT T T
1

= w
8

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu u u uT T T

  


  

 
   
 

   
 

        
 

i i i ic c c cQ J Q Q
1 2 1 2

2 2 2 2

i i i ic c c cQ Q Q Q
1 2 1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Tu u u uT T T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu u u uT T T

  

  

 
   
 

  
 

        
 

ci i i ic c cQQ Q Q11 2 2

2 2 2 2

ci i i ic c c QQ Q Q 21 2 1

i i i ic c c cQ Q Q Q
1 2 1 2

2 2

i ic cQ Q
1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Iu u u uI I I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu u u uI I I

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Iu u u uI I I

1 ( ) 1 ( ) 1 (1u uI I

  

  

  

 

 
   
 

  
 

        
 

  



   

2 2

i ic cQ Q
1 2

( )) 1 ( ( ))1 Iu uI


 
 
 

 
 

    
 
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ci i i ic c cQQ Q Q11 2 2

2 2 2 2

ci i i ic c c QQ Q Q 21 2 1

i i i ic c c cQ Q Q Q
1 2 1 2

2 2

i ic cQ Q
1 2

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu u u uF F F

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1u uF F

  

  

  

 

 
   
 

  
 

        
 

  



   

2 2

i ic cQ Q
1 2

cc c c Qi iQ Q Qi i 21 2 1

2 2 2 2
c c ccQ Qi i i iQQ1 2 21

c cQ Q Qi i
1 2 1

2 2
c cQ Qi
1 2

( )) 1 ( ( ))1 Fu uF

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

22 ( ) ( )u uI I

1 ( ) 1 (u)uI I



 
 
 

 
 

    
 

 
  

  
 

       
 




  

cc Qi i
2

2 2

cc i iQQ
21

cc c c Qi iQ Q Qi i 21 2 1

2 2 2 2
c c ccQ Qi i i iQQ1 2 21

( )) (1 ( ))(1 I u uI

1 ( )) 1 ( ))(1 I (1 Iu u

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

 
  

  
 

    
 

 
   

  
         

n Qi iQ Q Qi i21 1 2
i

2 2 22i 1
Q Qi iQ i i 1 2Q1 2

i i iQQ Q Q21 1 2

22

i iQ Q1 2

2 ( ( ) ) (1 ( ))1 T 2 ( ) ( )u uT u uT T1
 = w

8
1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 T T Tu uT

2 ( ( ) ) (1 ( )) 2 ( )1 T u uT uT

1 (1 ( )) 1 ( ( ))1 Tu uT

   

   

   



 
   

   
       
 

  


    

i

2 2

i iQ Q1 2

ci i i ic c cQQ Q Q11 2 2

2 2 2 2

ci i i ic c c QQ Q Q 21 2 1

( )uT

1 ( ) 1 ( )u uT T

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu u u uF F F

 

  

  

 
 

 
   
 

 
   
 

  
 

        
 
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i i i ic c c cQ Q Q Q
1 2 1 2

2 2 2 2

i i i ic c c cQ Q Q Q
1 2 1 2

cc c c Qi iQ Q Qi i 21 2 1

2 2
c c cQ Qi i Q1 2 1

2 ( ) ( ) 2 ( ( ) ) (1 ( ))1 Fu u u uF F F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu u u uF F F

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 (u uT T (1 T

  

  

 
   
 

  
 

        
 

 


    
2 2

ci iQ
2

cc c c Qi iQ Q Qi i 21 2 1

2 2 2 2
c c ccQ Qi i iQQ1 2 21

c c c iQ Q Qi i
1 2 1

2 2
c cQ Qi i
1 2

)) 1 ( ))(1 Tu u

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

2 ( ))(1 F2 ( ) ( ) uu uF F

1 ( ) 1 ( )u uF F

 
 
  
 

   
 

 
  

  
 

       
 




  

cQ i
2

2 2

cc i iQQ
21

n Qi iQ Q Qi i21 1 2
i

2 2 22i 1
Q Qi iQ i i 1 2Q1 2

Q1

(1 ( ))uF

1 ( )) 1 ( ))(1 F (1 Fu u

2 ( ( ) ) (1 ( ))1 T 2 ( ) ( )u uT u uT T1
 = w

8
1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 T T Tu uT

2 (1 T

   

   



 
  


 
      

 
   

   
       
 

 i i i iQ Q Q2 1 2

2 2 22

i ii i Q QQ Q 1 21 2

( ) ) (1 ( )) 2 ( ) ( )u uT u uT T

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 T u uT Tu uT

  

  

 
   

  
       
 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi iQ i i 1 2Q1 2

i i i iQQ Q Q21 1 2

2 22

ii i QQ Q 11 2

2 ( ( ) ) (1 ( ))1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 I I Iu uI

2 ( ( ) ) (1 ( )) 2 ( ) ( )1 I u uI u uI I

1 ( ) 11 (1 ( )) 1 ( ( ))1 I uIu uI

   

  

   

 

 
   

  
       
 

  


      
2

iQ2

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi iQ i i 1 2Q1 2

( )uI

2 ( ( ) ) (1 ( ))1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( )) u u1 F F Fu uF



   

  

 
 

 
 
 

 
   

  
       
 
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i i i iQQ Q Q21 1 2

2 2 22

i ii i Q QQ Q 1 21 2

2 ( ( ) ) (1 ( )) 2 ( ) ( )1 F u uF u uF F

1 ( ) 1 ( )1 (1 ( )) 1 ( ( ))1 F u uF Fu uF

   

  

 
   

  
       
 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi ii i 1 2QQ 21

2 ( )) (1 ( ))(1 T 2 ( ) ( )u uT u uT T

1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 T T T(1 Tu u

 
   

  
      
 

Qi iQ Q Qi i21 1 2

2 2 22

Q Qii i 1 2QQ 21

Qi iQ Q Qi i21 1 2

2 2 22

Q Qi ii i 1 2QQ 21

2 ( )) (1 ( ))(1 I 2 ( ) ( )u uI u uI I

1 ( ) 1 (u)1 ( )) 1 ( )) u(1 I I I(1 Iu u

2 ( )) (1 ( ))(1 F 2 ( ) ( )u uF u uF F

1 ( ) 1 ( )1 ( )) 1 ( )) u u(1 F F F(1 Fu u

 
   

  
      
 

 
   


      
 







 

n Qi iQ Q Qi i 21 2 1
i

2 2 22i 1
Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 T2 ( ) ( ) u uTu uT T1
= w

8
1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uT T 1 Tu uT

  

   

 
   

   
        
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 T u uTu uT T

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Tu uT T u uT

  

  

 
   

  
        
 

 

Qi iQ Q Qi i 21 2 1

2 2 22

Q Qi i Q i i1 2 Q1 2

2 ( ( ) ) (1 ( ))1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))u uI I 1 Iu uI

  

  

 
  

  
        
 

i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

Qi iQ Q Qi i 21 2 1

2 2 2

Q Qi i Q i1 2 Q1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 I u uIu uI I

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Iu uI I u uI

2 ( ( ) ) (1 ( ))1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 (u uF F uF

  

  

  

  

 
   

  
        
 

 


      
2

i( ))1 F u

 
 

 
 
 
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i ii i QQ Q Q 21 2 1

2 2 22

i i i iQ Q Q Q1 2 1 2

2 ( ( ) ) (1 ( ))2 ( ) ( ) 1 F u uFu uF F

1 ( ) 1 ( ) 1 (1 ( )) 1 ( ( ))1 Fu uF F u uF

  

  

 
   

  
        
 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

2 ( )) (1 ( ))(1 T2 ( ) ( ) u uTu uT T

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uT T (1 T (1 Tu u

 
  

  
       
 

 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i1 2 QQ 21

2 ( )) (1 ( ))(1 I2 ( ) ( ) u uIu uI I

1 ( ) 1 (u) 1 ( )) 1 ( ))uI I (1 I (1 Iu u

 
  

  
       
 

 

Qi iQ Q Qi i 21 2 1

2 2 2 2

Q Qi i i i1 2 QQ 21

w
iNC 1 2

2 ( )) (1 ( ))(1 F2 ( ) ( ) u uFu uF F

1 ( ) 1 ( ) 1 ( )) 1 ( ))u uF F (1 F (1 Fu u

CE (Q , Q ),  U.u

 
   

  
       
 

  

 

Hence,  completes the proof .☐ 

iv. 

