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Summary 

Basic physical fields are dynamic fields like our universe and the fields 

that are raised by electric charges. These fields are dynamic 

continuums. Most physical theories treat these fields by applying 

gravitational theories or by Maxwell equations. Mathematically these 

fields can be represented by quaternionic fields. Dedicated normal 

operators in quaternionic non-separable Hilbert spaces can represent 

these quaternionic fields in their continuum eigenspaces. Quaternionic 

functions can describe these fields. Quaternionic differential and 

integral calculus can describe the behavior of these fields and the 

interaction of these fields with countable sets of quaternions. All 

quaternionic fields obey the same quaternionic function theory. The 

basic fields differ in their start and boundary conditions. 

The paper introduces the concept of the Hilbert repository. The paper 

treats the mathematical and experimental underpinning of the Hilbert 

Book Model.  

1 Introduction 

The fact that physical objects can be represented and modeled by 

mathematical constructs is applied in many physical theories. 

Quite often function theory is applied and less frequently the 

representation is embedded in a topological space, such as a Hilbert 

space. The Hilbert space has the advantage that it can act as a 

repository for dynamic geometrical data and for dynamic fields. If a 
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system of Hilbert spaces is applied, then a very powerful and flexible 

modeling platform results that can cope with the diversity and the 

dynamics of objects that are encountered in the universe. This system 

of Hilbert spaces forms the base model of the Hilbert Book Model. 

Mathematics severely restricts the possibilities of this platform. This 

appears an advantage rather than a discredit because it limits the 

extension of the model in arbitrary directions. Consequently, the 

extension of the platform can only develop in a direction that leads to 

the structure and behavior of the type of physical reality that we 

observe. 

The base model is subject of a PowerPoint presentation  

Base model.pptx [1]. 

The Hilbert Book Model is a subject of the Hilbert Book Model Project. 

The Hilbert Book Model is treated in great detail in “A Self-creating 

Model of Physical Reality” [2]. 

This paper focusses on field theory and on the interaction between 

discrete objects and fields. 

2 Hilbert spaces 

Hilbert spaces emerge from orthomodular lattices because the set of 

closed subspaces of a separable Hilbert space is a Hilbert lattice, which 

is lattice isomorphic with an orthomodular lattice [3][4]. Only a subtle 

difference exists between a Hilbert space and its underlying vector 

space. A separable Hilbert space is a complete vector space that 

features an inner product. The value of the inner product must be a 

member of an associative division ring [5]. Only three suitable number 

systems exist that are associative division rings. These are the real 

number system, the complex number system, and the quaternionic 

number system. Octonions and biquaternions do not fit.  Depending on 

http://www.e-physics.eu/Base%20model.pptx
http://vixra.org/abs/1908.0223
http://vixra.org/abs/1908.0223
https://ncatlab.org/nlab/show/Hilbert+space
https://ncatlab.org/nlab/show/Hilbert+lattice
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their dimension these number systems exist in many versions that 

distinguish in the Cartesian and polar coordinate systems that sequence 

the members of the version. Each Hilbert space manages the selected 

version of the number system in the eigenspace of a dedicated normal 

operator that the author calls the reference operator. This eigenspace 

acts as the private parameter space of the Hilbert space. A category of 

normal operators exists for which the members share the eigenvectors 

of the reference operator and apply a selected function and the 

parameter value that belongs to the eigenvector to generate a new 

eigenvalue by taking the target value of the function as the new 

eigenvalue. In this way, the eigenspace of the new operator becomes a 

sampled field. 

Hilbert spaces are also known as function spaces [3]. This paper does 

not employ this possibility. Instead, it uses the approach of Paul Dirac to 

couple eigenvectors directly to eigenvalues, as is shown above for the 

reference operator and for the operators that share the eigenvectors of 

the reference operator to define their eigenspaces via selected 

functions. Later we define the footprint operator that archives the 

production of the private stochastic process, which generates the 

ongoing hopping path of an elementary particle. The physical fields are 

also expressed in this way. 

Mainstream physics tends to exploit complex number-based Hilbert 

spaces and most theories apply only one Hilbert space. In contrast, this 

paper applies a system of quaternionic Hilbert spaces. 

2.1 Bra's and ket's 

Paul Dirac introduced a handy formulation for the inner product 
that applies a bra and a ket [3]. 
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The bra f   is a covariant vector, and the ket g   is a 

contravariant vector. The inner product |f g  acts as a metric. It 

has a quaternionic value. Since the product of quaternions is not 
commutative, care must be taken with the format of the formulas. 

For bra vectors hold 

 f g g f f g+ = + = +   (2.1.1) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (2.1.2) 

For ket vectors hold  

 f g g f f g+ = + = +   (2.1.3) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (2.1.4) 

For the inner product holds 

 
*

| |f g g f=   (2.1.5) 

For quaternionic numbers  and    hold 

 ( )
**

*| | | |f g g f g f f g   = = =   (2.1.6) 

 | |f g f g =   (2.1.7) 

 
( )

( )

* *

*

| | |

|

f g f g f g

f g

   

 

+ = +

= +
  (2.1.8) 

Thus 

 f   (2.1.9) 

 *f f =   (2.1.10) 
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 g g =   (2.1.11) 

We made a choice. Another possibility would be f f =  and 

*g g =   

In mathematics a topological space is called separable if it 
contains a countable dense subset; that is, there exists 

a sequence  
0i

i
i

f
=

=
  of elements of the space such that every 

nonempty open subset of the space contains at least one element 
of the sequence. 

Its values on this countable dense subset determine 
every continuous function on the separable space ℌ. 

The Hilbert space ℌ is separable. That means that a countable 

row of elements  nf exists that spans the whole space. 

If ( )| ,m nf f m n=  [1 if n=m; otherwise 0], then   nf is an 

orthonormal base of Hilbert space ℌ. 

A ket base  k  of ℌ is a minimal set of ket vectors k  that span 

the full Hilbert space ℌ. 

Any ket vector f  in ℌ can be written as a linear combination of 

elements of  k . 

 |
k

f k k f=   (2.1.12) 

A bra base  b  of ℌ† is a minimal set of bra vectors b  that span 

the full Hilbert space ℌ†. 

Any bra vector f  in  ℌ† can be written as a linear combination of 

elements of  b . 

https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Continuous_function
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 |
b

f f b b=   (2.1.13) 

Usually, a base selects vectors such that their norm equals 1. 
Such a base is called an orthonormal base 

2.1.1 Operator construction 

f g  is a constructed operator.  

 ( )
†

g f f g=   (2.1.14) 

For the orthonormal base  iq consisting of eigenvectors of the 

reference operator, holds 

 |n m nmq q =   (2.1.15) 

The reverse bra-ket method enables the definition of new operators 

that are defined by quaternionic functions. 

  
1

(| )| i i

N

i

ig h g hF q F q q
=

=   (2.1.16) 

The symbol F is used both for the operator F and the quaternionic 

function ( )F q .  This enables the shorthand 

 ( )i i iF q F q q   (2.1.17) 

It is evident that 

 ( )† *

i i iF q F q q   (2.1.18) 

For reference operatorR holds 

 i i iq q q=R   (2.1.19) 

If  iq  consists of all rational values of the version of the 

quaternionic number system thatHapplies then the eigenspace 

of R represents the private parameter space of the separable 
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Hilbert spaceH. It is also the parameter space of the function ( )F q

that defines the operator F in the formula (2.1.17). 

2.2 Non-separable Hilbert space 

Every infinite-dimensional separable Hilbert spaceH owns a 

unique non-separable companion Hilbert space . This is 
achieved by the closure of the eigenspaces of the reference 
operator and the defined operators. In this procedure, on many 
occasions, the notion of the dimension of subspaces loses its 
sense. 

Gelfand triple and Rigged Hilbert space are other names for the 
general non-separable Hilbert spaces. 

In the non-separable Hilbert space, for operators with continuum 

eigenspaces, the reverse bra-ket method turns from a summation 

into an integration. 

 ( ) | |g h g h dVq dF q F q      (2.2.1) 

Here we omitted the enumerating subscripts that were used in the 

countable base of the separable Hilbert space. 

The shorthand for the operator F is now  

 ( )F q F q q   (2.2.2) 

For eigenvectors q , the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (2.2.3) 

The reference operator that provides the continuum background 

parameter space as its eigenspace follows from 

  | qg h g h dVdq q      (2.2.4) 

The corresponding shorthand is  
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 q q q   (2.2.5) 

The reference operator is a special kind of defined operator. Via the 

quaternionic functions that specify defined operators, it becomes clear 

that every infinite-dimensional separable Hilbert space owns a unique 

non-separable companion Hilbert space that can be considered to 

embed its separable companion. 

The reverse bracket method combines Hilbert space operator 

technology with quaternionic function theory and indirectly with 

quaternionic differential and integral technology. 

 

 

3 A system of separable Hilbert spaces 

Due to the subtle difference between a Hilbert space and its underlying 

vector space, and because number systems exist in many versions, a 

huge number of separable Hilbert spaces can share the same underlying 

vector space. Sharing the same underlying vector space appears to 

restrict the choice of the versions of the number system that can be 

selected. Only versions that have the axes of the Cartesian coordinates 

parallel to a background separable Hilbert space that is picked from the 

tolerated collection will be allowed. Only the sequencing of the 

elements along these axes can be selected freely. This limits the 

symmetries of the private parameter spaces to a shortlist. The 

difference between the symmetries reduces to the shortlist that also 

characterizes the list of electric charges and color charges that mark the 

elementary particles in the Standard Model. This is a remarkable result. 

See the section on experimental support in this document. 

