A Distributed Algorithm for Brute Force
Password Cracking on n Processors

Roman Bahadursingh
bahadursingh4@yahoo.com

Abstract

A Password H, can be defined as a hash of x symbols .A
brute force password cracking algorithm will go through
every possible combination of symbols from 1 — x symbols.
This form of password cracker takes O(1(H)) time to solve,
where n is the number of possible combinations, achieved by
s* where s is the number of symbols available for a
password. Having a password cracker with multiple
processors, having the processors instead of all checking from
symbol 0 to the last symbol, using a more decentralized
approach can greatly improve the speed of this computation,
letting the original algorithm having a speed of O (n) to
O(n/2) for two processors, O(n/3) for three processors and
O(n/n,) as a generalized formula. This algorithm also allows
for multiple processors of different clock speeds to also crack
a password in more optimal time.

1 Introduction

The Brute Force Password Cracking Algorithm (BFP from now
on for simplicity), uses an approach to crack a password, in which,
it will check from the first available symbol and continue
computation until it has reached the password. BFP has a
computation time of O(n) and is greatly inefficient when multiple
processors are being used. When multiple processors are being
used, it will start from the first symbol and continue to the last
with each processor adding diminishing returns in computations
time, as each must check the other processors, fetch the current
password value and then create their own and continue this cycle
until the password is found. BFP, however can be optimized by
the Generalized Brute Force Password Cracking Algorithm
(GBFP).



1.1 Generalized Brute Force Password Cracking
Algorithm (GBFP)

To calculate the password, GBFP will begin by having the
processors organized by processor clock speed, with the most
powerful being named Processor 1, Processor 2 for the second —
most powerful, etc. If two processors are the same clock speed,
they will be named randomly. First, the algorithm will take all of
the available symbols in an order (0 - %). GBFP will then assume
that there are at most five symbols which create H. Then, for p
processors, H will be divided into p password ranges to be
checked. Processor 1, will then begin at the first symbol of the
password, and if in a two processor machine, processor 2 will begin
halfway through the available symbols H could be and the
algorithm will then begin BFP, with different starting points for
both processors and the ending points begin either the end of the
1(H) or the starting point of processor p + 1, whichever comes
first. After all of the symbols within a processors range have been
exhausted, the processor shall begin from %% %%% and depending
on the number of processors in the system, check from here, to
1/n, the amount of available symbols. When processor is finished
it also moves to this password space and checks the end of p -1’s
password range and continues to the beginning of processor p +
1’s password range. This algorithm continues until quit or until a
password is found.

1.2 Computational Complexity Comparisons

BFP takes O(n) time to be completed and to find the hash, with
diminishing returns for each processor added to the system
running BFP, as each processor must take the current password
values of every other processor and then continue forward with
this. GBFP with multiple processors of the same clock speed take
O(n/n,) time to be completed as each processor added performs its
own calculations and letting r, be the password range (range of
possible svmbols to be checked bv a processor) of processor b.

when r,nr, , ;, it moves on to a different set of symbols to be
checked, effectively optimizing BFP for n processors.



2 Glossary of Symbols

1 — Length Function

H — Password Hash

n —1(H)

n, — Number of Processors

p — Processor Number

s — Number of Available Symbols

BFP - Brute Force Password Cracking Algorithm

GBFP - Generalized Brute Force Password Cracking Algorithm

References
1. S. Arora,B.Barak.,”Computational Complexity: A Modern Approach,” 2017

2.A.P.Black.,”Exhaustive Search Algothms”,2019