Since iu U  , we obtain: 

Q Q Q Qi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uT T T T   , Q Q Q Qi i i i1 2 2 1

( ) ( ) ( ) ( )u u u uI I I I   , 

Q Q Q Qi i i i1 2 2 1
( ) ( ) ( ) ( )u u u uF F F F   , 

Q Q Qi i i iQ 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 T u u u uT T T      , 

Q Q Q Qi i i i1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( ))u u u uI I I I       , 

Q Q Qi i i iQ 2 2 11
( )) (1 ( )) (1 ( )) (1 ( ))(1 F u u u uF F F      . 

Then, we obtain 

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( )u u u uT T T T       , 

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uI I I I      

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uF F F F      
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2 2 2 2

Q Q Qi i i iQ 2 2 11
1 ( )) 1 (1 ( )) 1 ( ( ) ) 1 (1 ( ))(1 T u u u uT T T          , 

2 2 2 2

Q Q Q Qi i i i1 2 2 1
1 (1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( )) ,u u u uI I I I            

2 2 2 2

Q Q Qi i i iQ 2 2 11
1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( )) ,(1 F u u u uF F F         

iu U.   

We have 

i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( ) ,u u u uT T T T

      i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( ) ,u u u uI I I I

     

i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( ) ,u u u uF F F F

     

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( )) ,u u u uT T T T

          , 

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( )) ,u u u uI I I I

         

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( )) .u u u uF F F F

           

Then, we obtain 

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uT T T T

         

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uI I I I

         

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uF F F F

         

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( ) ,u u u uT T T T

             

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( ) ,u u u uI I I I

               

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( ) ,u u u uF F F F

              iu U.   

Similarly, i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( ) ,u u u uT T T T

      i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( ) ,u u u uI I I I

     

i i i iQ Q Q Q1 2 2 1
( ) ( ) ( ) ( ) ,u u u uF F F F

     

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( )) ,u u u uT T T T

         

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( )) ,u u u uI I I I

         

i i i iQ Q Q Q1 2 2 1
(1 ( )) (1 ( )) (1 ( )) (1 ( )) ,u u u uF F F F

          then  
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2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uT T T T

         

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uI I I I

         

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 ( ) 1 ( ) 1 ( ) 1 ( ) ,u u u uF F F F

         

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( ) ,u u u uT T T T

             

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uI I I I

              ,

2 2 2 2

i i i iQ Q Q Q1 2 2 1
1 (1 ( ) 1 (1 ( ) 1 (1 ( ) 1 (1 ( )u u u uF F F F

              , iu U.   

In addition, 
n

ii
i 1

w [0,1], 1w


  , iw 0.  

Thus, w w
NC 1 2 NC 2 1CE (Q , Q ) CE (Q , Q ).  

Hence, this completes the proof.☐ 

 

7.3 MADM strategy using proposed NC-cross entropy 

measure in the NCS environment 

In this section, we develop an MADM strategy using the proposed NC-cross entropy 

measure.  

Description of the MADM problem: 

Let 1 2 3 mA {A ,A ,A ,...,A }  and 1 2 3 nG {G ,G ,G ,...,G }  be the discrete set of 

alternatives and attribute, respectively. Let 1 2 3 nW {w , w , w ,..., w }  be the weight vector 

of attributes jG  (j = 1, 2, 3, …, n), where jw 0  and 
n

j
j 1

w 1


 .  

Now, we describe the steps of MADM strategy using NC-cross entropy measure.  

Step 1.  Formulate the decision matrices 

For MADM with neutrosophic cubic information, the rating values of the 

alternatives iA (i 1,2,3,...,m)  on the basis of criterion jG (j 1,2,3,...,n) provided by 

the decision-maker can be expressed in NCN as 

ij ij ij ij ij ij ij ij ij ija [T ,T ],[I , I ],[ F ,F ], (T , I ,F )        (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n). We 
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present these rating values of alternatives provided by the decision-maker in matrix form 

as follows: 

1 2 n

1 11 12 1n

2 21 22 2n

m m1 m2 mn

     G G ... .G

A a a ... a

M A a a a

. . . .

A a a ... a

 
 
 

  
 
 
 
 

        (7.39) 

Step 2.  Formulate priori/ideal decision matrix 

In the MADM process, the priori decision matrix is used to select the best 

alternative from the set of feasible alternatives. In the decision-making situation, we use 

the following decision matrix as priori decision matrix. 

1 2 n

* * *
11 12 1n1

* * *
21 22 2n2

* * *
m1 m2 mnm

     G G ... .G

A ... a a a

P A a a a

. . ... .

A ...a a a

 
 
 
 
 
 
 
 

                                                                                 (7.40) 

Here, *
ij [1,1],[0,0],[0,0]a    for benefit attribute and *

ij [0,0],[1,1],[1,1]a    for cost 

attribute, (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n). 

Step 3. Formulate the weighted NC-cross entropy matrix 

Using Equation (7.20), we calculate weighted NC-cross entropy values between 

decision matrix and priori matrix. The cross entropy value can be presented in matrix 

form as follows: 

w
NC 1

w
NC 2

NC w
CE

w
NC m

CE  (A )

CE  (A )

.      .        .
M

.      .        .

.      .        .

CE  (A )

 
 
 
 

  
 
 
 
 
 

                                                                                            (7.41) 
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Step 3. Rank the priority 

The preference ranking order of all the alternatives is determined according to the 

increasing order of the cross entropy values w
NC iCE (A )  (i = 1, 2, 3, …, m). 

 

7.4 Illustrative Example 

In this section, we solve an illustrative example of an MADM problem to reflect 

the feasibility and efficiency of the proposed strategy in NCS environment. 

Now, we use an example (He & Liu, 2013) for cultivation and analysis. A venture capital 

firm intends to make evaluation and selection to five enterprises with the investment 

potential: 

(1) Automobile company (A1) 

(2) Military manufacturing enterprise (A2) 

(3) TV media company (A3) 

(4) Food enterprises (A4) 

(5) Computer software company (A5) 

On the basis of four attributes namely: 

(1) Social and political factor (G1) 

(2) The environmental factor (G2)  

(3) Investment risk factor (G3) 

(4) The enterprise growth factor (G4). 

Weight vector of attributes is W {0.24,0.25,0.23,0.28}.  