The reason for the shortlist is the fact that physical reality installs 

symmetry-related charges that represent sources or sinks at the 
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geometrical centers of the platforms that are formed by separable 

Hilbert spaces. The geometrical centers of the reference operator 

eigenspaces of these platforms float with respect to the reference 

operator eigenspace of a selected background platform.  

4 Adding a non-separable Hilbert space 

Let us assume that the background separable Hilbert space has infinite 

dimensions. This separable Hilbert space owns a unique non-separable 

companion Hilbert space that embeds its separable partner. It also 

owns a reference operator that manages the private parameter space 

of the non-separable Hilbert space. The category of defined operators 

that apply a function to determine the eigenspace of the operator 

supports continuum eigenspaces. These eigenspaces represent 

continuum fields. In the case of quaternionic Hilbert spaces, these 

eigenspaces are dynamic fields. The resulting separable Hilbert spaces 

float with the geometrical center of their private parameter space over 

the background parameter space. 

5 Modeling platform 

Despite the strong restrictions, this collection of Hilbert spaces 

represents a flexible and powerful modeling platform. It acts as a 

repository for the dynamic geometric data of point-like objects and for 

dynamic fields. Quaternions can act as storage bins of a scalar 

timestamp and a three-dimensional location. If the timestamps are 

sequenced, then the archive tells the life story of the point-like object as 

an ongoing hopping path.  The Hilbert Book Model Project applies this 

model. In a creation episode, the repository is filled with data. In a 

subsequent running mode, the archived hop landing locations are 

embedded as a function of the sequenced archived timestamps in a 

selected field that we call the universe.  
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It may seem odd to speak about floating platforms, but on each 

platform, all relevant eigenspaces appear to be defined relative to the 

eigenspace of the reference operator at the platform. That is why the 

author considers the private parameter space as defining the root 

geometry of the platform. 

The free-floating separable Hilbert spaces harbor elementary particles. 

Elementary particles behave as elementary modules. Together these 

elementary modules constitute all other modules that exist in the 

model. Some modules constitute modular systems. 

The author does not (yet) understand the mathematical reason for the described 

extra restrictions. The author derives the existence of these extra restrictions from 

the shortlist of electrical charges and color charges that forms an essential part of 

the Standard Model. Physical reality applies the restriction to install sources and 

sinks at the geometrical centers of the floating platforms. These sources and sinks 

raise symmetry-related fields in the background platform.  

5.1 Observers 

In the running episode of the model, the timestamps are considered to 

be sequenced and the embedding process is considered to act as a 

function of proper time. Observers travel with the instant of proper 

time that is represented by their archived timestamps. Observers can 

retrieve archived data that for them have historic timestamps. Since the 

information is transferred to the observer by the universe, which is a 

dynamic field, the observers perceive this information in spacetime 

coordinates. Observers are discrete objects that reside on the floating 

platforms or they are conglomerates of these objects. Thus. they are 

elementary modules, composite modules or modular systems. All 

modules and modular systems are massive objects. 

Observers move as one unit. Observers correspond with a reference 

frame. The reference frame corresponds with the parameter space of 

the module or modular system. This parameter space conforms to the 
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symmetry of the background platform. However, the geometric center 

of the reference frame corresponds to the center of mass of the module 

or modular system that represents the observer. The information about 

the observed scene is archived in one or more of the floating platforms. 

It is possible that floating platforms with other axes orientations exist, but these 

platforms cannot be perceived by observers.  

5.2 Hilbert repository 

The author suggests applying the name Hilbert repository to the 

sketched system of Hilbert spaces. It is an abstract storage medium for 

dynamic geometric data of point-like objects. Quaternionic eigenvalues 

act as storage bins of Euclidean combinations of timestamps and three-

dimensional locations. These data combine in eigenspaces of platforms 

that float over a common background platform. Each platform owns a 

private parameter space. The system also archives dynamic continuums 

and mixed dynamic fields in eigenspaces of normal operators in the 

background platform of the repository. 

The repository is filled with data during a creation episode. The 

sequencing of the archived timestamps turns the archive into a book 

that tells the life stories of the objects that are contained in the 

repository. During the running episode, discrete observers can retrieve 

archived data that for them have historic timestamps. Thus, for the 

observers, the observed part of the repository acts as a read-only 

storage medium.  
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6 The concept of time 

6.1 Dynamics 

The dynamics of the model is based on the floating of the separable 

platforms over the background platform and on the ongoing embedding 

of eigenspaces of the floating platforms that store dynamic geometric 

data in a selected eigenspace of the background platform. This ongoing 

embedding occurs as a function of the sequenced archived timestamps. 

Thus, for observers that travel with the scanning time window, the 

embedding starts with the lowest ranking timestamp. 

6.2 Proper time 

The range of proper time corresponds to the range of archived 

timestamps. In the modeling platform, observers are discrete objects 

that travel with a scanning proper time window. Observers can only 

receive information from events that were stored with for them historic 

timestamps. 

The notion of time in the Hilbert book model only means something in 

relation to the archived timestamps. This means that things could still 

take place before the value of the first archived proper time instant. 

This episode includes, among other things, the preparation and archival 

of the dynamic geometric data of the elementary particles. For each 

elementary module, a private stochastic process generates the dynamic 

geometric data that are archived in the eigenspace of the footprint 

operator. Therefore, the author will call this preceding episode, the 

creation episode. In the subsequent running episode, the ongoing 

embedding process will imitate the activity of the private stochastic 

process. 

6.3 Clock rates 

Proper time ticks with a minimum step. However, that does not mean 

that this minimum step is the same in the whole universe. It may 

depend on the local expansion rate of the universe, and it is possible 
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that the local expansion rate varies with the nearby occurrence of 

deformation. So, traversing a closed path through a deformed region 

can result in a difference in time count at the return point between the 

traveler and the object that stayed at that location because the traveler 

experienced a different expansion rate of the part of the universe that 

the traveler traversed. During his trip, the clock of the traveler ran at a 

different rate than the clock of the staying object. These effects have 

been measured with accurate clocks. 

The metaphor that the Hilbert Book Model steps through the universe 

with universe-wide progressions steps remains valid, but the page 

thicknesses in this metaphor can vary from place to place in a fluid way. 

6.4 A self-creating model 

By restricting the notion of proper time in the described way, it is 

possible to classify the Hilbert Book Model as a self-creating model. It is 

now possible to weld a preparatory phase, in which the creation and 

storage of the dynamic geometrical data of the elementary modules are 

arranged. Only after this creation episode can observers obtain 

information. They get this information via the field that embeds them. 

6.5 Spacetime 

Observers can access information that is retrieved from storage 

locations that for them have a historic timestamp. That information is 

transferred to them via the dynamic universe field. This dynamic field 

embeds both the observer and the observed event. The dynamic 

geometric data of point-like objects are archived in Euclidean format as 

a combination of a timestamp and a three-dimensional spatial location. 

The embedding field affects the format of the transferred information. 

The observers perceive in spacetime format. A hyperbolic Lorentz 

transform describes the conversion from the Euclidean storage 

coordinates to the perceived spacetime coordinates. 
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6.5.1 Lorentz transform 

In dynamic fields, shock fronts move with speed c . In the 
quaternionic setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (6.5.1) 

In flat dynamic fields, swarms of triggers of spherical pulse 
responses move with lower speed v. 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (6.5.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative 

speed v, then 

 ( ) ( )' cosh sinhct ct x = −   (6.5.3) 

 ( ) ( )' cosh sinhx x ct = −   (6.5.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (6.5.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (6.5.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (6.5.7) 

This is a hyperbolic transformation that relates two coordinate 
systems [6]. 

This transformation can concern two platforms P  and 'P  on which 
swarms reside and that move with uniform relative speed . 

However, it can also concern the storage location P  that contains 
a timestamp t and spatial location  , ,x y z and platform 'P  that has 

coordinate time t  and location  ', ', 'x y z  . 
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In this way, the hyperbolic transform relates two individual 
platforms on which the private swarms of individual elementary 
particles reside. 

It also relates the stored data of an elementary particle and the 
observed format of these data for the elementary particle that 
moves with speed  relative to the background parameter space. 

The Lorentz transform converts a Euclidean coordinate system 
consisting of a location  , ,x y z and proper timestamps   into the 

perceived coordinate system that consists of the spacetime 
coordinates  ', ', ', 'x y z ct in which 't  plays the role of proper time. 

The uniform velocity v  causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length 

contraction 
2

2
' 1

v
L L

c
 =  −   

6.5.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric [7]. 

In flat field conditions, proper time τ is defined by 

 
2 2 2 2 2c t x y z

c


− − −
=    (6.5.8) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (6.5.9) 

 

Here ds  is the spacetime interval and d is the proper time interval. dt  

is the coordinate time interval 

6.5.3 Schwarzschild metric 

Polar coordinates convert the Minkowski metric to the Schwarzschild 

metric [8]. The proper time interval d obeys 
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 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   
   

  (6.5.10) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  

According to mainstream physics, in the environment of a black hole, 

the symbol sr  stands for the Schwarzschild radius [9]. 

 
2

2
s

GM
r

c
=  (6.5.11) 

 

The variable r  equals the distance to the center of mass of the massive 

object with mass M . 

The Hilbert Book model finds a different value for the boundary of a 

spherical black hole. That radius is a factor of two smaller. 

