WEAK SEPARATION AXIOMS VIA PRE-REGULAR
p-OPEN SETS
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ABSTRACT. In this paper, we obtain new separation axioms by
using the notion of (4§, p)-open sets introduced by Jafari [3] via the

notion of pre-regular p-open sets [2].

1. INTRODUCTION AND PRELIMINARIES

In what follows (X,7) and (Y,o) (or X and Y) denote topological
spaces. If A is a subset of a space X, we denote the interior, the
closure and the complement of A by Int(A),Cl(A) and A°, respectively.
A subset A of a topological space (X, 7) is called preopen [5] if A C
Int (CI(A)), and preclosed if its complement is preopen; the preinterior
pInt(A) (resp. preclosure pCl(A)) of A is the largest preopen (resp.
smallest preclosed) set contained in (resp. containing) A. It is evident
that A is preopen (resp. preclosed) if and only if A = pInt(A) (resp.
pCl(A)). It is well known that pInt(A) = AN Int(CI(A)), and that
any union of preopen sets is preopen. A subset A of a topological
space (X, 1) is called pre-reqular p-open [2] if A = pInt(pCI(A)), and
pre-reqular p-closed if A = pCl(pInt(A)). It can be easily seen that
pInt(pCl(A)) (resp. pCl(pInt(A))) is pre-regular p-open (resp. pre-
regular p-closed) for any subset A of a space (X, 7). The collection of all
pre-regular p-open (resp. pre-regular p-closed) subsets of a space (X, 7)
will be denoted by PRO(X, 7) (resp. PRC(X,7)). Now we define the
following notions which will be used in the sequel: A point z € X is
called a (0, p)-cluster point of A if ANU # 0 for every pre-regular
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p-open set U of X containing x. The set of all (d, p)-cluster points of A
is called the (8, p)-closure of A, denoted by dCI,(A). If §CI,(A) = A,
then A is called (0, p)-closed. The complement of a (4, p)-closed set
is called (6, p)-open [3]. We say that a set U in a topological space
(X, 7) is a (9, p)-neighborhood of a point = if U contains a (4, p)-open
set to which z belongs. We denote the collection of all (d, p)-open (resp.
(0, p)-closed) sets by §PO(X, 1) (resp. PC(X,T)).

Throughout this paper, N denotes the set of natural numbers. For the
concepts not defined here, we refer the reader to [1].

The following four propositions can be easily verified.

Proposition 1.1. For subsets A and A;,i € I of a space (X, T), the
following hold:

(1) A C 6Cl,(A).

(2) If A C B, then 6Cl,(A) C 6Cl,(B).

(3) 6ClL,(N{A; :i € I}) C N{6CI,(A;) :i € I}.

(4) U{0C1,(A;) i€ I} COCL(U{A; :iel}).

Proposition 1.2. Any intersection of (0, p)-closed sets in (X, T) is
(0, p)-closed.

Proposition 1.3. Let A be a subset of a topological space (X, T). Then

Cl,(A) = N{FedéPC(X,7): ACF}
= N{F € PRC(X,7): AC F}

Proposition 1.4. Let A be a subset of a topological space (X, T) and
r € X. Thenx € 6CI,(A) if and only if UNA # 0 for every (6, p)-open

(pre-regular p-open) set U in X containing x.

Corollary 1.5. (1) 0C1,(A) is (J,p)-closed in (X, T) for any subset A
of (X,7).

(2) A subset A of (X, 7) is (6,p)-closed (resp. (9, p)-open) if and only
if A is the intersection (resp. union) of pre-regular p-closed (resp. pre-

reqular p-open) sets.
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Proof. Follows immediately from Propositions 1.2 and 1.3. U

Corollary 1.6. Let A be a subset of a topological space (X, 7). Then
dC1,(A) is the smallest (0, p)-closed set in (X, T) containing A.

Proof. Follows from Proposition 1.1 (1), (2) and Corollary 1.5 (1). O

Remark 1.7. It follows from Corollary 1.5 (2) that a singleton is (9, p)-

open if and only if it is pre-reqular p-open.

Remark 1.8. [t is clear also from Corollary 1.5 (2) that every pre-
reqular p-open set is (6, p)-open. However, the converse is not true as

the following simple example tells.

Example 1.9. Let X = {a,b,c}, 7 ={X,0,{b,c}}. Then{a,b},{a,c}
are pre-reqular p-closed in (X, T) as they are both preopen and preclosed.
Thus by Corollary 1.5 (2), {a} = {a,b} N{a,c} is (0,p)-closed. How-
ever, {a} is not pre-regular p-closed as pInt ({a}) = 0.

Remark 1.10. The union of even two (6, p)-closed sets need not be
(0, p)-closed as seen from Example 1.9. Observe that {b},{c} are pre-
reqular p-closed in (X, T) as they are both preopen and preclosed. Thus
by Remark 1.8, {b},{c} are (0, p)-closed. However, {b,c} is not (0, p)-
closed (observe that {a} is not pre-reqular p-open as pCl ({a}) = {a}
and pInt ({a}) =0, thus by Remark 1.7, {a} is not (9, p)-open,).