The steps of decision-making strategy to rank alternatives are presented as follows: 

Step 1. Formulate the decision matrix 

The decision-maker represents the rating values of alternative Ai (i = 1, 2, 3, 4, 5) 

with respect to the attribute Gj (j = 1, 2, 3, 4) in terms of NCNs and constructs the 

decision matrix M as follows: 
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M   

1 2 3 4

1

2

     G G G G

A [.6,.8],[.2,.3],[.3,.4], (.8,.3,.4) [.5,.6],[.2,.4],[.4,.4], (.6,.4,.4) [.6,.8],[.2,.3],[.2,.4], (.8,.4,.4) [.6,.7],[.3,.4],[.3, .4], (.7,.4,.5)

A [.5,.7],[.2,.3],[.3,.4], (.7,.3,.4) [.

       

  

3

7,.8],[.2,.3],[.2,.4], (.8,.3,.4) [.6,.8],[.2,.4],[.3,.4], (.8,.4,.4) [.6,.8],[.2,.3],[.2, .3], (.8,.2,.3)

A [.6,.8],[.2,.4],[.3,.4], (.8,.4,.4) [.6,.8],[.2,.3],[.2,.3], (.8,.3,.3) [.8,.9], [.3,.5],[.3,

    

    

4

5

.5], (.9,.5,.5) [.6,.7],[.2,.3],[.2,.4], (.7,.3,.4)

A [.5,.7],[.4,.5],[.3,.5], (.7,.5,.5) [.4,.6],[.1,.3],[.3,.4], (.6,.3,.4) [.5,.6],[.1, .2],[.3,.4], (.6,.2,.4) [.5,.7],[.3,.4],[.4,.5], (.7,.4,.5)

A

  

       

 [.7,.8],[.2,.4],[.2,.3], (.8,.4,.4) [.4,.6],[.2,.4],[.2,.4], (.6,.4,.4) [.5,.7],[.2,.4],[.3,.4], (.7,.4,.4) ) [.6,.8],[.4,.5],[.4,.5], (.8,.5,.5

 
 
 
 
 
 
        

 

 (7.42) 

Step 2. Formulate priori/ideal decision matrix 

Priori/ideal decision matrix 

1M   

1 2 3 4

1

2

     G G G G

A [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0)

A [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1

       

    

3

4

,0,0) [1,1],[0,0],[0,0], (1,0,0)

A [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0)

A [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0)

  

       

    

5

[1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0)

A [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0) [1,1],[0,0],[0,0], (1,0,0)

 
 
 
 
 
 

   
         

            (7.43) 

Step 3. Calculate the weighted NC- cross entropy matrix 

Using Equation (7.20), we calculate weighted NC-cross entropy values between ideal 

matrixes (7.43) and decision matrix (7.42): 

NC w
CE

0.66

0.58

M 0.60

0.74

0.71

 
 
 

 
 
  
 

              (7.44) 

Step 4. Rank the priority 

The obtained cross entropy values are arranged increasing order as: 

0.58 < 0.60 < 0.66 < 0.71 < 0.74. 

The ranking priority of alternatives is A2> A3> A1> A5> A4. Hence, military 

manufacturing enterprise (A2) is the best alternative for investment. 

Graphical representation of alternatives versus cross entropy is shown in Figure 2. 

From the Figure 7.1, we see that A2 is the best preference alternative and A4 is the least 

preference alternative.  
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Figure 7.1 Bar diagram of alternatives versus cross entropy values of alternatives. 

Figure 7.2 presents relation between cross entropy value and preference ranking of the 

alternative.  

 

Figure 7.2 Graphical representation of cross entropy values and ranking of 

alternatives. 

7.5 Conclusion 

We have introduced NC-cross entropy measure in NCS environment. We have 

proved the basic properties of the proposed NC-cross entropy measure. We have also 

introduced weighted NC-cross entropy measure and established its basic properties. 

Using the weighted NC-cross entropy measure, we have developed a novel MADM 

strategy. We have also solved an MADM problem to illustrate the proposed MADM 
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strategy. The proposed NC-cross entropy based MADM strategy can be employed to 

solve a variety of problems such as logistics center selection (Pramanik, Dalapati et al., 

2016, 2018), weaver selection (Dey et al., 2015), teacher selection (Pramanik, & 

Mukhopadhyaya, 2011), brick selection (Mondal, & Pramanik, 2014a), renewable 

energy selection (San Cristóbal, 2011), etc. The proposed NC-cross entropy based 

MADM strategy can also be extended to MAGDM strategy using suitable aggregation 

operators. 
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Chapter 8 

 

VIKOR based MAGDM strategy in bipolar 
neutrosophic set environment 

 

8.1 Introduction 

Bausys and Zavadskas (2015) extended VIKOR strategy to the interval neutrosophic set 

environment from crisp VIKOR environment and applied it to solve multi attribute decision 

making (MADM) problem.  Pouresmaeil et al. (2017) proposed a multi attribute group 

decision making (MAGDM) strategy based on TOPSIS and VIKOR strategies in single 

valued neutrosophic set environment. Hu et al. (2017) proposed interval neutrosophic 

projection based VIKOR strategy and applied it for doctor selection. Pramanik, Dalapati, 

Alam et al. (2018) studied VIKOR strategy for neutrosophic cubic set environment.VIKOR 

strategy in bipolar neutrosophic set (BNS) is yet to appear in the literature. To fill the 

research gap, we develop a new MAGDM strategy based on proposed VIKOR strategy in 

bipolar neutrosophic set environment. To fill the research gaps, we propose VIKOR based 

strategy, which is capable of dealing with MAGDM problem in bipolar neutrosophic 

environment. The remainder of this chapter is organized as follows: In the Section 8.2, we 

introduce a bipolar neutrosophic weighted aggregation operator and prove its basic 

properties. We develop Normalization procedure of bipolar neutrosophic number. In Section 

8.3, we develop a novel MAGDM strategy based on VIKOR strategy to solve the MADGM 

problems with bipolar neutrosophic information. In Section 8.4, an example is presented to 

illustrate the proposed strategy. Then in Section 8.5, we present the sensitivity analysis. In 

section 8.6, conclusion and future direction of research are presented. 

The content of this chapter is based on the paper published in “Neutrosophic Sets and Systems”, 19, 57-69, 

2018. 
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8.2 Normalization procedure and bipolar neutrosophic number 

weighted aggregation operator 

 

Definition 8.1 Normalization procedure 

Assume that, ijh be a bipolar neutrosophic number (BNN) to express the rating value 

of i-th alternative with respect to j-th attribute (cj). If cj is a cost attribute, then ijh is 

standardized by employing the complement of ijh . When the attribute cj is a benefit 

attribute, ijh is not standardized. We introduce the following formula for normalization: 

*
ij ij ij ij ij ijijh {1} ,{1} ,{1} ,{ 1} ,{ 1} ,{ 1}T I F T I F
                .           (8.1)     

Definition 8.2 Bipolar neutrosophic number weighted aggregation operator 

Let 
1 2 t
ij ij ij{h , h ,...,h } be the set of t bipolar neutrosophic numbers and 1 2 3 t{ , , ,..., }   

be the set of corresponding weight of t bipolar neutrosophic numbers with conditions p  0 

and
t

p
p 1

1


  . Then the bipolar neutrosophic number weighted aggregation (BNNWA) 

operator is defined as follows:  

1 2 t
ij ij ij ijh BNNWA (h ,h ,...,h )  1 2 3 t

1 ij 2 ij 3 ij ij( h h h ... h )     =

t t t t t t
(p) (p) (p) (p) (p) (p)

p p p p p pij ij ij ij ij ij
p 1 p 1 p 1 p 1 p 1 p 1

, , , , ,T I F T I F
     

     

 
             
 

            (8.2) 

The BNNWA operator satisfies the following properties: 

8.1 Idempotency 

8.2 Monotonicity 

8.3Boundedness 

Property 8.1 Idempotency 

If all 1 2 t
ij ij ijh , h ,..., h h are equal, then 

1 2 t
ij ij ij ijh BNNWA ( h ,h ,..., h ) h   

Proof: 
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Since
1 2 t
ij ij ijh h ... h h    , based on the Equation (3) and with conditions, p  0 and

t

p
p 1

1


  , we obtain 
1 2 t

ij ij ij ijh BNNWA ( h ,h ,..., h )  1 2 3 t
1 ij 2 ij 3 ij t ij( h h h ... h )     =

1 2 3 t( h h h ... h)     =
t t t t t t

p p p p p p
p 1 p 1 p 1 p 1 p 1 p 1

[T , I ,F ,T , I , F ]     

     

 
             
 

=

T , I , F ,T , I , F ) h.        