6.6 In the beginning 

Before the embedding processes that mimic the activity of the 

stochastic processes started their action, the content of the 

universe was empty. It was represented by a flat field that in its 

spatial part, was equal to the parameter space of the background 

platform. At the beginning instant, a huge number of these 

mimicked stochastic processes started their triggering of the 

dynamic field that represents the universe. The triggers may 

cause spherical pulse responses that act as spherical shock 

waves. These spherical shock fronts temporarily deform the 

universe field. In that case, they will also persistently expand the 

universe. Thus, from that moment on, the universe started 

expanding. This did not happen at a single point. Instead, it 

happened at a huge number of locations that were distributed all 

over the spatial part of the parameter space of the quaternionic 

function that describes the dynamic universe field. 
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Close to the beginning of time, all distances were equal to the 

distances in the flat parameter space. Soon, these islands were 

uplifted with volume that was emitted at nearby locations. This 

flooding created growing distances between used locations. After 

some time, all parameter space locations were reached by the 

generated shock waves. From that moment on the universe 

started acting as an everywhere expanded continuum that 

contained deformations which in advance were very small. Where 

these deformations grew, the distances grew faster than in the 

environment. A more uniform expansion appears the rule and 

local deformations form the exception. Deformations make the 

information path longer and give the idea that time ticks slower in 

the deformed and expanded regions. This corresponds with the 

gravitational redshift of photons. 

Composed modules only started to be generated after the 

presence of enough elementary modules. The generation of 

photons that reflected the signatures of atoms only started after 

the presence of these compound modules. However, the spurious 

one-dimensional shock fronts could be generated from the 

beginning. 

 

This picture differs considerably from the popular scene of the big 

bang that started at a single location [10]. 

The expansion is the fastest in areas where spherical pulse responses 

are generated. For that reason, it is not surprising that the measured 

Hubble constant differs from place to place.  
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7 Basic Fields 

Two important dynamic basic fields that exist in the base model couple 

via the geometric centers of the private parameter spaces of the 

floating platforms. 

7.1 The universe field 

The universe is a dynamic field that is represented by a dedicated 

normal operator in the non-separable Hilbert space, which is part of the 

background platform. This field exists always and everywhere in the 

parameter space of the platform. The field can vibrate, deform and 

expand as a function of the real part of the parameter space. This real 

part represents proper time. 

We introduce a discontinuum as the antonym of a continuum. The 

universe is a mixed field. It can contain a set of enclosed spatial 

regions that encapsulate a discontinuum. A discontinuum is a 

dense discrete set. A discontinuum is countable. In physics, the 

equivalent of a discontinuum is a black hole. The enclosing 

surface is a continuum with a lower dimension than the enclosed 

region. No field excitations exist inside the discontinuum. Thus, no 

field excitations can pass the enclosing surface. Since a 

discontinuum deforms the surrounding continuum, this enclosed 

region owns an amount of mass. Together with the spherical 

shock fronts and the elementary modules, the discontinuums are 

the only objects in the universe that own mass. The mass of 

spherical shock fronts is volatile. Only when gathered in coherent 

and dense ensembles these shock fronts can cause a persistent 

amount of mass. That happens in the footprint of elementary 

modules. It also happens in the halos of galaxies. 
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7.2 Symmetry related fields 

Each floating platform features its own private parameter space and 

with that parameter space, it owns a symmetry. The difference in the 

symmetry between the floating platform and the background platform 

defines a symmetry-related charge that is represented by a source or 

sink that locates at the geometric center of the private parameter 

space. The sources and sinks mark the locations of the geometrical 

centers of the corresponding floating platforms in the universe field. In 

the background platform, these sources and sinks raise a symmetry-

related field that corresponds to the symmetry-related charge of the 

floating platform. The symmetry-related fields can superpose. This 

superposition is managed in the eigenspace of a dedicated symmetry-

related field operator that resides in the non-separable Hilbert space. 

8 Field equations 

Field equations are quaternionic functions or quaternionic differential 

and integral equations that describe the behavior of the continuum part 

of fields. 

The differential change can be expressed in terms of a linear 

combination of partial differentials. Now the total differential 

change df of field f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +
   

  (8.1.1) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that 

partial differentials direct along the axes of the Cartesian 

coordinate system. Thus 
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4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (8.1.2) 

However, this way of notation is often considered as abusive. Still, we 

will apply that notation because the correct notation (8.1.1) leads to the 

same result. This will be shown in the next section by splitting both the 

quaternionic nabla and the function in a scalar part and a vector part. 

8.1 Quaternionic differential calculus 

The first order partial differential equations divide the first-order 

change of a field in five different parts that each represent a new field. 

We will represent the field change operator by a quaternionic nabla 

operator. This operator behaves like a quaternionic multiplier. 

A quaternion can store a timestamp in its real part and a three-

dimensional spatial location in its imaginary part. The quaternionic 

nabla  acts as a quaternionic multiplying operator. Quaternionic 

multiplication obeys the equation  

 
( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (8.1.3) 

The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. The first order partial differential follows from 

 , , , r
x y z

    
 = = + 

    
  (8.1.4) 

The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia [11].  

https://en.wikipedia.org/wiki/Del


21 
 

 
( )

,

r

r r r r

   


    

 
=  = + + 

 

=  −  + + 

  (8.1.5) 

In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In the 

background platform, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have a separate physical 

meaning. All basic fields feature this decomposition. The terms may 

represent new fields. 

 ,r r r  = −    (8.1.6) 

 
r r E B   = +  = −    (8.1.7) 

f  is the gradient of f . 

, f is the divergence of f . 

f  is the curl of f . 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 

 *

r = −   (8.1.8) 

 
( )*

,

r

r r r r

   


    

 
=  = − + 

 

=  +  + − 

  (8.1.9) 

The quaternionic nabla is a normal operator. 

 

† * † *

† † * * ,

r r r

r r

 = = − = + = +

  = =  = =  +  
  (8.1.10) 
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The operators r r   and ,   are Hermitian operators. They can also 

be combined as ,r r=  −    . This is the d’Alembert operator. 

8.2 Continuity equations 

Continuity equations are partial quaternionic differential equations. 

8.2.1 Field excitations 

Field excitations are solutions of second-order partial differential 

equations.  

One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  = and 
* = . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



= =  = =  +  − +

=   +  
  (8.2.1) 

Integration over the time domain results in the Poisson equation 

 , =    (8.2.2) 

Under isotropic conditions, a very special solution of the Poisson 

equation is the Green’s function
1

4 'q q −
  of the affected field. This 

solution is the spatial Dirac ( )q   pulse response of the field under strict 

isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (8.2.3) 
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( )

( )3

1 1
, ,

' '

'
, 4 '

'

q q q q

q q
q q

q q


    
− −

−
= −  = −

−

  (8.2.4) 

Under isotropic conditions, the dynamic spherical pulse response of the 

field is a solution of a special form of the equation (8.2.1)  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (8.2.5) 

Here ( )   is a step function and ( )q  is a Dirac pulse response. For the 

spherical pulse response, the pulse must be isotropic. 

After the instant ' , this solution is described by 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (8.2.6) 

The normalized vector n  can be interpreted as the spin of the solution. 

The spherical pulse response acts either as an expanding or as a 

contracting spherical shock front. Over time this pulse response 

integrates into the Green’s function. This means that the isotropic pulse 

injects the volume of the Green’s function into the field. Subsequently, 

the front spreads this volume over the field. The contracting shock front 

collects the volume of the Green’s function and sucks it out of the field. 

The ± sign in equation (8.2.5) selects between injection and 

subtraction. 

Apart from the spherical pulse response equation (8.2.5) supports a 

one-dimensional pulse response that acts as a one-dimensional shock 

front. This solution is described by 
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 ( )( )' 'f q q c n  = −  −   (8.2.7) 

Here, the normalized vector n can be interpreted as the polarization of 

the solution. Shock fronts only occur in one and three dimensions. A 

pulse response can also occur in two dimensions, but in that case, the 

pulse response is a complicated vibration that looks like the result of a 

throw of a stone in the middle of a pond. 

Equations (8.2.1) and (8.2.2) show that the operators 
2

2




and ,   are 

valid second-order partial differential operators. These operators 

combine in the quaternionic equivalent of the wave equation [12]. 

 
2

2
, 



 
= −   

 
   (8.2.8) 

This equation also offers one-dimensional and three-dimensional shock 

fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
  (8.2.9) 

 ( )( )' 'f q q c  = −  −   (8.2.10) 

These pulse responses do not contain the normed vector n . Apart from 

pulse responses, the wave equation offers waves as its solutions. 

If locally, the field can be split into a time-dependent part ( )T  and a 

location-dependent part ( )A q , then the homogeneous version of the 

wave equation can be transformed into the Helmholtz equation [13]. 

 
2

2

2
,


  




=   = −


   (8.2.11) 

 ( , ) ( ) ( )q A q T  =    (8.2.12) 

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Helmholtz_equation
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2

2

2

1 1
,

T
A

T A





=   = −


   (8.2.13) 

 2, A A  +    (8.2.14) 

The time-dependent part ( )T   depends on initial conditions, or it 

indicates the switch of the oscillation mode. The switch of the 

oscillation mode means that temporarily the oscillation is stopped and 

instead an object is emitted or absorbed that compensates the 

difference in potential energy. The location-dependent part of the field 

( )A q  describes the possible oscillation modes of the field and depends 

on boundary conditions.  The oscillations have a binding effect. They 

keep moving objects within a bounded region.  

For three-dimensional isotropic spherical conditions, the solutions 

have the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +   (8.2.15) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics [14][15]. These solutions play a role in the 

spectra of atomic modules. 

Planar and spherical waves are the simpler wave solutions of the equation 

(8.2.11) 

  

 ( ) ( ) 0, exp ,q n k q q   = − − +   (8.2.16) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (8.2.17) 

A more general solution is a superposition of these basic types. 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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Two quite similar homogeneous second-order partial differential 

equations exist. They are the homogeneous versions of equations 

(8.2.5) and (8.2.8). The equation (8.2.5) has spherical shock front 

solutions with a spin vector that behaves like the spin of elementary 

particles. 