We now discuss the product of two (4, p)-open sets, to proceed, we

introduce the following (probably) known result.

Lemma 1.11. (1) Let A be a subset of a space X, B be a subset of a
space Y. Then, pInt (A x B) = pInt (A) x pInt (B).

(2) The product of two preopen sets is preopen.

(8) The product of two preclosed sets is preclosed.

(4) Let A be a subset of a space X, B be a subset of a space Y. Then,
pCl(A x B) C pCl(A) x pCl(B).

Proof. (1) Follows from the fact that pInt(A) = AN Int (Cl(A)).
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(2) Follows from (1).

(3) Let A be a preclosed subset of a space X, B be a preclosed subset
of aspace Y. Then by (2), X x (Y\B), (X\A) XY are preopen subsets
of X xY. Since any union of preopen sets is preopen, it follows that
(X xY)\(Ax B)=(Xx(Y\B))U((X\A) xY) is preopen, that is,
A x B is preclosed.

(4) By (3), pCl(A) x pCl(B) is preclosed, but A x B C pCl(A) x
pCl(B), so pCl(A x B) C pCl(A) x pCl(B). O

Corollary 1.12. Let A be a pre-regular p-open subset of a space X, B
be a pre-reqular p-open subset of a space Y. Then A x B is pre-reqular

p-open in X X Y.
Proof. 1t follows from Lemma 1.11 (1), (4) that

pInt (pCl(A x B)) C pInt(pCl(A) x pCl(B))
= pInt (pCl(A)) x pInt (pCl(B))
= AxB

Now

Ax B CpCl(Ax B)

but A, B are preopen, so it follows from Lemma 1.11 (2) that A x B is

preopen, and thus
A x B C pInt (pCl (A x B))

Hence, pInt (pCl(A x B)) = A x B, that is, A x B is pre-regular
p-open. ]

Corollary 1.13. (1) Let A be a (9, p)-open subset of a space X, B be
a (6,p)-open subset of a space Y. Then, A x B is (6, p)-open in X XY .
(2) Let A be a (6, p)-closed subset of a space X, B be a (9, p)-closed
subset of a space Y. Then, A X B is (0,p)-closed in X X Y.

(3) Let A be a subset of a space X, B be a subset of a space Y. Then,
dCl, (A x B) C 0Cl,(A) x dCl, (B).
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Proof. (1) Follows from Corollaries 1.5 (2) and 1.12.
(2) Follows from (1).
(3) Follows from (2) and Corollary 1.6. O

2. D(d,p)-SETS AND ASSOCIATED SEPARATION AXIOMS

Definition 2.1. A subset A of a topological space X is called a D(9, p)-
set if there are two U,V € PO(X,T) such that U # X and A = U\V.

Remark 2.2. Letting A = U and V = () in the above definition, it is
easy to see that every proper (0, p)-open set U is a D(J, p)-set.

Definition 2.3. A topological space (X, T) is called (0, p)-Dyg if for any
pair of distinct points x and y of X there exists a D(0,p)-set of X

containing x but not y or a D(d,p)-set of X containing y but not x.

Definition 2.4. A topological space (X, 7) is called (6,p)-Dy if for
any pair of distinct points x and y of X there ezist a D(6,p)-set of X
containing x but not y and a D(0,p)-set of X containing y but not x.

Definition 2.5. A topological space (X, T) is called (0, p)-Ds if for any
pair of distinct points x and y of X there exist disjoint D(9,p)-sets G

and E of X containing x and y, respectively.

Definition 2.6. A topological space (X, 1) is called (6, p)-Ty (resp. pre-
To (14], [6])) if for any pair of distinct points of X, there is a (§, p)-open

(resp. preopen) set containing one of the points but not the other.

It is well known that every singleton of a space X is preopen or pre-

closed, thus it is clear that every space is pre-Tj.

Definition 2.7. A topological space (X, T) is called (6, p)-T) (resp. pre-
Ty (14], [6])) if for any pair of distinct points x and y of X, there are
a (0,p)-open (resp. preopen) set U in X containing x but not y and a
(0,p)-open set V in X containing y but not .

Definition 2.8. A topological space (X, T) is called (6, p)-Ty (resp. pre-
Ty (4], [6])) if for any pair of distinct points x and y of X, there exist



6 M. CALDAS, S. JAFARI, T. NOIRI, AND M. S. SARSAK

(0, p)-open (resp. preopen) sets U and V in X containing x and vy,
respectively, such that UNV = ).

The following remark follows immediately from the definitions and Re-
mark 2.2.

Remark 2.9. (1) If (X, 1) is (§,p)-T; , then it is (6,p)-T;—1, i = 1,2.
(2) If (X, 1) is (0,p)-T; , then (X,7) is (0,p)-D; , i =0,1,2.
(3) If (X, 1) is (0,p)-D; , then it is (6,p)-Di—y , i =1,2.