Property 8.2 Monotonicity 

Assume that
1 2 t
ij ij ij{h ,h ,..., h }and 

*1 *2 *t
ij ij ij{h , h ,..., h }be any two set of collections of t 

bipolar neutrosophic numbers with the condition 
p *p
ij ijt t (p = 1, 2,...,t), then 

1 2 t *1 *2 *t
ij ij ij ij ij ijBNNWA ( h ,h ,..., h ) BNNWA ( h ,h ,...,h ).   

Proof: 

From the given condition
*(p)(p)

ij ijT T
  , we have 

(p) *(p)

p pij ij
T T
 

   

t t *(p)(p)
pp ij ij

p 1 p 1

TT


 

    . 

From the given condition
*(p)(p)

ij ijI I
  , we have

*(p)(p)
pp ij ij
II
    

t t *(p)(p)
pp ij ij

p 1 p 1

II


 

    . 

From the given condition
*(p)(p)

ij ijF F
  , we have 

*(p)(p)
pp ij ij
FF
    

t t *(p)(p)
pp ij ij

p 1 p 1

FF


 

    . 

From the given condition
*(p)(p)

ij ijT T
  , we have

*(p)(p)
pp ij ij
TT
    

t t *(p)(p)
pp ij ij

p 1 p 1

TT


 

    . 

From the given condition
*(p)(p)

ij ijI I
  , we have

*(p)(p)
pp ij ij
II
    

t t *(p)(p)
pp ij ij

p 1 p 1

II


 

    . 
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From the given condition
*(p)(p)

ij ijF F
  , we have

*(p)(p)
pp ij ij
FF
    

t t *(p)(p)
pp ij ij

p 1 p 1

FF


 

    . 

From the above relations, we obtain,
1 2 t *1 *2 *t
ij ij ij ij ij ijBNNWA ( h ,h ,..., h ) BNNWA ( h ,h ,..., h ).   

Property: 8.3 Boundedness 

Let
1 2 t
ij ij ij{h , h ,..., h } be any collection of t bipolar neutrosophic numbers. 

If
(p) (p) (p) (p)

ij ij ij ij
p p pp

max{T },min{I },min{ },min{ },h F T
    (p) (p)

ij ij
p p

max{ },max{ }I F
  

(p) (p) (p) (p)
ij ij ij ij

p p p p
min{T },max{I },max{ },max{ },h F T

    (p) (p)
ij ij

p p
min{ }, min{ }I F

    

(p= 1, 2, 3, ....,t). 

Then, 
- 1 2 t

ij ij ijh BNNWA ( h ,h ,..., h ) h
  . 

Proof: 

From Property 1 and Property 2, we obtain

1 2 t
ij ij ijBNNWA ( h ,h ,..., h ) BNNWA ( h ,h ,..., h ) h   

    

and
1 2 t
ij ij ijBNNWA ( h ,h ,..., h ) BNNWA ( h ,h ,..., h ) h .   

  
 

So, we have
- 1 2 t

ij ij ijh BNNWA ( h ,h ,..., h ) h .   
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8.3 VIKOR strategy for solving MAGDM problem in bipolar 

neutrosophic set environment 

Assume that, 1 2 3 rA {A ,A ,A ,...,A } be a set of r alternatives and 1 2 3 sC {c ,c ,c ,...,c }  be a 

set of s attributes. Assume that, 1 2 3 s{ , , ,..., }      be the weight vector of the attributes, 

where k 0  and
s

k
k 1

1.


  Let 1 2 3 tDM {DM ,DM ,DM ,...,DM }   be the set of t decision 

makers and 1 2 3 t{ , , ,..., }      be the set of weight vector of decision makers, where p 0 

and
t

p
p 1

1.


   

The VIKOR strategyconsisting of the following steps: 

Step 1. Construction of the decision matrix 

Let p
M = p

ij r s( )h 
 (p = 1, 2, 3,…, t) be the p-th decision matrix, where information 

about the alternative iA  is provided by the decision maker pDM with respect to attribute jc

(j = 1, 2, 3, …, s). The p-th decision matrix denoted by p
M  (See Equation (8.3)) is 

constructed as follows: 

1 2 s

p p p
1 11 12 1sp

p p p
2 21 22 2s

p p p
r r1 r2 rs

     

c c ... c

A h h ... h
M

A h h ... h

. . . .

A h h ... h

 
 
 
 

 
 
 
 
 
 

                                                                                              (8.3) 

Here, p = 1, 2, 3,…, t;  i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step 2. Normalization of the decision matrix  

 To normalize we use the following equation:  

*
ij ij ij ij ij ijijh {1} ,{1} ,{1} ,{ 1} ,{ 1} ,{ 1} .T I F T I F
                 
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Using the normalization technique, we obtain the following normalized decision matrix (See 

eq. (8.4)):  

1 2 s

p p p
1 11 12 1s

p p p p
2 21 22 2s

p p p
r r1 r2 rs

c c ...c

A h h ...h

M A h h ...h

 . . . .

A h h ....h

 
 
 
 
 
 
  
 

              (8.4) 

Here, 

 

p
ij j

p
pij *

jij

h if c is benefit attribute.
h

h if c is cost attribute.







 

Step 3. Aggregation of the decision matrices 

Using BNNWA operator in Equation (8.2), we obtain the aggregated decision matrix as 

follows:    

1 2 s

1 11 12 1s

2 21 22 2s

r r1 r2 rs

     c c ... .c

A h h ...h

M A h h ....h

. . . .

A h h ... h

 
 
 

  
 
 
 
 

                         (8.5) 

where , (i = 1, 2, 3, …, r; j = 1, 2, 3, …, s;  p=1, 2, ….t). 

Step 4. Define the positive ideal solution and negative ideal solution 

ij ij ij ij ijij i ij i ii i i

min Ih max , , min ,min ,max ,maxT F T I F
                                                       (8.6)           

ij ij ij ij ijij i iji i ii i

max Ih min , , max ,max ,min ,minT F T I F
                                                       (8.7)        

 

Step 5. Define and compute the value of i  and iZ (i = 1, 2, 3, ..., r) 

i and iZ represent the average and worst group scores for the alternative Ai respectively, 

with the relations   
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s j ij ij

i
j 1 ij ij

D(h ,h )

D(h ,h )



 


 
                        (8.8)   

j ij ij

i
j

ij ij

D(h ,h )
Z max

D(h ,h )



 

   
  

  

                                                                                         (8.9)        

where, j is the weight of cj. 