The inhomogeneous pulse activated equations are 

 ( ) ( ) ( ), 4 ' 'r r q q         = −    (8.2.18) 

8.3 Enclosure balance equations 

Enclosure balance equations are quaternionic integral equations that 

describe the balance between the inside, the border, and the outside of 

an enclosure. 

These integral balance equations base on replacing the del operator   

by a normed vector n . Vector n  is oriented outward and 

perpendicular to a local part of the closed boundary of the 

enclosed region. 

 n       (8.3.1) 

This approach turns part of the differential continuity equation into 

a corresponding integral balance equation. 

 

 dV n dS  =      (8.3.2) 

n dS    plays the role of a differential surface. n  is perpendicular to that 

surface. 

This result separates into three parts 

 
,

,

r

r

n

n n n

    

  

 = −  +  

= − +  
  (8.3.3) 



27 
 

The first part concerns the gradient of the scalar part of the field 

 r rn       (8.3.4) 

 r rdV n dS  =      (8.3.5) 

The divergence is treated in an integral balance equation that is known 

as the Gauss theorem. It is also known as the divergence theorem [16]. 

 , ,n     (8.3.6) 

 , ,dV n dS  =    (8.3.7) 

The curl is treated in an integrated balance equation 

 n      (8.3.8) 

 dV n dS  =     (8.3.9) 

Equation (8.3.7) and equation (8.3.9) can be combined in the extended 

theorem 

 dV n dS  =       (8.3.10) 

The method also applies to other partial differential equations. For 

example 

 
( ) ( ), ,

, ,n n n n

   

 

  =  −    

= −
  (8.3.11) 

 ( )     , ,
V S S

dV dS dS    =   −       (8.3.12) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (8.3.13) 

This is known as the Stokes theorem[17] 
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The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (8.3.14) 

8.4 Using volume integrals to determine the symmetry-related charges 

In its simplest form in which no discontinuities occur in the 

integration domain   the generalized Stokes theorem runs as 

 d  
  

= =     (8.4.1) 

We separate all point-like discontinuities from the domain by 
encapsulating them in an extra boundary. Symmetry centers 
represent spherically shaped or cube-shaped closed parameter 

space regions x

nH  that float on a background parameter spaceR . 

The boundaries x

nH  separate the regions  from the domain x

nH . 

The regions x

nH are platforms for local discontinuities in basic fields. 

These fields are continuous in the domain H−  .  

 
1

N
x

n

n

H H
=

=   (8.4.2) 

The symmetry centers x

nS  are encapsulated in regions x

nH , and the 

encapsulating boundary x

nH is not part of the disconnected 

boundary, which encapsulates all continuous parts of the 

quaternionic manifold   that exists in the quaternionic model. 

 
1 x

n

N

kH H H

d   
=−   

= = −      (8.4.3) 

In fact, it is sufficient that x

nH surrounds the current location of the 

elementary module. We will select a boundary, which has the 
shape of a small cube of which the sides run through a region of 
the parameter spaces where the manifolds are continuous. 
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If we take everywhere on the boundary the unit normal to point 

outward, then this reverses the direction of the normal on x

nH

which negates the integral. Thus, in this formula, the contributions 

of boundaries  xnH  are subtracted from the contributions of the 

boundary  . This means that   also surrounds the regions 

 xnH  

 This fact renders the integration sensitive to the ordering of 
the participating domains. 

Domain corresponds to part of the background parameter space

R . As mentioned before the symmetry centers x

nS  represent 

encapsulated regions  xnH that float on the background 

parameter spaceR . The Cartesian axes of x

nS  are parallel to the 

Cartesian axes of background parameter spaceR . Only the 
orderings along these axes may differ. 

Further, the geometric center of the symmetry center x

nS is 

represented by a floating location on parameter spaceR . 

The symmetry center x

nS is characterized by a private symmetry 

flavor. That symmetry flavor relates to the Cartesian ordering of 
this parameter space. With the orientation of the coordinate axes 
fixed, eight independent Cartesian orderings are possible. 

The consequence of the differences in the symmetry flavor on the 
subtraction can best be comprehended when the 

encapsulation x

nH is performed by a cubic space form that is 

aligned along the Cartesian axes that act in the background 
parameter space. Now the six sides of the cube contribute 
differently to the effects of the encapsulation when the ordering 

of x

nH  differs from the Cartesian ordering of the reference 

parameter spaceR . Each discrepant axis ordering corresponds to 
one-third of the surface of the cube. This effect is represented by 
the symmetry-related charge, which includes the color 
charge of the symmetry center. It is easily comprehensible related 
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to the algorithm which below is introduced for the computation of 
the symmetry-related charge. Also, the relation to the color charge 
will be clear. Thus, this effect couples the ordering of the local 
parameter spaces to the symmetry-related charge of the 
encapsulated elementary module. The differences with the 
ordering of the surrounding parameter space determine the value 
of the symmetry-related charge of the object that resides inside 
the encapsulation! 
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8.5 Symmetry flavor 

The Cartesian ordering of its private parameter space determines the 

symmetry flavor of the platform [18]. For that reason, this symmetry is 

compared with the reference symmetry, which is the symmetry of the 

background parameter space. Four arrows indicate the symmetry of the 

platform. The background is represented by: 

 

Now the symmetry-related charge follows in three steps. 

 

 

1. Count the difference of the spatial part of the symmetry of the 

platform with the spatial part of the symmetry of the background 

parameter space. 

2. Switch the sign of the result for anti-particles. 

Symmetrieversie 

Ordering 

x   y   z    τ 

Sequence Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry type. 

 ⓪ R N +0 neutrino 

 ① L R − 1 down quark 

 ② L G − 1 down quark 

 ③ R B +2 up quark 

 ④ L B −1 down quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N − 3 electron 

 ⑧ R N +3 positron 

 ⑨ L R − 2 anti-up quark 

 ⑩ L G − 2 anti-up quark 

 ⑪ R B +1 anti-down quark 

 ⑫ L B − 2 anti-up quark 

 ⑬ R G +1 anti-down quark 

 ⑭ R R +1 anti-down quark 

 ⑮ L N − 0 anti-neutrino 

 

 
 

  
 

  
  

   
 

  
  

   
  

   
   

    

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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Probably, the neutrino and the antineutrino own an abnormal 

handedness.  

The suggested particle names that indicate the symmetry type are 

borrowed from the Standard Model. In the table, compared to the 

standard model, some differences exist with the selection of the anti-

predicate. All considered particles are elementary fermions. The 

freedom of choice in the polar coordinate system might determine the 

spin [19]. The azimuth range is 2π radians, and the polar angle range is 

π radians. Symmetry breaking means a difference between the platform 

symmetry and the symmetry of the background. Neutrinos do not break 

the symmetry. Instead, they probably may cause conflicts with the 

handedness of the multiplication rule. 

8.6 Derivation of physical laws 

The quaternionic equivalents of Ampère's law are [20] 

 r rJ B E J n B E =    =   (8.6.1) 

 , , ,r

S C S

B n dS B dl J E n dS = = +     (8.6.2) 

The quaternionic equivalents of Faraday's law are [21]: 

 ( ) ( )r r r rB E B n E  =  = −  =   = −   (8.6.3) 

 , , ,r

c S S

E dl E n dS B n dS=  = −      (8.6.4) 

 ( ) rJ B E v  = − = − =   (8.6.5) 

 ( ), , ,r

S C S

n dS dl v n dS    = = +     (8.6.6) 

The equations (8.6.4) and (8.6.6) enable the derivation of the Lorentz 

force [22]. 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
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 rE B = −   (8.6.7) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +     (8.6.8) 

The Leibniz integral equation states [23] 

 
( )

( )

( ) ( ) ( ) ( ) ( )
( )( )0 0

0

0 0 0 0 0

,

, , ,

S

S C

d
X n dS

dt

X X v n dS v X dl



 



    = +  − 



 
  (8.6.9) 

With X B=   and , 0B =   follows 

 ( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

0 0

0 0

0 0 0

0 0 0

, , ,

, ,

B

S S C

C C

d

d

d
B n dS B n dS v B dl

d

E dl v B dl

  

 



   


  


=

= − 

= − − 

  

 

  (8.6.10) 

The electromotive force (EMF)    equals [24] 

 

 

( )

( )

( )
( )

( ) ( )
( )

00

0 0

0

0 0 0

,

, ,

B

C

C C

F d
dl

q d

E dl v B dl

 

 






  

=


= = −

= + 



 

  (8.6.11) 

 F qE qv B= +    (8.6.12) 

  

https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force
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9 Stochastic control 

Stochastic processes that own a characteristic function control the 

coherence and part of the dynamics of most of the discrete objects in 

the model. A displacement generator that can be considered as part of 

the characteristic function determines the location of the geometric 

center of the object. 

9.1 Elementary modules 

Elementary modules are controlled by the first type of stochastic 

process. These processes are inhomogeneous spatial Poisson point 

processes. They can be considered as a combination of a genuine 

Poisson process and a binomial process that is implemented by a spatial 

point spread function. The process generates an ongoing hopping path 

that recurrently regenerates a coherent hop landing location swarm. A 

location density distribution describes this swarm and equals the 

Fourier transform of the characteristic function of the process. Further, 

it equals the square of the modulus of what physicists would call the 

wavefunction of the elementary module. 

Each elementary particle behaves like an elementary module. Together, 

the elementary modules constitute all modules that exist in the 

universe. Some modules constitute modular systems. 