Remark 2.10. [t is easy to see from Corollary 1.5 (2) that:

(1) A topological space (X, 1) is (,p)-Ty if and only if for any pair of
distinct points of X, there is a pre-reqular p-open set containing one of
the points but not the other.

(2) A topological space (X, T) is (0,p)-T1 if and only if for any pair of
distinct points x and y of X, there are a pre-reqular p-open U in X
containing x but not y and a pre-reqular p-open set V in X containing
y but not x.

(8) A topological space (X, 1) is (3, p)-Ty if and only if for any pair of
distinct points x and y of X, there exist pre-reqular p-open sets U and

V in X containing x and vy, respectively, such that U NV = ().

Example 2.11. Let X = {a,b,c} and 7 = {X,0,{a},{b},{a,b}}.
Then every preopen subset of (X, T) is open, and thus the pre-reqular
p-open sets are X, 0, {a},{b}. Hence, it is clear from Remark 2.10 that
(X,7) is a (8, p)-To space that is not (0, p)-T;.

Remark 2.12. [t is also easy to see from Remark 2.10 and the fact
that every pre-reqular p-open set is preopen, that if (X, 1) is (0,p)-T;,
then it is pre-T;,1 = 0,1, 2.

Theorem 2.13. A space (X, 7) is (0,p)-Tz if and only if it is pre-Ts.

Proof. Necessity. Follows from Remark 2.12.
Sufficiency. Let x,y € X and x # y. Then by assumption, there exist
disjoint preopen sets U, V' containing x, y respectively. Since UNV = )
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and V is preopen, pCl (U) NV = () and thus, pInt (pCl(U)) NV = (.
Similarly, since pInt (pC1(U)) is preopen, pInt (pClL(U))NpCL(V) =0
and thus, pInt (pCl(U))NpInt (pCL(V)) = 0. Now U C pInt (pCl(U))
and V' C pInt (pCl(V')) as U and V are preopen. Thus, pInt (pCl (U))
and pInt (pCl(V)) are disjoint pre-regular p-open sets containing z, y
respectively. Hence by Remark 2.10 (3), (X, 7) is (6, p)-To. O

Theorem 2.14. For a topological space (X, 1), the following state-
ments hold:

(1) (X,7) is (§,p)-Do if and only if it is (0, p)-Tp.

(2)(X,T) is (0,p)-Dy if and only if it is (6,p)-Ds.

Proof. (1) Necessity. Let (X,7) be (d,p)-Dy. Then for each distinct
points z,y € X, at least one of x, y, say z, belongs to a D(4, p)-set G but
y ¢ G. Suppose G = Uy\Uy where Uy # X and U;,Us € §PO(X, 7).
Then x € Uy, and for y ¢ G we have two cases: (a) y ¢ Uy ; (b) y € Uy
and y € Us. In case (a), U; contains x but does not contain y ; In case
(b), Uy contains y but does not contain x. Hence, X is (6, p)-To.
Sufficiency. Follows from Remark 2.9 (2).

(2) Necessity. Let X be (§,p)-D;. Then for each distinct points
z,y € X, we have D(9,p)-sets Gy, G such that € G,y ¢ Gy; y €
Go,x ¢ Go. Let G1 = Uy\Us, Gy = Us\Uy. From z ¢ Go, we have
either x ¢ Us or x € Us and z € U,;. We discuss the two cases
separately.

(1) x ¢ Us. From y ¢ G, we obtain the following two subcases:

(a) y ¢ Uy. From x € U;\U; we have x € U\ (UsU Us) and from
y € Us\Uy we have y € Us\(U; UUy) . It is easy to see that (Uy\(Usz U
Us)) N (Us\(Ur U Uy) = 0.

(b) y € Uy and y € Uy. We have x € Uy \Us,y € Uy and (U1\Uz) NU,y =
0.

(2) z € Uz and = € Uy. We have y € U3\Uy, x € Uy and (Us\Uy)NU, =
0.

Hence, X is (6, p)-Ds.
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Sufficiency. Follows from Remark 2.9 (3). O
Corollary 2.15. If (X, 7) is (3, p)-D1, then it is (J,p)-To.
Proof. Follows from Remark 2.9 (3) and Theorem 2.14 (1). O

The following diagram summarizes the implications among the intro-
duced concepts and other related concepts.
TZ - pre‘TQ <« (57p)_T2 — (57 p) D2

! L L 1
Tl — pre‘Tl <~ (57 p)_Tl — (57 p)'Dl
1 } 2 \

TO — pre'TO A (57p)_TO < ((Sap)'DO

Theorem 2.16. Let X and Y be (6,p)-T;. Then X x Y is (6,p)-
T,,i=0,1,2.

Proof. Follows from Corollary 1.13 (3). O

Theorem 2.17. A topological space (X,T) is (0,p)-Ty if and only if
for each pair of distinct points x,y of X, 6Cl,({z}) # 6Cl,({y}).

