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Summary

Basic physical fields are dynamic fields like our universe and the fields
that are raised by electric charges. These fields are dynamic
continuums. Most physical theories treat these fields by applying
gravitational theories or by Maxwell equations. Mathematically these
fields can be represented by quaternionic fields. Dedicated normal
operators in quaternionic non-separable Hilbert spaces can represent
these quaternionic fields in their continuum eigenspaces. Quaternionic
functions can describe these fields. Quaternionic differential and
integral calculus can describe the behavior of these fields and the
interaction of these fields with countable sets of quaternions. All
guaternionic fields obey the same quaternionic function theory. The
basic fields differ in their start and boundary conditions.

1 Introduction
The fact that physical objects can be represented and modeled by
mathematical constructs is applied in many physical theories.

Quite often function theory is applied and more seldomly the
representation is embedded in a topological space, such as a Hilbert
space. The Hilbert space has the advantage that it can act as a
repository for dynamic geometrical data and for dynamic fields. If a
system of Hilbert paces is applied, then a very powerful and flexible
modeling platform results that can cope with the diversity and the
dynamics of objects that are encountered in the universe. Mathematics



severely restricts the possibilities of this platform. This appears an
advantage rather than a discredit because it limits the extension of the
model in arbitrary directions.

The base model is subject of a PowerPoint presentation

http://www.e-physics.eu/Base%20model.pptx.

The base model is part of the Hilbert Book Model. The Hilbert Book
Model is subject of the Hilbert Book Model Project.

The Hilbert Book Model is treated in greater detail in “A Self-creating
Model of Physical Reality”.

2 Hilbert spaces

Hilbert spaces emerge from orthomodular lattices because the set of
closed subspaces of a separable Hilbert space is a Hilbert lattice, which
is isomorphic with an orthomodular lattice. Only a subtle difference
exist between a Hilbert space and its underlying vector space. A
separable Hilbert space is a complete vector space that features an
inner product. The value of the inner product must be a member of an
associative division ring. Only three suitable number systems exist that
are associative division rings. Depending on their dimension these
number systems exist in many versions that distinguish in the Cartesian
and polar coordinate systems that sequence the members of the
version. Each Hilbert space manages the selected version of the number
system in the eigenspace of a dedicated normal operator that we call
reference operator. This eigenspace acts as the private parameter
space. A category of normal operators exists of which the members
share the eigenvectors of the reference operators and apply a selected
function and the parameter value that belongs to the eigenvector to
generate a new eigenvalue by taking the target value of the function as
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http://vixra.org/abs/1908.0223
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the new eigenvalue. In this way, the eigenspace of the new operator
becomes a sampled field.

3 Asystem of separable Hilbert spaces

Due to the subtle difference between a Hilbert space and its underlying
vector space, and because number systems exist in many versions, a
huge number of separable Hilbert spaces can share the same underlying
vector space. Sharing the same underlying vector space appears to
restrict the choice of the versions of the number system that can be
selected. Only versions that have the axes of the Cartesian coordinates
parallel to a background separable Hilbert space that is picked from the
tolerated collection will be allowed. Only the sequencing of the
elements along these axes can be selected freely. This limits the
symmetries of the private parameter spaces to a short list. The
difference between the symmetries reduces to the short list that also
characterizes the list of electric charges and color charges that mark the
elementary particles in the Standard Model. This is a remarkable result.

4 Adding a non-separable Hilbert space

Let us assume that the background separable Hilbert space has infinite
dimensions. This separable Hilbert space owns a unique non-separable
companion Hilbert space that embeds its separable partner. It also
owns a reference operator that manages the private parameter space
of the non-separable Hilbert space. The category of defined operators
that apply a function to determine the eigenspace of the operator
supports continuum eigenspaces. These eigenspaces represent
continuum fields. In case of quaternionic Hilbert spaces these
eigenspaces are dynamic fields. The resulting separable Hilbert spaces
float with the geometrical center of their private parameter space over
the background parameter space.



5 Modeling platform

Despite the strong restrictions this collection of Hilbert spaces represent
a flexible and powerful modeling platform. It acts as a repository for the
dynamic geometric data of point-like objects and for dynamic fields.
Quaternions can act as storage bins of a scalar timestamp and a three-
dimensional location. If the timestamps are sequenced, then the
archive tells the life story of the point-like object as an ongoing hopping
path. The Hilbert Book Model Project applies this model. In a creation
episode the repository is filled with data. In a subsequent running
mode, the archived hop landing locations are embedded in a selected
field that we call the universe. The free-floating separable Hilbert
spaces harbor elementary particles.