9.2 Composite modules 

Composite modules are controlled by the second type of stochastic 

process. The characteristic function of these stochastic processes is a 

dynamic superposition of the characteristic functions of their 

components. The superposition coefficients act as displacement 

generators. This means that the composition of composite modules is 

defined in Fourier space. In that environment, the location in the 

configuration space has no significance. Thus, components of a 

composite can locate far from each other in configuration space. This is 
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the reason that entanglement exists. Entanglement becomes noticeable 

when components obey exclusion principles. 

9.3 Atoms 

Compound modules are composite modules for which the geometric 

centers of the platforms of the components coincide. The charges of the 

platforms of the elementary modules establish the binding of the 

corresponding platforms. Physicists and chemists call these compound 

modules atoms or atomic ions. 

In free compound modules, the symmetry-related charges do not take 

part in the oscillations. The targets of the private stochastic processes of 

the elementary modules oscillate. This means that the hopping path of 

the elementary module folds around the oscillation path and the hop 

landing location swarm gets smeared along the oscillation path. The 

oscillation path is a solution of the Helmholtz equation. Each fermion 

must use a different oscillation mode. A change of the oscillation mode 

goes together with the emission or the absorption of a photon. The 

center of emission coincides with the geometrical center of the 

compound module. During the emission or absorption, the oscillation 

mode and the hopping path halt, such that the emitted photon does not 

lose its integrity. Since all photons share the same emission duration, 

that duration must coincide with the regeneration cycle of the hop 

landing location swarm. Absorption cannot be interpreted so easily. In 

fact, it can only be comprehended as a time-reversed emission act. 

Otherwise, the absorption would require an incredible aiming precision 

for the photon.  

The type of stochastic process that controls the binding of components 

appears to be responsible for the absorption and emission of photons 

and the change of oscillation modes. If photons arrive with too low 

energy, then the energy is spent on the kinetic energy of the common 
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platform. If photons arrive with too high energy, then the energy is 

distributed over the available oscillation modes, and the rest is spent on 

the kinetic energy of the common platform, or it escapes into free 

space. The process must somehow archive the modes of the 

components. It can apply the private platform of the components for 

that purpose. Most probably, the current value of the dynamic 

superposition coefficient is stored in the eigenspace of a special 

superposition operator. 

9.4 Acceleration at a distance 

Far from the geometric center of the platform on which a composite 

module resides the potential of the field that couples to this 

geometrical center takes the shape of the Green’s function of the field. 

For example, the gravitation potential takes the shape  

 ( )
GM

r
r

   (9.4.1) 

The symmetry-related potential takes the shape 

 ( )
Q

r
r


   (9.4.2) 

Here we use  to represent the permittivity of free space. In free space, 

the geometric center of this platform floats with uniform speed over 

the background platform. Free space means that the embedding field 

and the symmetry related field are nearly flat. In free space, the only 

disturbances are the described potentials. 

Physical reality tries to stabilize this situation. This tendency can be 

represented by an artificial field that tries to keep its change to a 

minimum. We treat the potentials in a similar way by taking  

 
GM X

Q X



 




 (9.4.3) 



37 
 

 

The new artificial field ,
X

v
r




 
=  
 

considers a uniformly moving floating 

platform as a normal situation. It is a combination of the scalar potential 
X

r


 and the uniform speed v .  

If this object accelerates, then the new field ,
X

v
r

 
 
 

 tries to counteract 

the change of the field v  by compensating this with an equivalent 

change of the real part 
X

r


 of the new field.  

The first-order change of a field contains five terms. Mathematically, 

the statement that in first approximation nothing in the field  changes 

indicates that locally, the first-order partial differential   will be equal 

to zero. 

 , 0r r r r      = = −  + +  =  (9.4.4) 

We concentrate on the imaginary terms 

 0r r   = +  =  (9.4.5) 

For our purpose, the curl  of the vector field   is expected to be 

zero. The resulting terms of the equation (9.4.5) are 

 0r r  + =  (9.4.6) 

According to the equation (11.8.4), this equivalent change is the 

gradient of the real part of the field. 

 
3

X X r
a v

r r

  
= = − = 

 

 
 (9.4.7) 
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This generated vector field acts on masses or charges that appear in its 

realm. 

Thus, if two uniformly moving objects 1X  and 
2X  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the force 

 ( )
( )1 2 1 2

1 2 1 3

1 2

X X r r
F r r X a

r r

 −
− = =

−
 (9.4.8) 

For the gravitation potential this is explained in the section on inertia. 

Inertia involves only one accelerated massive object. It requires the 

existence of the gradient of the gravitation potential of that massive 

object. The ongoing expansion of the universe field will establish that 

gradient. 

9.5 Molecules 

Molecules are conglomerates of compound modules that each keep 

their private geometrical center. However, electron oscillations are 

shared among the compound modules. Together with the symmetry-

related charges, this binds the compound modules into the molecule. 

9.6 RTOS 

The archival of dynamic geometric data that takes place in the creation 

episode is determining the life story of the elementary particles. The 

activity of the stochastic processes is mimicked by the ongoing 

embedding process that implements the dynamic geometric data as an 

ongoing hopping path that recurrently regenerates a coherent hop 

landing location swarm which has a stable location density distribution. 

This location density distribution is the Fourier transform of the 

characteristic function of the stochastic process that filled the 

eigenspace of the footprint operator that resides at the private platform 

of the elementary particle. This activity acts as a Real Time Operating 

System. The recurrent regeneration of the hop landing location swarm 

implements an effective guard against dead locks and race conditions. 
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9.7 Potential energy and kinetic energy 

One-dimensional shock fronts are packages of pure energy. They can 

transfer this energy between an emitter and an absorber. The absorber 

can convert this energy into kinetic energy or into potential energy. For 

example, atoms can convert the absorbed energy into the potential 

energy of internal oscillations of its components. Potential energy of 

internal oscillations can be converted into pure energy that is emitted 

by the atom. Energy can also be absorbed by platforms and converted 

into the kinetic energy of the platform. This works when the platform 

owns mass. This means that on the platform a source of spherical pulses 

must be present that deform the embedding field. If the platform 

contains a resulting symmetry related charge, then the absorbed energy 

will also be spent to energy of the symmetry-related field because the 

symmetry related charge is located at the geometric center of the 

platform. On the other hand, the symmetry related field can influence 

the kinetic energy of the platform. 

All elementary particles own mass. All symmetry-related charges locate 

at the geometric center of an elementary particle. Together the 

elementary particles constitute all massive objects that exist in the 

universe. 

9.8 Pair production and pair annihilation 

Pair production and pair annihilation of elementary particles are 

exceptional cases of exchanging energy against matter. It is possible to 

interpret these phenomena as time reversal of a single particle. It turns 

an elementary particle into its antiparticle. 

10 Photons 

Photons are objects that still offer significant confusion among 

physicists. The mainstream interpretation is still that photons are 

electromagnetic waves. This interpretation conflicts with the known 
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behavior of photons. Photons that are emitted by a nearby star can be 

detected by a human eye. Since the space between the star and the 

earth does not contain waveguides, waves cannot do this trick. 

Electromagnetic fields require the nearby presence of electric charges. 

Both conditions forbid that photons are implemented by 

electromagnetic waves. 

10.1 Photon structure 

Photons are one-dimensional objects that are strings of equidistant 

energy packages, such that the string obeys the Einstein-Planck relation 

[25] 

 E h=   (10.1.1) 

The energy packages are implemented by one-dimensional shock fronts 

that possess a polarization vector. 

Where the light speed c indicates the speed at which shock fronts 

travel, will Planck’s constant indicate the period during which one-

dimensional shock fronts will be emitted. We know the frequency of the 

photon that is emitted at the annihilation of an electron. Thus, we know 

the rate at which the energy packages that constitute this photon are 

produced. However, no data are available on the duration D of the 

photon emission or on the spatial length /L D c=  of photons. 

 p pE h N E= =   (10.1.2) 

 p

p

h
E

N


=   (10.1.3) 

 pN
D


=   (10.1.4) 

 pN

D
 =   (10.1.5) 
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= =   (10.1.6) 
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h
E

D
=   (10.1.7) 

 p pE cE
h

D L
= =   (10.1.8) 

Thus, Planck’s constant equals the energy pE  of the standard energy 

packages divided by the emission duration of the photons. 

10.2 One-dimensional pulse responses 

One-dimensional pulse responses that act as one-dimensional shock 

fronts and possess a polarization vector are solutions of the equation 

(8.2.5) and are described by the equation (8.2.7).  

 ( )( )' 'f q q c n  = −  −   (10.1.9) 

During travel, the front ( )f q  keeps its shape and its amplitude. So also, 

during long-range trips, the shock front does not lose its integrity. The 

one-dimensional pulse response represents an energy package that 

travels with speed c through its carrier field. The energy of the package 

has a standard value. 

 

 

 

In the animation of this left handed 

circular polarized photon, the black 

arrows represent the moving shock 

fronts. The red line connects the 

vectors that indicate the amplitudes 

of the separate shock fronts. Here the 

picture of a guided wave is borrowed 

to show the similarity with such EM 

waves  [41]. However,  

photons are not EM waves! 

https://en.wikipedia.org/wiki/Circular_polarization
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10.3 Photon integrity 

Except for its speed, the photon emitter determines the properties of 

the photon. These properties are its frequency, its energy, and its 

polarization. The energy packages preserve their own integrity. They 

travel at a constant speed and follow a worldline. Photon emission 

possesses a fixed duration. It is not an instant process. During emission, 

the emitter must not move and can only rotate around the direction of 

travel. Failing these requirements will compromise the integrity of the 

photon and make it impossible for a distant, tiny absorber to capture 

the full photon. In that case, the energy packages will spray and fly to 

multiple locations. Consequently, they will act like dark energy objects. 