Proof. Necessity. Let (X, 7) be a (4, p)-Tp space and z, y be any two
distinct points of X. Then there exists a (J, p)-open set G containing
x, say but not y, and therefore G¢ is a (6, p)-closed set which contains
y but not x. Since 0C1,({y}) is the smallest (4, p)-closed set containing
y (Corollary 1.6), 6Cl,({y}) C G¢, and so x ¢ 0Cl,({y}). Thus by
Proposition 1.1 (1), 6Cl,({z}) # 6ClL,({y}).

Sufficiency. Suppose that z,y € X,z # y. Then by assumption,
dCL({x}) # 0Cl,({y}). Let z be a point of X such that z € §C1,({x})
and z ¢ 6Cl,({y}), say. We claim that = ¢ 0Cl,({y}). For, if
z € 0Cl,({y}), then by Proposition 1.1 (2) and Corollary 1.5 (1),
ClL,({x}) C 0Cl,({y}), a contradiction with z ¢ 0Cl,({y}). Thus,
z € (6Cl,({y})), but by Proposition 1.1 (1) and Corollary 1.5 (1),
(6C1,({y})) is a (0, p)-open set that does not contain y. Hence, (X, 1)
is (9, p)-To. O
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Theorem 2.18. A topological space (X, ) is (0,p)-T1 if and only if
the singletons of X are (6, p)-closed.

Proof. Necessity. Suppose (X, 7) is (d,p)-11 and z is any point of
X. Let y € {z}°. Then x # y and so there exists a (4, p)-open set
U, such that y € U, but ¢ U,. Consequently y € U, C {z} ie.
{z}¢=U{Uy, : y € {z}°} which is (4, p)-open by Proposition 1.2.

Sufficiency. Suppose {p} is (9, p)-closed for every p € X. Let z,y € X
with « # y . Then by assumption, {z}¢ is a (d, p)-open set containing
y but not x. Similarly {y}¢ is a (J, p)-open set containing = but not y.
Hence, X is (0, p)-T}. O

Definition 2.19. A point © € X which has X as the only (6,p)-
neighborhood is called a D(6,p)-neat point.

Remark 2.20. It is clear that if a (0,p)-Ty topological space (X, T)
has a D(0,p)-neat point, then it is unique, because if x and y are both
D(4,p)-neat point in X, then at least one of them say x has a (9, p)-

neighborhood U containing x but not y. But this is a contradiction since
U#X.

Theorem 2.21. For a (0, p)-Ty topological space (X, T), the following
are equivalent:

(1) (X,7) is (6,p)-Dy;

(2) (X, 7) has no D(d,p)-neat point.

Proof. (1)—(2): Since (X, 1) is (d,p)-D1, so each point = of X is con-
tained in a D(6, p)-set O = U\V and thus in U. By definition U # X.
Hence, z is not a D(4, p)-neat point.

(2)—(1): If X is (4, p)-Tp, then for each distinct pair of points z,y € X,
there exists a (0, p)-set U containing x, say but not y. Thus by Remark
2.2, U is a D(0,p)-set. If X has no D(4,p)-neat point, then y is not
a D(J, p)-neat point. Thus, there exists a (0, p)-open set V' containing
y such that V' # X, and therefore, y € V\U,z ¢ V\U and V\U is a
D(4, p)-set. Hence, X is (9, p)-D;. O
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Example 2.22. Consider the space (X,7T) of Example 2.11. Then
(X, 7) is (0,p)-Dg as it is (5,p)-To. Since the pre-regular p-open sets
are X, 0,{a},{b}, it follows from Corollary 1.5 (2) that the (0, p)-open
sets are X, 0,{a},{b},{a,b}. Thus ¢ is a D(0,p)-neat point of X.
Hence, it follows from Theorem 2.21 that (X, T) is not (J,p)-D;.

Definition 2.23. A function f : (X,7) — (Y,0) is called (9,p)-

continuous if the inverse image of each (0, p)-open set is (J, p)-open.

Theorem 2.24. If f : (X,7) — (Y,0) is a (J, p)-continuous surjective
function and E is a D(0,p)-set in Y, then the inverse image of E is a
D(6,p)-set in X.

Proof. Let E be a D(d,p)-set in Y. Then there are (4, p)-open sets Uy
and Us in Y such that E' = U;\U, and Uy # Y. By the (0, p)- continuity
of f, f~Y(Uy) and f~(Uy) are (8, p)-open in X. Since U; # Y, we have
f~HUy) # X. Hence, f~Y(E) = f~YU)\f 1 (Us) is a D(§,p)-set. O

Theorem 2.25. If (Y,0) is (0,p)-Dy and f : (X,7) — (Y, 0) is (J,p)-
continuous and bijective, then (X, 7) is (0,p)-D;.