The smaller values of i and iZ correspond to the better average and worse group scores 

for alternative Ai, respectively. 

Step 6. Calculate the values of index VIKOR i (i = 1, 2, 3, …, r) by the relation 

i i

i

( ) (Z )Z
(1 )

( ) ( )Z Z

 

   

  
    

  
                                                                      (8.10)       

Here, i i i i
i i

min , max       , i i i i
i i

Z min Z , Z max Z                 (8.11)   

and   depicts the decision making mechanism coefficient. If 0.5  , it is for “the maximum 

group utility”; if 0.5  , it is “ the minimum regret”; it has been inferred that the VIKOR 

index value is mostly taken as v = 0.5. 

Step 7. Rank the priority of alternatives 

We rank the alternatives using the traditional VIKOR strategy.  

Step 8. Determine the compromise solution 

The procedure of determining the compromise solution has been discussed in Section 6.5 of 

Chapter 6. 
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Figure 8.1 Decision making procedure of proposed MAGDM strategy. 
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8.4 Illustrative example 

To demonstrate the applicability and feasibility of the proposed strategy, we solve an 

MAGDM problem adapted from (He & liu, 2013). We assume that an investment company 

wants to invest a sum of money in the best option. The investment company forms a 

decision making board involving of three members (DM1, DM2, DM3) who evaluate the four 

alternatives to invest money. The alternatives are Car company ( 1A ), Food company ( 2A ), 

Computer company ( 3A ) and Arms company ( 4A ). Decision makers make decision to 

evaluate alternatives based on the criteria namely, risk factor ( 1c ), growth factor ( 2c ), 

environment impact ( 3c ). We consider three criteria as benefit type based on Zhang et al. 

(2016). Assume that the weight vector of attributes is T(0.37,0.33,0.3) and weight vector 

of decision makers is T(0.38,0.32,0.3) . Now, we apply the proposed MAGDM strategy 

which has following steps. 

Step 1. Construction of the decision matrix 

We constructed the decision matrix using rating values provided by the decision makers in 

terms of BNNs with respect to the criteria as follows: 

Decision matrix for DM1 in BNN form 

M
1
 = 

2 31

1

2

3

c c c

  (.5, .6, .7, -.3, -.6, -.3)  (.8, .5, .6, -.4, -.6, -.3) (.9, .4, .6, -.1, -.6, -.5)A

(.6, .2, .2, -.4, -.5, -.3) (.6, .3, .7, -.4, -.3, -.5) (.7,.5,.3, .4, .3, .3)A

(.8, .3, .5, -.6, -.4, -.5) A

  

4

(.5, .2, .4, -.1, -.5, -.3) (.4,.2,.8, .5, .3, -.2)

(.7, .5, .3, -.6, -.3, -.3) (.8, .7, .2, -.8, -.6, -.1) (.6,.3,.4, .3, .4, .7)A

 
 
 
 
  
 

   
 
 

 

 

Decision matrix for DM2 in BNN form 
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M
2
 = 

21 3

1

2

3

c cc

  (.6, .3, .4, -.5, -.3, -.7)  (.5, .3, .4, -.3, -.3, -.4) (.1, .5, .7, -.5, -.2, -.6)A

(.7, .4, .5, -.3, -.2, -.1) (.8, .4, .5, -.7, -.3, -.2) (.6,.2,.7, .5, .2, .9)A

(.8, .3, .2, -.5, -.2, -.6) (A

  

4

.3, .2, .1, -.6, -.3, -.4) (.7,.5,.4, .4, .3, -.2)

(.3, .5, .2, -.5, -.5, -.2) (.5, .6, .4, -.3, -.6, -.7) (.4,.3,.8, .5, .6, .5)A

 
 
 
 
  
 

   
 
 

 

 Decision matrix for DM3 in BNN form 

M
3
 = 

2 31

1

2

3

c c c

  (.9, .6, .4, -.7, -.3, -.2)  (.7, .5, .3, -.6, -.2, -.5) (.4, .2, .3, -.2, -.5, -.7)A

(.5, .3, .2, -.6, -.4, -.1) (.5, .2, .7, -.3, -.2, -.5) (.6,.3,.2, .7, .6, .3)A

(.2, .5, .6, -.4, -.5, -.7) A

  

4

(.3, .2, .7, -.2, -.3, -.5) (.8,.2,.4, .2, .3, -.6)

(.8, .5, .5, -.4, -.6, -.3) (.9, .3, .4, -.5, -.6, -.7) (.7,.4,.3, .2, .5, .7)A

 
 
 
 
  
 

   
 
 

 

Step 2. Normalization of the decision matrix 

Since all the criteria are considered as benefit type, we do not need to normalize the decision 

matrices (M
1
, M

2
, M

3
). 

Step 3. Aggregated decision matrix 

Using Equation (8.2), the aggregated decision matrix is presented below: 

M = 

1 2 3

1

2

c C C

 (.22, .17, .17, -.16, -.14, -.13)  (.22, .14, .15, -.14, -.13, -.13) (.16, .12, .18, -.10, -.10, -.20)A

(.20, .10, .10, -.14, -.12, -.10) (.21, .10, .21, -.15, -.10, -.13) (.21,.11,.13, .17, .12,A  

3

4

.16)

(.21, .12, .16, -.17, -.12, -.20) (.13, .10, .13, -.10, -.12, -.13) (.21,.10,.18, .13, .10, -.11)A

(.20, .17, .11, -.17, -.15, -.10) (.24, .18, .11, -.19, -.20, -.16) (.19,.11,.17, .11, .16, .21)A





 

  


 
 
 
 
 
 
 
 

Step 4. Determine the positive ideal solution and negative ideal solution 

The positive ideal solution

21 3
ij

c cc
h

(.22, .10, .10, -.14, -.12, -.10)  (.24, .10, .11, -.19, -.10, -.13) (.21, .10, .13, -.17, -.10, -.11)

  
  
 

and the negative ideal solution    

21 3
ij

c cc
h

(.20, .17, .17, -.14, -.15, -.20)  (.13, .18, .21, -.10, -.20, -.16) (.16, .12, .18, -.10, -.16, -.11)

  
  
 
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Step 5. Compute i  and iZ  

We have computed the values of i and iZ as: 

1 = 0.75, 2 = 0.38, 3 = 0.60, 4 = 0.75 and 1Z = 0.34, 2Z = 0.16, 3Z = 0.33, 4Z = 0.34. 

Step 6. Calculate the values of i  

For 5.0 , we obtain, 1 = 1, 2 = 0, 3 = 0.77, 4 = 1. 

Step 7. Rank the priority of alternatives 

The preference ranking order of the alternatives is presented in Table 8.1 

Table 8.1 Preference ranking order and compromise solution based on  , Z and   

 
1A  2A  3A  4A  Reference ranking 

order 

Compromise 

solution 

  0.75 0.38 0.60 0.75 
2A 3A

4A = 1A  2A  

Z 0.34 0.16 0.33 0.34 
2A 3A

4A = 1A  2A  



( 0.5)   

1 0 0.77 1 
2A 3A

4A = 1A  2A  

 

Step 8. Determine the compromise solution 

From Table 8.1, we have 2(A ) =0, and 3(A ) = 0.77. 