The absorption of a photon by an atom requires an incredible aiming 

precision of the emitter. In fact, this absorption can only be 

comprehended when it is interpreted as the time-reversal of the 

corresponding emission process. If the absorbing atom cannot cope 

with the full energy of the photon, then it might absorb only part of the 

energy packages of the photon. The rest will stay on its route to the 

next absorber. Absorbing individual energy packages will result in an 

increase in the kinetic energy of the absorber. Absorbing the full photon 

or a part of it will result in an increase in the potential energy of the 

absorber. Usually, this results in a higher oscillation mode of one or 

more of the components of the absorber. 

10.4 Light 

Light is a dynamic spatial distribution of photons. Often the location 

density distribution of photons owns a Fourier transform. In that case, 

the light may show wave behavior. Photons are one-dimensional 

particles that feature private frequency and energy. Single photons do 

not show wave behavior. Photons and light waves will feature different 

frequencies. 
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10.5 Optics 

Optics is the science of imaging distributions of particles that can be 

characterized by a location density distribution and a corresponding 

Fourier transform of that location density distribution. Even though 

photons have a fixed non-zero spatial length, optics will treat these 

particles as point-like objects.  Another name for the location density 

distribution is point spread function (PSF). Another name for the Fourier 

transform of the PSF is the optical transfer function (OTF) [26]. Apart 

from a location density distribution, the swarm of the particles is also 

characterized by an angular distribution and by an energy distribution. 

In the case of photons, the energy distribution is also a chromatic 

distribution. 

A linearly operating imaging device can be characterized by its point 

spread function or alternatively by its OTF. This point spread function is 

an image of a point-like object. The PSF represents the blur that is 

introduced by the imaging device. For a homogeneous distribution of 

particle properties, the OTF of a chain of linearly operating imaging 

devices equals the product of the OTF’s of the separate devices. 

The imaging properties of an imaging device may vary as a function of 

the location and the orientation in the imaging surface. 

Without the presence of the traveling particles, the imaging devices 

keep their OTF. Small apertures and patterns of apertures feature an 

OTF. That OTF handles single particles similarly as this feature handles 

distributions of particles. 

Instead of the Point Spread Function optics often uses the Line Spread 

Function. For the Optical Transfer Function, this means that a cut 

through the center is taken and the spatial spectrum is reduced to a 

two-dimensional distribution. The quaternionic representation becomes 

a complex number-based representation. For the modulus of the 

https://en.wikipedia.org/wiki/Optical_transfer_function
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Optical Transfer Function, the Modulation Transfer Function this means 

that the representation becomes symmetric. It is enough to specify one 

half of the MTF curve. The direction of the cut depends on the selected 

direction of the line. Often only the cuts with a maximum width and a 

minimum width are specified to qualify the imaging quality of the 

imaging device. 

10.5.1 Veiling glare  

Often the MTF shows a peak near zero spatial frequency. This indicates 

the presence of less coherent contributions to the Point Spread 

Function. This phenomenon is called veiling glare. At large scales, the 

phenomenon corresponds to a halo. This effect generates gravitational 

lensing. 

10.5.2 Distributions of particles 

Distributions of particles are usually incoherent. That means that the 

particles are distributed according to multiple properties. For example, 

light is a distribution of photons. The photons have a location, a color, 

an angular direction. Also, their phase can be distributed. If all photons 

have the same phase, color, and angular direction, then the light beam 

is called homogeneous. Each photon represents a string of equidistant 

energy packages. These energy packages are one-dimensional pulse 

responses. 

Moving elementary particles already represent a beam of moving 

spherical pulse responses. Apart from that, the particles may differ in 

their location, kinetic energy, their electric charge, their angular 

distribution and their mass. 

The point spread function only considers the detection location of the 

elementary particles. This means that the PSF is a function of the other 

characteristics of the particle beam. The OTF is the Fourier transform of 

the PSF. Optics must reckon these influences.  
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In most cases, optical characteristics of imaging devices are only defined 

for homogeneous particle beams.  
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11 Gravity 

Mainstream physics considers the origin of the deformation of our living 

space as an unsolved problem. It presents the Higgs mechanism as the 

explanation of why some elementary particles get their mass. The 

Hilbert Book Model relates mass to deformation of the field that 

represents our universe. This deformation causes the mutual attraction 

of massive objects. 

11.1 Difference between the Higgs field and the universe field 

The Higgs field corresponds with a Higgs boson [27]. The dynamic field 

that represents our universe does not own a field generating particle 

like the Higgs boson that is supposed to generate the Higgs field. The 

universe field exists always and everywhere. In fact, a private stochastic 

process generates each elementary particle. The stochastic process 

produces quaternions that break the symmetry of the background 

parameter space. Consequently, the embedded quaternion breaks the 

symmetry of the functions that apply this parameter pace. Thus, the 

quaternion breaks the symmetry of the field that represents the 

universe. However, only isotropic symmetry breaks can produce the 

spherical pulse responses that temporarily deform the universe field. 

These spherical pulse responses act as spherical shock fronts. The pulse 

injects volume into the field, and the shock front distributes this volume 

over the whole field. The volume expands the field persistently, but the 

initial deformation fades away. The front wipes the deformation away 

from the location of the pulse. 

11.2 Center of mass 

In a system of massive objects , 1,2,3,...ip i n= , each with static mass 
im  at 

locations 
ir , the center of mass R  follows from [28] 
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− =  (11.2.1) 

Thus 
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Where 
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i

i

M m
=

=  (11.2.3) 

In the following, we will consider an ensemble of massive objects that 

own a center of mass R  and a fixed combined mass M  as a single 

massive object that locates at R . R  can be a dynamic location. In that 

case, the ensemble must move as one unit. In physical reality, this 

construct has no point-like equivalent that owns a fixed mass. The 

problem with the treatise in this paragraph is that in physical reality, 

point-like objects that possess a static mass do not exist. Only pulse 

responses that temporarily deform the field exist. Except for black 

holes, these pulse responses constitute all massive objects that exist in 

the universe. 

11.3 Newton 

Newton’s laws are nearly correct in nearly flat field conditions. The 

main formula for Newton’s laws is [29] 

 F ma=  (11.3.1) 

Another law of Newton treats the mutual attraction between massive 

objects [30].  

 ( )
( )1 2 1 2

1 2 1 3

1 2

GM M r r
F r r M a

r r

−
− = =

−
 (11.3.2) 
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Newton deduced this universal law of gravitation from the results of 

experiments, but this gravitational attraction can also be derived 

theoretically from the gravitational potential that is produced by 

spherical pulse responses.  

Massive objects deform the field that embeds these objects. At large 

distances, a simplified form of the gravitational potential describes 

properly what occurs.  

The following relies heavily on the chapters on quaternionic differential 

and integral calculus. 

11.4 Gauss law 

The Gauss law for gravitation is [31] 

 , , 4 4
V V V

g dA g dV G dV GM  


=  = − = −    (11.4.1) 

Here g  is the gravitational field. G is the gravitational constant. M is the 

encapsulated mass.   is the mass density distribution. The differential 

form of Gauss law is [32] 

 , , 4g G   =   = −  (11.4.2) 

 g = −  (11.4.3) 

  is the gravitational field. Far from the center of mass this gravitation 

potential equals 

 ( )
MG

r
r

 =  (11.4.4) 

11.5 A deforming field excitation 

A spherical pulse response is a solution of a homogeneous second-order 

partial differential equation that was triggered by an isotropic pulse. 

The corresponding field equation and the corresponding solution are 

repeated here. 
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 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (11.5.1) 

Here the ± sign represents time inversion. 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (11.5.2) 

The spherical pulse response integrates over time into the Green’s 

function of the field. The Green’s function is a solution of the Poisson 

equation.  

 , =    (11.5.3) 

The Green’s function occupies some volume [33].  

 
1

( )
4 '

g q
q q

=
−

 (11.5.4) 

This means that locally the pulse pumps some volume into the field, or 

it subtracts volume out of the field. The selection between injection and 

subtraction depends on the sign in the step function in the equation 

(11.5.1). The dynamics of the spherical pulse response shows that the 

injected volume quickly spreads over the field. In the case of volume 

subtraction, the front first collects the volume and finally subtracts it at 

the trigger location. Gravitation considers the case in which the pulse 

response injects volume into the field. 

Thus, locally and temporarily, the pulse deforms the field, and the 

injected volume persistently expands the field. 

This paper postulates that the spherical pulse response is the only field 

excitation that temporarily deforms the field, while the injected 

volume persistently expands the field. 
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 The effect of the spherical pulse response is so tiny and so temporarily 

that no instrument can ever measure the effect of a single spherical 

pulse response in isolation. However, when recurrently regenerated in 

huge numbers in dense and coherent swarms, the pulse responses can 

cause a significant and persistent deformation that instruments can 

detect. This is achieved by the stochastic processes that generate the 

footprint of elementary modules. 

The spherical pulse responses are straightforward candidates for what 

physicists call dark matter objects. A halo of these objects can cause 

gravitational lensing. 

11.6 Gravitational potential 

A massive object at a large distance acts as a point-like mass. Far from 

the center of mass, the gravitational potential of a group of massive 

particles with combined mass M is 

 ( )
GM

r
r

   (11.6.1) 

At this distance the gravitation potential shows the shape of the 

Green’s function of the field; however, the amplitude differs. The 

formula does not indicate that the gravitational potential can cause 

acceleration for a uniformly moving massive object. However, the 

gravitational potential is the gravitational potential energy per unit 

mass. The relation to Newton’s law is shown by the following. 

