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Abstract
The writing intends to point out aspects of conflict regarding some standard improper integrals.
Introduction

Two standard integrals frequently used in physics have been considered and the results have been
analyzed to bring out some conflicting aspects
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We consider the standard integral™
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While integration with respect to k, the variable |k| is held constant[asides s]

When 4% = |I_c>|3 —s>0

+0oo dko 5
1=f ——2 i 42>0 (3)
—ow ko“+ A% —ic

We evaluate (2) and (3) ignoring the complex part
Evaluation of (2’), ignoring the imaginary part:

We evaluate the following improper integral by using limit concepts :


mailto:palit.anamitra@gmai.com

+0oo 1
1:[_00 ———dx (2)

Indefinite integral

The integral represented by (2’) may be interpreted as
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Next we pass on to the evaluation of
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The indefinite integral
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Since the integrand an even function and positive everywhere on the x-axis
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[The indefinite integral, in fact, is not required to come to this conclusion since we know that the
integrand is positive everywhere on the x axis]
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Standard result®
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Calculations based on I;
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Differentiating (A) with respect to s we have
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Asides the fact that € = 0 we have theadditional strength of (B)
For € = 0[and recalling (B)]
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Asides the fact that € — 0 we have the additional fact that (B) does not tend to infinity in which case
there would have been a possibility of the integral becoming convergent. On the contrary it evaluates to
zero with € —» 0.

I, does not work out to its standard value as given by (4)
Tracing the Source of the Problem
Analytical Functions

We consider the Cauchy Riemann equations for an analytical function f(z) = u(x,y) + i(v(x,y)
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Equation (5.2) implies
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Adding (5.1) and (5.3) we have,
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F(z) =ax+by' +c¢ (9.1)

F(z) =ax +iby +c (9.2)
Substituting (5.2) into (2) we obtain:a —b =0
Therefore

F(z) = ax + iay + c (10)

The integrand in (1) is not of the form of (10).

Conclusion

As claimed , we have arrived at some conflicts with the two the standard integrals. The source of error
has also been traced.
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