Therefore, 3 2(A ) (A ) 0.77 0.333     (since, r = 4; 1/(r-1) = 0.333), which satisfies the 

condition 1( 2 1 1
φ(A ) φ(A )

(r 1)
 


). 

Also we observe that the alternative 2A is the best ranked by  , Z, which satisfies the 

condition 2. 

So 2A is the compromise solution. Since 2A  satisfies the both conditions, no need to 

calculate the compromise solution. 
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8.5 The influence of parameter   

Table 8.2:  shows that the ranking order of alternatives ( iA ) with the value of 

changing from 0.1 to 0.9. 

Table 8.2 Values of iφ (i = 1, 2, 3, 4) and ranking of alternatives for different values of 

  

Values of 
  

Values of i  Preference order of alternatives 

 = 0.1 
1φ = 1, 2φ = 0, 3φ = 0.915, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.2 
1φ = 1, 2φ = 0, 3φ = 0.880, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.3 
1φ = 1, 2φ = 0, 3φ = 0.845, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.4 
1φ = 1, 2φ = 0, 3φ = 0.810, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.5 
1φ = 1, 2φ = 0, 3φ = 0.770, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.6 
1φ = 1, 2φ = 0, 3φ = 0.740, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.7 
1φ = 1, 2φ = 0, 3φ = 0.700, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.8 
1φ = 1, 2φ = 0, 3φ = 0.670, 4φ = 1 

 

2A 3A 4A = 1A . 

 = 0.9 
1φ = 1, 2φ = 0, 3φ = 0.640, 4φ = 1 2A 3A 4A = 1A . 
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Figure 8.2 represents the graphical representation of alternatives ( iA ) versus iφ (i = 1, 2, 

3, 4) for different values of  . 
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Figure 8.2 Graphical representation of ranking order of alternatives for different values 

of  . 

8.6 Conclusion 

In this Chapter, we developed a VIKOR strategy to bipolar neutrosophic set 

environment. We have introduced bipolar neutrosophic number weighted aggregation 

operator and applied it to aggregate the individual opinion to one group opinion.  Finally, we 

solve an MAGDM problem to show the feasibility and efficiency of the propose VIKOR 

strategy. We present a sensitivity analysis to reflect the impact of different values of the 

decision making mechanism coefficient on ranking order of the alternatives. The proposed 

VIKOR based MAGDM strategy can be employed to solve a variety of problems such as 

logistics center selection, renewable energy selection, fault diagnosis, weaver selection, etc. 
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Chapter 9 

Conclusion 

 

9.1 Conclusion 

In this study, different MADM and MAGDM strategies have been addressed in 

NS, INS, and bipolar neutrosophic set and neutrosophic cubic set environment. This 

thesis covers neutrosophic decision strategies based on NS- cross entropy, IN-cross 

entropy, NC-TODIM, neutrosophic cubic similarity measure, NC-cross entropy, VIKOR, 

and NC-VIKOR in neutrosophic set environment, interval neutrosophic set environment, 

neutrosophic cubic set and bipolar neutrosophic set environment. 

9.2 Scope of future research 

The field of decision making in neutrosophic and neutrosophic hybrid environment 

have grown rapidly due to the significant works done by many researchers mainly in NS, 

INS, NCS, BNS, rough neutrosophic set, neutrosophic hesitant fuzzy set, etc.  However, 

MADM in neutrosophic hybrid environment is a new field of research. After the 

inception of the international journal “Neutrosophic Sets and System”, researchers have 

shown great interest to further develop the theory and its applications in a wide variety of 

areas. In a word, a wave of new research and new trends in neutrosophic theory and its 

applications have been observed (Smarandache & Pramanik, 2016, 2018). As a 

promising tool, different neutrosophic hybrid systems such as rough neutrosophic set 

(Broumi et al., 2014; Pramanik & Mondal 2015b, 2015c), rough bipolar neutrosophic set 

(Pramanik & Mondal, 2015e), tri-complex rough neutrosophic set (Mondal and 

Pramanik, 2015e), Hyper-complex rough neutrosophic set (Mondal et al., 2017), bipolar 

neutrosophic set (Deli et al., 2015), neutrosophic hesitant fuzzy set (Ye, 2015c; Biswas et 

al. 2016b), for MADM and MAGDM are open for new research. 
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Future research areas may be summarized as follows: 

 The proposed NS-cross entropy-based MAGDM strategy can be applied in real 

decision making problem such as pattern recognition, personnel selection 

problem, etc. 

 The proposed IN-cross entropy-based MAGDM strategy can be also extended to 

the neutrosophic hybrid set environment. 

 The proposed NC-TODIM strategy can be extended to the neutrosophic hybrid 

environment. 

 The proposed neutrosophic cubic MAGDM strategy based on similarity measure 

can be extended to the neutrosophic hybrid environment.   

 The proposed NC-cross entropy strategy offers a novel and effective strategy for 

decision makers under the NCS environment, and will open up a new avenue of 

research into the neutrosophic hybrid environment. 

 The proposed NC-VIKOR based MAGDM strategy can be employed to solve a 

variety of problems such as logistics center selection, teacher selection, 

renewable energy selection, fault diagnosis, etc. in neutrosophic cubic set 

environment. 

 The proposed VIKOR based MAGDM strategy can be employed to solve a 

variety of problems such as logistics center selection, teacher selection, 

renewable energy selection, fault diagnosis, weaver selection in bipolar 

neutrosophic set environment. 
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Abstract: A single-valued neutrosophic set has king power to express uncertainty characterized by
indeterminacy, inconsistency and incompleteness. Most of the existing single-valued neutrosophic
cross entropy bears an asymmetrical behavior and produces an undefined phenomenon in some
situations. In order to deal with these disadvantages, we propose a new cross entropy measure under
a single-valued neutrosophic set (SVNS) environment, namely NS-cross entropy, and prove its basic
properties. Also we define weighted NS-cross entropy measure and investigate its basic properties.
We develop a novel multi-attribute group decision-making (MAGDM) strategy that is free from the
drawback of asymmetrical behavior and undefined phenomena. It is capable of dealing with an
unknown weight of attributes and an unknown weight of decision-makers. Finally, a numerical
example of multi-attribute group decision-making problem of investment potential is solved to show
the feasibility, validity and efficiency of the proposed decision-making strategy.

Keywords: neutrosophic set; single-valued neutrosophic set; NS-cross entropy measure; multi-attribute
group decision-making