The potential   of a unit mass mat a distance r from a point-mass of 

mass M can be defined as the work W that needs to be done by an 

external agent to bring the unit mass in from infinity to that point [34]. 

 
3

1 1
( ) , ,

r r
W GmM r GM

r F dr dr
m m m rr


 

 = = = 
 

 (11.6.2) 
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11.7 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of point-

like masses as is done in formulas (11.2.1) and (11.2.2). Instead, the 

gravitational potential follows from the convolution of the location 

density distribution and the Green’s function. This calculation is still not 

correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and the 

result also depends on the density of the distribution. If these effects 

can be ignored, then the resulting gravitational potential of a Gaussian 

density distribution would be given by [35] 

 
( )

( )
ERF r

g r GM
r

  (11.7.1) 

Where ( )ERF r  is the well-known error function. Here the gravitational 

potential is a perfectly smooth function that at some distance from the 

center equals the approximated gravitational potential that was 

described above in equation (11.6.1). As indicated above, the 

convolution only offers an approximation because this computation 

does not account for the influence of the density of the swarm and it 

does not compensate for the fact that the deformation by the individual 

pulse responses quickly fades away. Thus, the exact result depends on 

the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but 

the actual location density distribution might have a higher amplitude. 

This might explain why some elementary module types exist in three 

generations. 
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This might also explain why different first-generation elementary 

particle types show different masses. Due to the convolution, and the 

coherence of the location density distribution, the blue curve does not 

show any sign of the singularity that is contained in the red curve, which 

shows the Green’s function. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the gravitational 

center of the distribution the deformation of the field is characterized 

by the here shown simplified form of the gravitation potential   

 ( )
GM

r
r

   (11.7.2) 

Warning: This simplified form shares its shape with the Green’s 

function of the deformed field. This does not mean that the Green’s 

function owns a mass that equals 
1

GM
G

= . The functions only share the 

form of their tail. 

11.8 Inertia 

The relation between inertia and mass is complicated [36][37]. We 

apply a field that resists its changing. The condition that for each type of 

massive object, the gravitational potential is a static function and the 

condition that in free space, the massive object moves uniformly, 

establish that inertia rules the dynamics of the situation. These 

conditions define an artificial quaternionic field that does not change. 
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The real part of the artificial field is represented by the gravitational 

potential, and the uniform speed of the massive object represents the 

imaginary (vector) part of the field. 

The change of the quaternionic field can be divided into five separate 

changes that partly can compensate each other.  

The first-order change of a field contains five terms. Mathematically, 

the statement that in first approximation nothing in the field  changes 

indicates that locally, the first-order partial differential   will be equal 

to zero. 

 , 0r r r r      = = −  + +  =  (11.8.1) 

Thus 

 , 0r r r  = −  =  (11.8.2) 

 0r r   = +  =  (11.8.3) 

These formulas can be interpreted independently. For example, 

according to the equation (11.8.2), the variation in time of r  must 

equal the divergence of  . The terms that are still eligible for change 

must together be equal to zero. For our purpose, the curl  of the 

vector field   is expected to be zero. The resulting terms of the 

equation (11.8.3) are 

 0r r  + =  (11.8.4) 

In the following text plays  the role of the vector field and r plays the 

role of the scalar gravitational potential of the considered object. For 

elementary modules, this special field supports the hop landing location 

swarm that resides on the floating platform. It reflects the activity of 

the stochastic process and the uniform movement in the free space of 

the floating platform over the background platform. It is characterized 
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by a mass value and by the uniform velocity of the platform with 

respect to the background platform. The real part conforms to the 

deformation that the stochastic process causes. The imaginary part 

conforms to the speed of movement of the floating platform. The main 

characteristic of this field is that it tries to keep its overall change zero. 

The author calls  the conservation field. 

At a large distance r , we approximate this potential by using formula 

 ( )
GM

r
r

   (11.8.5) 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving mass 

as a normal situation. It is a combination of the scalar potential 
GM

r
 and 

the uniform speed v .  

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to counteract 

the change of the field v  by compensating this with an equivalent 

change of the real part 
GM

r
 of the new field. According to the equation 

(11.8.4), this equivalent change is the gradient of the real part of the 

field. 
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GM GM r
a v

r r

 
= = − = 

 

 
 (11.8.6) 

This generated vector field acts on masses that appear in its realm. 

Thus, if two uniformly moving masses 1M  and 2M  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

gravitational force 
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−
 (11.8.7) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the gravitational force into action. The description also 

holds when the field  describes a conglomerate of platforms and M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the gravitational potential and the uniform 

floating of the considered massive objects in free space. 

Inertia ensures that the third-order differential (the third-order change) 

of the deformed field is minimized. It does that by varying the speed of 

the platforms on which the massive objects reside. 

Inertia bases mainly on the definition of mass that applies to the region 

outside the sphere where the gravitational potential behaves like the 

Green’s function of the field. There the formula r

m

r
 = applies. Further, 

it bases on the intention of modules to keep the gravitational potential 

inside the mentioned sphere constant. At least that holds when this 

potential is averaged over the regeneration period. In that case, the 

overall change  in the conservation field equals zero. Next, the 

definition of the conservation field supposes that the swarm which 

causes the deformation moves as one unit. Further, the fact is used that 

the solutions of the homogeneous second-order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is 

presented by smooth dips is obviously false. The story that is 

represented in this paper shows the deformations as local extensions of 

the field, which represents the universe. In both sketches, the 
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deformations elongate the information path, but none of the sketches 

explain why two masses attract each other. The above explanation 

founds on the habit of the stochastic process to recurrently regenerate 

the same time average of the gravitational potential, even when that 

averaged potential moves uniformly. Without the described habit of the 

stochastic processes, inertia would not exist. 

The applied artificial field also explains the gravitational attraction by 

black holes. 

The artificial field that implements mass inertia also plays a role in other 

fields. Similar tricks can be used to explain the electrical force from the 

fact that the electrical field is produced by sources and sinks that can be 

described with the Green’s function.  

11.9 Elementary particles 

For elementary particles, a private stochastic process generates the hop 

landing locations of the ongoing hopping path that recurrently forms 

the same hop landing location density distribution. The characteristic 

function of the stochastic process ensures that the same location 

density distribution is generated. This does not mean that the same hop 

landing location swarm is generated! The squared modulus of the 

wavefunction of the elementary particle equals the generated location 

density distribution. This explanation means that all elementary 

particles and all conglomerates of elementary particles are recurrently 

regenerated. 

11.10 Mass 

Mass is a property of objects, which has its own significance. Since at 

large distance, the gravitational potential always has the shape 

( )
GM

r
r

  , it does not matter what the massive object is. The formula 

can be used to determine the mass, even if only is known that the 
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object in question deforms the embedding field. In that case, the 

formula can still be applied. This is used in the chapter about mixed 

fields.  

In physical reality, no static point-like mass object exists.  

11.11 Hop landing generation 

The generation of the hopping path is an ongoing process. The 

generated hop landing location swarm contains a huge number of 

elements. Each elementary module type is controlled by a 

corresponding type of stochastic process. For the stochastic process, 

only the Fourier transform of the location density distribution of the 

swarm is important. Consequently, for a selected type of elementary 

module, it does not matter at what instant of the regeneration of the 

hop landing location swarm the location density distribution is 

determined. Thus, even when different types are bonded into 

composed modules, there is no need to synchronize the regeneration 

cycles of different types. This freedom also means that the number of 

elements in a hop landing location swarm may differ between 

elementary module types. This means that the strength of the 

deformation of the embedding field can differ between elementary 

module types. The strength of deformation relates to the mass of the 

elementary modules according to formula (11.6.1). 

The requirement for regeneration represents a great mystery. All mass 

that elementary modules generate appears to dilute away and must be 

recurrently regenerated. This fact conflicts with the conservation laws 

of mainstream physics. The deformation work done by the stochastic 

processes vanishes completely. What results is the ongoing expansion 

of the field. Thus, these processes must keep generating the particle to 

which they belong. The stochastic process accurately regenerates the 

hop landing location swarm, such that its rest mass stays the same. 
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Only the ongoing embedding of the content that is archived in the 

floating platform into the embedding field can explain the activity of the 

stochastic process. This supposes that at the instant of creation, the 

creator already archived the dynamic geometric data of his creatures 

into the eigenspaces of the footprint operators. These data consist of a 

scalar timestamp and a three-dimensional spatial location. The 

quaternionic eigenvalues act as storage bins.  

After the instant of creation, the creator left his creation alone. The set 

of floating separable Hilbert spaces acts together with the background 

Hilbert space as a read-only repository. After sequencing the 

timestamps, the stochastic processes read the storage bins and trigger 

the embedding of the location into the embedding field in the 

predetermined sequence. 

11.11.1 Open question 

As long as the instant of archival proceeds the passage of the window 

that scans the Hilbert Book Base Model as a function of progression, 

then the behavior of the model does not change. This indicates a 

degree of freedom of the described model. 

11.12 Symmetry-related charges 

Symmetry-related charges only appear at the geometric center of the 

private parameter space of the separable Hilbert space that acts as the 

floating platform for an elementary particle. These charges represent 

sources or sinks for the corresponding symmetry-related field. Since 

these phenomena disturb the corresponding symmetry-related field in a 

static way that can be described by the Green’s function of the field, the 

same trick that was used to explain inertia can be used here to explain 

the attraction or the repel of two symmetry-related charges 
1Q  and 

2Q . 
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11.13 Color confinement  

Some elementary particle types do not possess an isotropic symmetry. 