Proof. Suppose that Y is a (6, p)-D; space. Let x and y be any pair of
distinct points in X. Since f is injective and Y is (6, p)-D;, there exist
D(0,p)-sets G and G, of Y containing f(z) and f(y) respectively,
such that f(y) ¢ G, and f(z) ¢ G,. By Theorem 2.24, f~'(G,) and
f~YG,) are D(4,p)-sets in X containing z and y respectively, and
y & [fHGy),x & f~1(G,). Hence, X is (4, p)-D;. O

Theorem 2.26. A topological space (X, T) is (§,p)-D1 if and only if
for each pair of distinct points x,y € X, there exists a (d, p)-continuous
surjective function f : (X,7) — (Y,0), where Y is a (§,p)-D1 space
such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to
take the identity function on X.
Sufficiency. Let x and y be any pair of distinct points in X. By
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hypothesis, there exists a (¢, p)-continuous, surjective function f from
X onto a (0, p)-Dq space Y such that f(x) # f(y). Thus by Theorem
2.14 (2), there exist disjoint D(d, p)-sets G, and G, in Y such that
f(z) € G, and f(y) € G, . Since f is (0, p)-continuous and surjective,
by Theorem 2.24, f~1(G,) and f~(G,) are disjoint D(d, p)-sets in X
containing = and y, respectively. Hence again by Theorem 2.14 (2), X
is (9, p)-Dy. O

3. (6,p)-Ro SPACES AND (0, p)-R; SPACES

Definition 3.1. A topological space (X,T) is said to be a (J,p)-Ro
space if every (8, p)-open set contains the (0, p)-closure of each of its

singletons.

Definition 3.2. A topological space (X, 1) is said to be (9, p)-Ry if for
x,y in X with §CL,({x}) # dCl,({y}), there exist disjoint (9, p)-open
sets U and V' such that 6CL,({x}) is a subset of U and 6Cl,({y}) is a
subset of V.

Theorem 3.3. If (X,7) is (§,p)-R1, then (X, 7) is (J,p)-Ro.

Proof. Let U be (9, p)-open and x € U. If y ¢ U, then by Proposition
14, = ¢ 6Cl,({y}), and thus by Proposition 1.1 (1), §Cl,({z}) #
0C1,({y}). Since (X,7) is (9, p)-R1, there exists a (9, p)-open V, such
that 6Cl,({y}) C V, and = ¢ V. Thus again by Propositions 1.1 (1)
and 1.4, y ¢ JCl,({z}). Therefore, §C1,({x}) C U, and hence, (X, )
is (0, p)-Ro. O

Definition 3.4. A topological space (X, T) is said to be (0, p)-symmetric
if for each x,y € X,z € §Cl,({y}) implies y € 6Cl,({x}).

Theorem 3.5. For a topological space (X, T), the following properties
are equivalent:

(1) (X,7) is a (6,p)-Ro space;

(2) (X, ) is (9, p)-symmetric.
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Proof. (1)—(2): Assume X is (6,p)-Ry. Let x € dCIl,({y}) and U
be any (4, p)-open set such that y € U. Now by hypothesis, z € U.
Therefore, every (4, p)-open set which contain y containing x. Hence
by Proposition 1.4, y € §C1,({z}).

(2)—(1): Let U be a (d,p)-open set and = € U. If y ¢ U, then
by Proposition 1.4, x ¢ 6Cl,({y}), and hence by assumption, y ¢
dC1,({x}). This implies that dC1,({z}) C U. Hence, (X, 7) is (J, p)-
Ry. O

Theorem 3.6. For a space (X, T), the following are equivalent:
(1) (Xa 7_) is (5a p)_Tl;
(2) (X7 T) is (57 p>_T0 and (57 p>_RO'

Proof. (1)—(2): Follows from Remark 2.9 (1) and Theorem 2.18.

(2)—=(1): Let z,y € X and « # y. Since X is (0,p)-Tp, we may
assume without loss of generality that x € Gy C {y}¢ for some G, €
dPO(X, 7). Thus by Proposition 1.4, z ¢ dCI,({y}), and hence by
Theorem 3.5, y ¢ 6CI,({x}). Thus again by Proposition 1.4, there
exists Gy € 0PO(X,7) such that y € Gy C {z}°. Hence, (X,7) is
(0,p)-T1. O

Corollary 3.7. For a (0,p)-Ry topological space (X, T), the following
are equivalent:

(1) (X,7) is (6, p)-To;

(2) (X, 7) is (6,p)-Dr;

(8) (X, 1) is (§,p)-T1.
)

Proof. (1)—(3): Follows from Theorem 3.6.
(3)—(2): Follows from Remark 2.9 (2).
(2)—(1): Follows from Corollary 2.15. O

Theorem 3.8. For a space (X, T), the following are equivalent:
(1) (Xu T) is (5,]9)‘T2,'
(2) (X,7) is (§,p)-T1 and (0,p)-Ry.

Proof. Follows from Remark 2.9 (1) and Theorem 2.18. O
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Remark 3.9. It is clear from Theorems 3.6 and 3.8 that any space
that is (0,p)-T1 but not (6, p)-Ty is (6, p)-Ro but not (6, p)-R;.

Definition 3.10. Let A be a subset of a space X. The (0, p)-kernel of
A, denoted by §Kery(A), is defined to be the set "{U € JPO(X,T) :
AcCU}.