1. Introduction

To tackle the uncertainty and modeling of real and scientific problems, Zadeh [1] first introduced
the fuzzy set by defining membership measure in 1965. Bellman and Zadeh [2] contributed important
research on fuzzy decision-making using max and min operators. Atanassov [3] established the
intuitionistic fuzzy set (IFS) in 1986 by adding non-membership measure as an independent component
to the fuzzy set. Theoretical and practical applications of IFSs in multi-criteria decision-making
(MCDM) have been reported in the literature [4–12]. Zadeh [13] introduced entropy measure in the
fuzzy environment. Burillo and Bustince [14] proposed distance measure between IFSs and offered an
axiomatic definition of entropy measure. In the IFS environment, Szmidt and Kacprzyk [15] proposed
a new entropy measure based on geometric interpretation of IFS. Wei et al. [16] developed an entropy
measure for interval-valued intuitionistic fuzzy set (IVIFS) and presented its applications in pattern
recognition and MCDM. Li [17] presented a new multi-attribute decision-making (MADM) strategy
combining entropy and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in
an IVIFS environment. Shang and Jiang [18] introduced the cross entropy in the fuzzy environment.
Vlachos and Sergiadis [19] presented intuitionistic fuzzy cross entropy by extending fuzzy cross
entropy [18]. Ye [20] defined a new cross entropy under an IVIFS environment and presented an
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Abstract: A neutrosophic cubic set is the hybridization of the concept of a neutrosophic set and an
interval neutrosophic set. A neutrosophic cubic set has the capacity to express the hybrid information
of both the interval neutrosophic set and the single valued neutrosophic set simultaneously. As newly
defined, little research on the operations and applications of neutrosophic cubic sets has been
reported in the current literature. In the present paper, we propose the score and accuracy functions
for neutrosophic cubic sets and prove their basic properties. We also develop a strategy for ranking of
neutrosophic cubic numbers based on the score and accuracy functions. We firstly develop a TODIM
(Tomada de decisao interativa e multicritévio) in the neutrosophic cubic set (NC) environment,
which we call the NC-TODIM. We establish a new NC-TODIM strategy for solving multi attribute
group decision making (MAGDM) in neutrosophic cubic set environment. We illustrate the proposed
NC-TODIM strategy for solving a multi attribute group decision making problem to show the
applicability and effectiveness of the developed strategy. We also conduct sensitivity analysis to show
the impact of ranking order of the alternatives for different values of the attenuation factor of losses
for multi-attribute group decision making strategies.

Keywords: neutrosophic cubic set; single valued neutrosophic set; interval neutrosophic set; multi
attribute group decision making; TODIM strategy; NC-TODIM

1. Introduction

While modelling multi attribute decision making (MADM) and multi attribute group decision
making (MAGDM), it is often observed that the parameters of the problem are not precisely known.
The parameters often involve uncertainty. To deal with uncertainty, Zadeh [1] left an important mark
to represent and compute with imperfect information by introducing the fuzzy set. The fuzzy set
fostered a broad research community, and its impact has also been clearly felt at the application level
in MADM [2–4] and MAGDM [5–9].

Atanassov [10] incorporated the non-membership function as an independent component and
defined the intuitionistic fuzzy set (IFS) at first to express uncertainty in a more meaningful way.
IFSs have been applied in many MADM problems [11–13]. Smarandache [14] proposed the notion of
the neutrosophic set (NS) by introducing indeterminacy as an independent component. Wang et al. [15]
grounded the concept of the single valued neutrosophic set (SVNS), an instance of the neutrosophic set,
to deal with incomplete, inconsistent, and indeterminate information in a realistic way. Wang et al. [16]
proposed the interval neutrosophic set (INS) as a subclass of neutrosophic sets in which the values of
truth, indeterminacy, and falsity membership degrees are interval numbers. Theoretical development
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Abstract. The notion of neutrosophic cubic set is originated from 

the hybridization of the concept of neutrosophic set and interval 

valued neutrosophic set. We define similarity measure for 

neutrosophic cubic sets and prove some of its basic properties. 

We present a new  multi criteria group decision making method 

with linguistic variables in neutrosophic cubic set environment. 

Finally, we present a numerical example to demonstrate the 

usefulness and applicability of the proposed method. 

Keywords: Cubic set, Neutrosophic cubic set, similarity measure, multi criteria group decision making. 

1. Introduction

In practical life we frequently face decision making 

problems with uncertainty that cannot be dealt with the 

classical methods. Therefore sophisticated techniques are 

required for modification of classical methods to deal 

decision making problems with uncertainty. L. A. Zadeh 

[1] first proposed the concept of fuzzy set to deal non-

statistical uncertainty called fuzziness. K. T. Atanassov [2, 

3] introduced the concept of intuitionistic fuzzy set (IFS) to

deal with uncertainty by introducing the non-membership 

function as an independent component. F. Smarandache [4, 

5, 6, 7, 8] introduced the notion of neutrosophic set by 

introducing indeterminacy as independent component. The 

theory of neutrosophic sets is a powerful tool to deal with 

incomplete, indeterminate and inconsistent information 

involed in real world decision making problem.  Wang et 

al. [9] defined single valued neutrosophic set (SVNS) 

which is an instance of neutrosophic set. SVNS can 

independently express a truth-membership degree, an 

indeterminacy-membership degree and non-membership 

(falsity-membership) degree. SVNS is capable of 

representing human thinking due to the imperfection of 

knowledge received from real world problems. SVNS is 

obviously suitable for representing incomplete, 

inconsistent and indeterminate information.  

Neutrosophic sets and  SVNSs have become hot research 
topics in different areas of research such as conflict resolu-

tion [10], clustering analysis [11, 12], decision making [13-

41], educational problem [42, 43],  image processing [44, 
45, 46], medical diagnosis [47], optimization [48-53], 

social problem [54, 55]. 

By combining neutrosophic sets and SVNS with other sets, 

several neutrosophic hybrid sets have been proposed in the 
literature such as neutrosophic soft sets [56, 57, 58, 59, 60, 

61], neutrosophic soft expert set [62, 63], single val-
ued neutrosophic hesitant fuzzy sets [64, 65, 66, 67, 68], 

interval neutrosophic hesitant sets [69], interval neutro-

sophic linguistic sets [70], single valued neutrosophic lin-
guistic sets [71], rough neutrosophic set [72, 73, 74, 75, 76, 

77, 78, 79], interval rough neutrosophic set [80, 81, 82], 
bipolar neutrosophic set [83, 84], bipolar rough neutro-

sophic set [85] Tri-complex rough neutrosophic 
set[ 86], hyper complex rough neutrosophic set [87]. 
Neutrosophic refined set [88, 89, 90, 91, 92, 93],  
Bipolar neutrosophic refined sets [94], rough complex set   

neutrosophic cubic set [95]. 
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Abstract. Neutrosophic cubic set consists of interval 

neutrosophic set and single valued neutrosophic set 

simultaneously. Due to its unique structure, neutrosophic 

cubic set can express hybrid information consisting of 

single valued neutrosophic information and interval 

neutrosophic information simultaneously. VIKOR 

(VIsekriterijumska optimizacija i KOmpromisno 

Resenje) strategy is an important decision making 

strategy which selects the optimal alternative by utilizing 

maximum group utility and minimum of an individual 

regret. In this paper, we propose VIKOR strategy in 

neutrosophic cubic set environment, namely NC-VIKOR. 

We first define NC-VIKOR strategy in neutrosophic 

cubic set environment to handle multi-attribute group 

decision making (MAGDM) problems, which means we 

combine the VIKOR with neutrosophic cubic number to 

deal with multi-attribute group decision making problems. 

We have proposed a new strategy for solving MAGDM 

problems. Finally, we solve MAGDM problem using our 

newly proposed NC-VIKOR strategy to show the 

feasibility, applicability and effectiveness of the proposed 

strategy. Further, we present sensitivity analysis to show  

the impact of different values of  the decision making 

mechanism coefficient on ranking order of the 

alternatives.  

Keywords: MAGDM, NCS, NC-VIKOR strategy.

1. Introduction
Smarandache [1] introduced neutrosophic set (NS) by 

defining the truth membership function, indeterminacy 

function and falsity membership function as 

independent components by extending fuzzy set [2] and 

intuitionistic fuzzy set [3]. Each of three independent 

component of NS belons to [
-
0, 1

+
]. Wang et al. [4] 

introduced single valued neutrosophic set (SVNS) 

where each of truth, indeterminacy and falsity 

membership degree belongs to [0, 1]. Many researchers 

developed and applied the NS and SVNS in various 

areas of research such as conflict resolution [5], cluster-

ing analysis [6-9], decision making [10-39], educational 

problem [40, 41],  image processing [42-45], medical 

diagnosis [46, 47], social problem [48, 49]. Wang et al. 