Mainstream physics indicates this fact with a corresponding color 

charge. Spherical pulse responses require an isotropic pulse. Thus, 

colored elementary particles cannot generate a gravitational potential. 

They must first cling together into colorless conglomerates before they 

can manifest as massive objects. Mesons and baryons are the colorless 

conglomerates that become noticeable as particles that attract other 

massive particles. 

  



60 
 

12 Underpinning 

A purely mathematical model of physical reality, such as the Hilbert 

Book Model requires a solid mathematical foundation and the 

application of trusted mathematical methods. In addition, at higher 

levels of complexity, the model must deliver properties and behavior 

that can be verified by observing physical reality. 

12.1 Experimental support 

12.1.1 Support by the Standard Model 

The Hilbert Book Model applies measuring results on which the 

Standard Model of mainstream physics is based. In particular, the 

shortlist of electrical charges and color charges that characterize the 

elementary particles is used to support the extra restriction of the 

versions of the quaternionic number system that are applied by the 

separable Hilbert spaces, which occur in the base model of the Hilbert 

Book Model. The author does not know the mathematical requirement 

for this extra restriction. The model uses this restriction to determine 

the size and location of the sources and sinks that correspond to the 

symmetry-related charges. The sources and sinks generate the 

symmetry-related field. 

12.1.2 Stochastic control 

Unique to the Hilbert Book Model is the application of the control of 

part of the dynamics of the model by stochastic processes that generate 

the archived dynamic geometric data of discrete objects. 

The stochastic nature of the detection locations of elementary particles 

has led to the introduction of the wavefunction. During his career in the 

high-tech industry, the author took part in the development of image 

intensifier devices and in the establishment of the international 

standards for the measurement of the Optical Transfer Function and the 

Detective Quantum Efficiency of imaging equipment. At low dose rates, 

image intensifying devices make the stochastic nature of the detection 
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of photons and elementary particles visible to the human eye. The 

concept of the Optical Transfer Function applies the fact that the Point 

Spread Function, which describes the blur of an imaging device owns a 

Fourier transform. The measurement of the Detective Quantum 

Efficiency of an imaging device applies the fact that the underlying 

stochastic process can be considered as a combination of a Poisson 

process and a binomial process that is implemented by a spatial point 

spread function. The measurement of the DQE applies the 

measurement of the signal to noise ratio of the stream of detected 

quanta that have passed a small aperture. The relation between the 

measured signal to noise ratio and the dose rate appears to be typical 

for the inhomogeneous spatial Poisson point process that generated the 

detected quanta. Since the generated footprint can be described by a 

location density distribution that owns a Fourier transform, the 

stochastic mechanism that generates the dynamic geometric data will 

own a characteristic function. Consequently, the Hilbert Book Model 

applies inhomogeneous spatial Poisson point processes as the 

generators of the footprints of elementary particles. The generated 

point spread function equals the square of the modulus of the 

wavefunction of the particle.  

The HBM also applies the fact that elementary particles act as 

elementary modules. Together, they constitute all other modules that 

exist in the universe. Some modules constitute modular systems. 

The author suggests that the composition of composite modules is 

defined by the second type of stochastic process. These stochastic 

processes also own a characteristic function. That characteristic 

function is a dynamic superposition of the characteristic functions of 

the components of the composite module. The superposition 

coefficients act as displacement generators and determine the internal 

locations of the components. 
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12.2 Mathematical underpinning 

The Hilbert Book Model applies a well-known relational structure as its 

main foundation. The discoverers of this structure, Garrett Birkhoff and 

John von Neumann, called it “quantum logic” because the structure 

shows great similarity with classical logic, which is also known as 

Boolean logic [38]. Mathematicians called the new relational structure 

an orthomodular lattice. The Hilbert space itself was discovered shortly 

before quantum logic was introduced. John von Neumann was an 

assistant of David Hilbert and gave the Hilbert space its familiar name. 

Later the group around John Baez gave the name Hilbert lattice to the 

set of closed subspaces of the Hilbert space. Hilbert lattices are lattice 

isomorphic to the orthomodular lattice [4]. 

A Hilbert space is a closed vector space that is equipped with an inner 

product for each vector pair. Each Hilbert space applies a version of an 

associative division ring to specify the value of the inner product. Only 

three suitable associative division rings exist. These are the real 

numbers, the complex numbers, and the quaternions. Depending on 

their dimension the number system exists in several versions that 

distinguish in the way that coordinate systems sequence their 

members. 

The restriction to division rings was already indicated in the paper that 

introduced quantum logic and got several decades later a hard prove by 

Maria Pia Solèr.  

12.3 Extensions of the notion of a Hilbert space by the author 

Several extensions of the notion of a Hilbert space are introduced by 

the author of this paper. 

• The author signaled the possibility to choose a version of the 

number system for specifying the inner products of the Hilbert 

space and showed that each separable Hilbert space features a 

https://ncatlab.org/nlab/show/Hilbert+lattice
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private parameter space that applies the selected version of the 

number system. This parameter space is managed by a dedicated 

normal operator that the author calls a reference operator.  

• This can be exploited further by reusing the eigenvectors of the 

reference operator to define a category of normal operators that 

exchange the eigenvalue of the reference operator by the target 

value of a selected function. The eigenspaces of these new 

operators represent sampled fields. 

• The author exploited the subtle difference between Hilbert spaces 

and the underlying vector space by suggesting that a huge number 

of separable Hilbert spaces can share the same underlying vector 

space.  

• One of these separable Hilbert spaces acts as a background 

platform. The other separable Hilbert spaces float with the 

geometrical centers of their private parameter spaces over the 

parameter space of the background platform. 

• This extension of the model appears to introduce a further version 

choice restriction. Only Cartesian coordinate systems that have 

their coordinate axes parallel to the axes of a background 

separable Hilbert space can join this extended model. 

• The author does not explain this further version choice restriction. 

Instead, he indicates that the model applies this restriction to 

determine the difference in the symmetry between the 

considered separable Hilbert space and a selected background 

interface. This possibility helps explain why the floating separable 

Hilbert spaces feature a symmetry-related charge. The existence 

of these charges follows from experiments that support the 

Standard Model. 

• The symmetry-related charges locate at the geometrical centers of 

the parameter spaces of the floating platforms. 
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• The Hilbert Book Model postulates that the background separable 

Hilbert space has infinite dimensions.   

• The existence of the private parameter spaces and the fact that 

eigenspaces of dedicated normal operators represent sampled 

fields suggest that each infinite-dimensional separable Hilbert 

space owns a unique non-separable companion Hilbert space that 

embeds its separable partner. This non-separable Hilbert space 

also features a private parameter space and a category of normal 

operators that represent fields. However, in the non-separable 

companion, the corresponding eigenspaces are continuums. 

• The infinite-dimensional separable background Hilbert space and 

its non-separable companion form the complete background 

platform. 

• The background platform contains a dynamic field that is 

described by a quaternionic function, which exists always and 

everywhere in the background parameter space and is continuous 

except for a series of encapsulated regions. We call this field our 

universe. A dedicated normal operator manages this field in its 

eigenspace. 

• The background platform contains a dynamic field that reflects the 

existence of the symmetry-related charges of the floating 

platforms by corresponding sources and sinks. These sources and 

sinks correspond to the locations of the geometric centers of the 

floating platforms. We call this field the symmetry-related field. 

• The geometrical centers of the floating platforms couple the two 

dynamic fields. 

• The resulting structure acts as a repository for dynamic geometric 

data of point-like objects and as a repository for dynamic fields.  
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• The author suggests that all applied separable Hilbert spaces share 

a common real number based separable Hilbert space that scans 

the running part of the model by a proper time window. 

• The dynamics of the model results from the floating platforms and 

from the ongoing embedding of the footprints of the point-like 

objects into the field that represents the universe. 

13 Correspondence with the models that mainstream physics applies  

13.1 Features of the Standard Model that the Hilbert Book Model can explain 

The experimentally verified results that are part of the SM that the HBM 

explains are: 

• The existence of several types of elementary particles 

• The existence of a shortlist of electrical charges that are carried by 

elementary particle types. 

• The existence of color charges. 

• The existence of quarks. 

• The existence of color confinement. 

• The existence of antiparticles. 

• The existence of photons 

13.2 Features that the Hilbert Book Model cannot explain 

The experimentally verified results that are part of the SM that the HBM 

cannot (yet) explain are: 

• The existence of generations of fermions. 

• The difference in mass between the lowest generation types of 

elementary particles. 

• The fact that only fermions constitute composite objects. 

13.3 Critics of the Hilbert Book Model on the SM 

The Hilbert Book Model criticizes the need for the existence of the Higgs 

mechanism. It offers its own explanation for the gravitational potential 
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of elementary particles. The HBM considers the discovered Higgs 

particle as a composite of elementary particles and not as an extra 

elementary particle type that supports a Higgs mechanism. 

The Hilbert Book Model criticizes the model that mainstream physics 

presents for the structure of photons. Mainstream physics states that 

photons are EM waves. The HBM states that photons are strings of 

equidistant one-dimensional shock fronts that obey the Einstein-Planck 

relation E h=   . One-dimensional shock fronts behave like energy 

packages that travel with light speed. 

13.4 Dark objects 

Mainstream physics suggests the existence of two types of dark objects 

[39][40]. These are dark energy and dark matter. In contrast to 

mainstream physics, the Hilbert Book Model presents these two types 

of dark objects as field excitations that act as shock fronts. Together 

these special field excitations constitute, except for black holes, all 

discrete objects that exist in the universe. 
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