Lemma 3.11. Let (X, 1) be a topological space and A C X. Then
dKer,(A) ={z € X : 0CL,({z}) N A # 0}.

Proof. Let x € 6 Kery(A) and 6C1,({x})NA = 0. Hence, x ¢ (6Cl,({x}))°
which is a (4, p)-open set containing A (Corollary 1.5 (1)). This is ab-
surd, since x € 0Kery(A). Consequently, 0Cl,({z}) N A # 0. Next,
let = such that §CI,({z}) N A # 0 and suppose that x ¢ dKer,(A).
Then there exists a (0, p)-open set U containing A and = ¢ U. Let
y € 6Cl,({z}) N A. Then by Proposition 1.4, € U, a contradic-
tion. U

Lemma 3.12. Let (X,7) be a topological space and x € X. Then
y € 0Ker,({z}) if and only if v € 60C1,({y}).

Proof. Suppose that y ¢ dKer,({z}). Then there exists a (J, p)-open
set V' containing = such that y ¢ V. Therefore by Proposition 1.4,
x ¢ 0Cl,({y}). The converse is similarly shown. O

Lemma 3.13. The following statements are equivalent for any points
x and y in a topological space (X, T):

(1) 6Kery({z}) # dKerp({y});

(2) 0CL({x}) # 6CL({y}).

Proof. (1)—(2): Suppose that 6 Ker,({z}) # 6Ker,({y}), then there
exists a point z in X such that z € §Ker,({z}) and z ¢ dKer,({y}).
From z € 0Ker,({z}) it follows that {}N0C1,({z}) # 0 which implies
z € 6Cl,({z}). By z ¢ dKer,({y}), we have {y}NdC1,({z}) = 0. Since
z € 6CL,({z}), it follows from Proposition 1.1 (2) and Corollary 1.5
(1) that 6C1,({z}) C 6Cl,({z}), and thus {y} NdC1,({z}) = 0. Hence
by Proposition 1.1 (1), 0Cl,({z}) # 6ClL,({y}).
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(2)—(1): Suppose that 6Cl,({z}) # dCI,({y}). Then there exists a
point z in X such that z € 0Cl,({z}) and z ¢ 6Cl,({y}). Thus it
follows from Proposition 1.4 that there exists a (d,p)-open set con-

taining z and therefore x but not y, so y ¢ 0Ker,({z}). Hence,
SKery({x}) # 6Kery({y}). n

Corollary 3.14. A topological space (X, 7) is (0,p)-Ry if and only if
forz,y € X,0Ker,({z}) # dKer,({y}), there exist disjoint (0, p)-open
sets U and V' such that 0Cl,({z}) C U and 6Cl,({y}) C V.

Proof. Follows from Lemma 3.13. O

Theorem 3.15. A topological space (X,T) is a (0,p)-Ry space if and
only for any x and y in X, §CI,({x}) # 0CL,({y}) implies 6CL,({x})N

0CL({y}) = 0.

Proof. Necessity. Assume (X, 7) is (d,p)-Rp and x,y € X such that
CL,({x}) # dCL,({y}). Then, there exist z € §CI,({x}) such that
z ¢ 0CL,({y}) (or z € 6C,({y}) such that =z ¢ 0Cl,({z})). Thus
by Proposition 1.4, there exists V' € 6 PO(X, ) such that y ¢ V' and
z € V; hence again by Proposition 1.4, x € V and = ¢ 0C1,({y}).
Thus by Corollary 1.5 (1), x € (6Cl,({y}))° € 6PO(X,7), but (X, 1)
is (8, p)-Ro, so 0ClL,({z}) C (0C1,({y}))". The proof for otherwise is
similar.

Sufficiency. Let V € 6PO(X,7) and let € V. We will show that
dC1,({x}) C V. Suppose y ¢ V. Then by Propositions 1.1 (1) and 1.4,
x ¢ 6Cl,({y}). Thus by Proposition 1.1 (1), 6Cl,({z}) # 6ClL,({y}).
By assumption, 0Cl,({z}) N dCI,({y}) = 0, and thus again by Propo-
sition 1.1 (1), y ¢ dC1,({z}). Hence, 0Cl,({z}) C V, and therefore,
(X, 7) is (0,p)-Ry. O