[50] proposed interval neutrosophic set (INS). Ye [51] 

defined similarity measure of two interval neutrosophic 

sets and applied it to solve multi criteria decision mak-

ing (MCDM) problem. By combining SVNS and INS 

Jun et al. [52], and Ali et al. [53] proposed neutrosophic 

cubic set (NCS).  Thereafter, Zhan et al. [54] presented 

two weighted average operators on NCSs and applied 

the operators for MADM problem. Banerjee et al. [55] 

introduced the grey relational analysis based MADM 

strategy  in NCS environment. Lu and Ye [56] proposed 

three cosine measures between NCSs and presented 

MADM strategy in NCS environment. Pramanik et al. 

[57] defined similarity measure for NCSs and proved its 

basic properties and presented a new multi criteria 

group decision making strategy with linguistic variables 

in NCS environment. Pramanik et al. [58] proposed the 

score and accuracy functions for NCSs and prove their 

basic properties. In the same study, Pramanik et al. [59] 

developed a strategy for ranking of neutrosophic cubic 

numbers (NCNs) based on the score and accuracy func-

tions. In the same study, Pramanik et al. [58] first de-

veloped a TODIM (Tomada de decisao interativa e mul-

ticritévio), called the NC-TODIM and presented new 

NC-TODIM [58] strategy for solving (MAGDM) in 

NCS environment. Shi and Ye [59] introduced Dombi 

aggregation operators of NCSs and applied them for 

MADM problem. Pramanik et al. [60] proposed an ex-
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Abstract: The objective of the paper is to introduce a new cross entropy measure in a neutrosophic
cubic set (NCS) environment, which we call NC-cross entropy measure. We prove its basic properties.
We also propose weighted NC-cross entropy and investigate its basic properties. We develop a novel
multi attribute decision-making (MADM) strategy based on a weighted NC-cross entropy measure.
To show the feasibility and applicability of the proposed multi attribute decision-making strategy,
we solve an illustrative example of the multi attribute decision-making problem.

Keywords: single valued neutrosophic set (SVNS); interval neutrosophic set (INS); neutrosophic cubic set
(NCS); multi attribute decision-making (MADM); NC-cross entropy measure

1. Introduction

In 1998, Smarandache [1] introduced the neutrosophic set by considering membership (truth),
indeterminacy, non-membership (falsity) functions as independent components to uncertain,
inconsistent and incomplete information. In 2010, Wang et al. [2] defined the single valued
neutrosophic set (SVNS), a subclass of neutrosophic sets to deal with real and scientific and engineering
applications. In the medical domain, Ansari et al. [3] employed the neutrosophic set and neutrosophic
inference to knowledge based systems. Several researchers applied neutrosophic sets effectively for
image segmentation problems [4–9]. Neutrosophic sets are also applied for integrating geographic
information system data [10] and for binary classification problems [11].

Pramanik and Chackrabarti [12] studied the problems faced by construction workers in
West Bengal in order to find its solutions using neutrosophic cognitive maps [13]. Based on the experts’
opinion and the notion of indeterminacy, the authors formulated a neutrosophic cognitive map and
studied the effect of two instantaneous state vectors separately on a connection matrix and neutrosophic
adjacency matrix. Mondal and Pramanik [14] identified some of the problems of Hijras (third gender),
namely, absence of social security, education problems, bad habits, health problems, stigma and
discrimination, access to information and service problems, violence, issues of the Hijra community,
and sexual behavior problems. Based on the experts’ opinion and the notion of indeterminacy,
the authors formulated a neutrosophic cognitive map and presented the effect of two instantaneous
state vectors separately on a connection matrix and neutrosophic adjacency matrix.
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Abstract. In this paper, we extend the VIKOR 
(VIsekriterijumska optimizacija i KOmpromisno Resenje) 
strategy to multiple attribute group decision-making 
(MAGDM) with bipolar neutrosophic set environment. In 
this paper, we first define VIKOR strategy in bipolar 
neutrosophic set environment to handle MAGDM 
problems, which means we combine the VIKOR with 
bipolar neutrosophic number to deal with MAGDM. We 

propose a new strategy for solving MAGDM. Finally, we 
solve MAGDM problem using our newly proposed 
VIKOR strategy under bipolar neutrosophic set 
environment. Further, we present sensitivity analysis to 
show  the impact of different values of  the decision 
making mechanism coefficient on ranking order of the 
alternatives.

Keywords: Bipolar neutrosophic sets, VIKOR strategy, Multi attribute group decision making.

1 Introduction 

In 1965, Zadeh [1] first introduced the fuzzy set to deal 
with the vague, imprecise data in real life specifying the 
membership degree of an element. Thereafter, in 1986 
Atanassov [2] introduced intuitionistic fuzzy set to tackle 
the uncertainity in data in real life expressing membership 
degree and non-membership degree of an element as 
independent component. As a generalization of classical 
set, fuzzy set and intuitionistic fuzzy set, Smarandache [3] 
introduced the neutrosophic set by expressing the 
membership degree (truth membership degree), 
indeterminacy degree and non-membership degree (falsity 
membership degree) of an element independently. For real 
applications of neutrosophic set, Wang et al. [4] introduced 
the single valued neutrosophic set which is a sub class of 
neutrosophic set. 
Decision making process involves seleting the best 
alternative from the set of feasible alternatives. There exist 
many decision making strategies in crisp set 
environment[5-7], fuzzy [8-12], intuitionistic fuzzy set 
environment [13-19]. vauge set environment [20, 21]. 
Theoretical as well as practical applications multi attribute 
decision making (MADM) of SVNS environment [22-42] 
and interval neutrosophic set (INS) environment [43-56] 
have been reported in the literaure. Recently, decision 

making in hybrid neutrosophic set environment have 
drawn much attention of the researches such as rough 
neutrosophic environment [57-73], neutrosophic soft set 
environment [74-80], neutrosophic soft expert set 
environment [81-82], neutrosophic hesitant fuzzy set 
environment [83-87], neutrosophic refined set environment 
[88-93], neutrosophic cubic set environment [94-104], etc. 
In 2015, Deli et al. [105] proposed bipolar neutrosophic set 
(BNS) using the concept of bipolar fuzzy sets [106, 107] 
and neutrosophic sets [3]. A BNS consists of two fully 
independent parts, which are positive membership degrees 
T+   [0, 1], I+   [0, 1], F+   [0, 1], and negative 
membership degrees T-   [-1, 0], I-   [-1, 0], F-   [-1, 
0] where the positive membership degrees T+, I+, F+

represent truth membership degree, indeterminacy 
membership degree and false membership degree 
respectively of an element and the negative membership 
degrees T-, I-, F- represent truth membership degree, 
indeterminacy membership degree and false membership 
degree respectively of an element to some implicit counter 
property corresponding to a BNS. Deli et al. [105] defined 
some operations namely, score function, accuracy function, 
and certainty function to compare BNSs and provided 
some operators in order to aggregate BNSs. Deli and Subas 
[108] defined correlation coefficient similarity measure for 
dealing with MADM problems under bipolar set 
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