Theorem 3.16. A topological space (X, T) is a (0,p)-Ro space if and
only if for any points x and y in X, 6Ker,({z}) # 6 Ker,({y}) implies
SKery({a}) N 6Kery({y}) = 0.
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Proof. Necessity. Suppose that (X, 7) is a (J, p)-Ro space. Thus by
Lemma 3.13, for any points z and y in X, if §Ker,({z}) # dKer,({y}),
then 6C1,({z}) # 0C,({y}). Now we prove that § Ker,({z})NdKer,({y}) =
(. Assume that z € 0Ker,({z})NdKer,({y}). By z € §Ker,({z}) and
Lemma 3.12, it follows that x € 6Cl,({#}). Thus by Theorem 3.15,
dCIl,({z}) = 6Cl,({z}). Similarly, we have 0Cl,({y}) = 0CL,({z}) =
dCl,({z}), a contradiction. Hence, Ker,({z}) NdKer,({y}) = 0.
Sufficiency. Let (X,7) be a topological space such that for any
points z and y in X, §Ker,({z}) # dKer,({y}) implies 0 Ker,({z}) N
dKer,({y}) = 0. Assume that §Cl,({z}) # 0Cl,({y}). Then by
Lemma 3.13, 0 Ker,({z}) # 0Ker,({y}), and therefore by assumption,
dKer,({z})NndKer,({y}) = 0. Now if z € 6Cl,({x}), then by Lemma
3.12, x € 0Kery({z}), and therefore, §Ker,({z}) N dKer,({z}) # 0.
By hypothesis, dKer,({z}) = dKer,({z}). Thus z € 6Cl,({z}) N
0C1,({y}) implies that 0Ker,({z}) = 0Ker,({z}) = dKer,({y}), a
contradiction. Therefore, 6CI,({z}) # dC1,({y}) implies that §C1,({z})N
6Cl,({y}) = 0, and thus by Theorem 3.15, (X, 7) is (0, p)-Ryo. O

Theorem 3.17. For a topological space (X, 1), the following properties
are equivalent :

(1) (X, 1) is a (0,p)-Ry space;

(2) For any nonempty set A and G € 6PO(X, 1) such that ANG # 0,
there exists F € §PC(X, 1) such that ANF # 0 and F C G}

(3) For any G € 0PO(X,7),G =U{F € 0PC(X,7): F C G};

(4) For any F € 0PC(X, 1), F = 0Ker,(F);

(5) For any x € X,6C1,({z}) C 0Ker,({z}).

Proof. (1)—(2): Let A be a nonempty set of X and G € dPO(X, 1)
such that AN G # (. There exists + € ANG. Since v € G €
JPO(X,7),0Cl,({x}) C G. Set F = Cl,({x}), then F' € 6PC(X,T)
by Corollary 1.5 (1), F C G and ANF # .

(2)—=(3): Let G € 0PO(X,7), then G D U{F € 0PC(X,7): F C G}.
Let  be any point of G. There exists F' € 0PC(X, 1) such that x € F'
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and F' C G. Therefore, we have v € FF C U{F € 0PC(X,7): F C G}
and hence G = U{F € PC(X,7) : F C G}.

(3)—(4): Clear.

(4)—(5): Let = be any point of X and y ¢ dKer,({z}). There exists
V € 6PO(X,7) such that x € V and y ¢ V; hence 0Cl,({y}) NV = 0.
By (4), (0Ker, (6Cl,({y}))) NV = 0 and there exists G € §PO(X, )
such that x ¢ G and 6Cl,({y}) C G. Therefore, 6Cl,({x})NG = 0 and
thus by Proposition 1.4 and Corollary 1.5 (1), y ¢ 6C1,0C,({z}) =
dC1L,({z}). Consequently, 6Cl,({z}) C 6Ker,({z}).

(5)—(1): Clear. O

Theorem 3.18. For a topological space (X, T), the following properties
are equivalent:

(1) (X,7) is a (6,p)-Ro space;

(2) If F is (d,p)-closed and x € F, then 6 Ker,({z}) C F;

(3) If v € X, then §Ker,({z}) C 6Cl,({x}).

Proof. (1)—(2): Let F be (0, p)-closed and x € F. Then 0Ker,({z}) C
dKer,(F). By (1), it follows from Theorem 3.17 that dKer,(F) = F.
Thus, 0Ker,({z}) C F.

(2)—(3): Since x € §Cl,({x}) (Proposition 1.1 (1)) and §C1,({x}) is
(0, p)-closed (Corollary 1.5 (1)), by (2), dKer,({z}) C 6ClL,({z}).
(3)—=(1): Let z € 6Cl,({y}). Then by Lemma 3.12, y € dKer,({z}).
By (3), y € dCl,({z}). Therefore, z € §CI,({y}) implies that y €
0Cl,({z}). Hence by Theorem 3.5, (X, 7) is (J, p)-Ro. O

Corollary 3.19. For a topological space (X, T), the following properties
are equivalent :

(1) (X, 1) is a (0,p)-Ry space;

(2) 6Cl,({z}) = 0Ker,({z}) for all x € X.

Proof. Follows from Theorems 3.17 and 3.18. U

Definition 3.20. A filterbase F in a space X is called (0, p)-convergent
to a point x in X, if for any (0, p)-open set U of X containing x, there
ezvists B in F' such that B is a subset of U.
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Definition 3.21. A net {4 }aca in a space X is called (8, p)-convergent
to a point x in X, if for any (0, p)-open set U of X containing x, there
erists ag € A such that x, € U for each a > ay.

Lemma 3.22. Let (X,7) be a topological space and let x and y be
any two points in X such that every net in X (0,p)-converging to y
(0, p)-converges to x. Then x € §CL,({y}).

Proof. Suppose that z, = y for each n € N. Then {z,},en is a net
in X that (0, p)-converges to y. Thus by assumption, {x,}.en (0, p)-
converges to x. Hence by Proposition 1.4, z € 6CI,({y}). O

Theorem 3.23. For a topological space (X, T), the following state-
ments are equivalent :

(1) (X, 1) is a (0,p)-Ry space;

(2) If v,y € X, then y € CL,({z}) if and only if every net in X
(0, p)-converging to y (9, p)-converges to .

Proof. (1)—(2): Let z,y € X such that y € 0C1,({z}). Let {zs}aca be
anet in X such that {z, }aea (0, p)-converges to y. Since y € 6C1,({z}),
by Theorem 3.5, z € dCI,({y}). Since {xs}aea (9, p)-converges to y
and z € JC1,({y}), it follows from Proposition 1.4 that {4 }aea (9, p)-
converges to x. Conversely, let x,y € X such that every net in X
(0, p)-converging to y (9, p)-converges to x. Then = € 6CI,({y}) by
Lemma 3.22. By Theorem 3.5, y € §C1,({z}).

(2)—(1): Assume that x and y are any two points of X such that
y € 0Cl,({z}). Suppose that x, =y for each n € N. Then {z, } ey is
a net in X that (9, p)-converges to y. Since y € 6Cl,({z}) and {x,, }nen
(0, p)-converges to y, it follows from (2) that {x, },en (6, p)-converges
to x. Thus by Proposition 1.4, z € 6C1,({y}). Hence by Theorem 3.5,
(X,7) is (0,p)-Ry. O

4. SOBER (4, p)-Ry SPACES

Definition 4.1. A topological space (X, T) is said to be sober (J,p)-Ry
if Npex0CL,({z}) = 0.
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Theorem 4.2. A topological space (X, T) is sober (8, p)-Ro if and only
if SKer,({z}) # X for every x € X.

Proof. Necessity. Suppose that the space (X, 7) is sober (0,p)-Ro.
Assume that there is a point y in X such that §Ker,({y}) = X. Thus
by Lemma 3.11, y € NyexdCl,({z}), a contradiction.

Sufficiency. Assume that §Ker,({z}) # X for every z € X. If there
exists a point y in X such that y € NyexdCl,({z}), then every (4, p)-
open set containing y must contain every point of X. This implies
that the space X is the unique (¢, p)-open set containing y. Hence,
dKer,({y}) = X, a contradiction. O

Definition 4.3. A function f : X — Y s called (6, p)-closed if the
image of every (0, p)-closed subset of X is (0, p)-closed in'Y .

Theorem 4.4. If f : X — Y is an injective (9, p)-closed function and
X s sober (6,p)-Ry, then Y is sober (9, p)-Ro.

Proof. Straightforward. O

Theorem 4.5. If X is a sober (0, p)-Ry topological space and Y is any
topological space, then the product space X XY is sober (8, p)-Ry.

Proof. By showing that N, ) exxy0CL({(z,y)}) = 0, we are done. By
Corollary 1.13 (3), we have:

NayexxvoCL{(z,y)}) C Nayexxy(0CL({z}) x 6C1,({y}))
= NMuexdCl({z}) x NyeydCl,({y})
C OxY

=0

REFERENCES

[1] R. Engelking, General Topology, Second edition. Sigma Series in Pure Mathe-
matics, 6. Heldermann Verlag, Berlin, 1989.



WEAK SEPARATION AXIOMS VIA PRE-REGULAR p-OPEN SETS 19

[2] S. Jafari, On some certain types of notions via preopen sets, Tamkang J. Math.
37 (4) (2006), 391-398.

[3] S. Jafari, Pre-rarely p-continuous functions between topological spaces, Far Fast
J. Math. Sci. Special Volume (2000), Part I (Geometry and Topology), 87-96.

[4] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta
Math. Soc. 82 (1990), 415-422.

[5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous
and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982),
47-53.

[6] T. M. J. Nour, Contributions to the theory of bitopological spaces, Ph. D.
Thesis, Univ. of Delhi, 1989.

DEPARTAMENTO DE MATEMATICA APLICADA,, UNIVERSIDADE FEDERAL FLUMI-
NENSE,, RUA MARIO SANTOS BRAGA, S/N, 24020-140, NiTEROI, RJ BRASIL.

Email address: gmamccs@vm.uff.br

DEPARTMENT OF EcoNOMICS,, UNIVERSITY OF COPENHAGEN,, OESTER FARIMAGS-
GADE 5, BUILDING 26,, 1353 COPENHAGEN K, DENMARK.

Email address: jafari@stofanet.dk

2949-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMAMOTO-KEN, 869-5142
JAPAN.

Email address: t.noiri@nifty.com

DEPARTMENT OF MATHEMATICS, THE HASHEMITE UNIVERSITY, P.O. Box 150459,
ZARQA 13115 JORDAN.

Email address: sarsak@hu.edu. jo