6 The universe field

The universe is a dynamic field that is represented by a dedicated
normal operator in the non-separable Hilbert space, which is part of the
background platform. This field exists always and everywhere in the
parameter space of the platform. The field can vibrate, deform and
expand as function of the real part of the parameter space. This real
part represents proper time.

The universe is a mixed field. It can contain enclosed spatial regions that
encapsulate a discontinuum. A discontinuum is a dense discrete set. A
discontinuum is countable. The enclosure is a continuum with a lower
dimension than the enclosed region. No field excitations exist inside the
discontinuum. Thus, no field excitations can pass the enclosure.

7 Symmetry related fields

Each floating platform features its own private parameter space and
with that parameter space it owns a symmetry. The difference in
symmetry between the floating platform and the background platform
defines a symmetry-related charge that is represented by a source or



sink that locates at the geometric center of the private parameter
space. The sources and sinks mark the locations of the geometrical
centers of the corresponding floating platforms in the universe field. In
the background platform these sources and sinks raise a symmetry
related field that corresponds to the symmetry related charge of the
floating platform. The symmetry related fields can superpose.

8 Field equations

Field equations are quaternionic functions or quaternionic differential
and integral equations that describe the behavior of the continuum part
of fields.

The differential change can be expressed in terms of a linear
combination of partial differentials. Now the total differential
change df of field f equals

df :idf+ildx+i1dy+ﬂkdz (8.1.1)
ot X oy oz
In this equation, the partial differentials i % % % behave as
or

quaternionic differential operators.

The quaternionic nabla v assumes the special condition that
partial differentials direct along the axes of the Cartesian
coordinate system. Thus

V= 24: i:— E+j—+k— (8.1.2)
= '8x 0

However, this way of notation is often considered as abusive. Still, we
will apply that notation because the correct notation (8.1.1) leads to the
same result. This will be shown in the next section by splitting both the
guaternionic nabla and the function in a scalar part and a vector part.



8.1 Quaternionic differential calculus

The first order partial differential equations divide the first-order
change of a field in five different parts that each represent a new field.
We will represent the field change operator by a quaternionic nabla
operator. This operator behaves as a quaternionic multiplier.

A quaternion can store a timestamp in its real part and a three-
dimensional spatial location in its imaginary part. The quaternionic
nablaV acts as a quaternionic multiplying operator. Quaternionic
multiplication obeys the equation
c:cr+6:ab:(ar +é)(br+5)

S L (8.1.3)
=ab, —(ab)+ab+ah +axb

The + sign indicates the freedom of choice of the handedness of the
product rule that exists when selecting a version of the quaternionic
number system. The first order partial differential follows from

V:{—,—,—,—}:vrw (8.1.4)

The spatial nablaVis well-known as the del operator and is treated in

detail in Wikipedia.
o -
=Vy=| —+V %
¢=Vy (aﬁ j(l//rﬂ//)

=Vrt//r—<§,l/7>+vr;ﬁ+§l//ri§xy7

(8.1.5)

In a selected version of the quaternionic number system only the
corresponding version of the quaternionic nabla is active.

The differential Vi describes the change of field . The five separate
terms in the first-order partial differential have a separate physical


https://en.wikipedia.org/wiki/Del

meaning. All basic fields feature this decomposition. The terms may
represent new fields.

¢ =V, —(V.¥) (8.1.6)
$=Vy+Vy £Vxy=—E+B (8.1.7)
Vf is the gradient of f.
<§, f>is the divergence of f.
Vx f isthe curl of f.

The conjugate of the quaternionic nabla operator defines another type
of field change.

V=V, -V (8.1.8)
:=v*¢=(i—€j(¢r +9)
0 (8.1.9)
:Vr¢r +<§’¢7>+Vr5_§¢r $§X5
The quaternionic nabla is a normal operator.
Vi=V'=V V=V +V =V +V
(8.1.10)

VIV=VV'=VV=VV' =V,V +(V,V)

The operators V.V, and <§ﬁ> are Hermitian operators. They can also

be combined as 0=V,V, —<§ﬁ>. This is the d’Alembert operator.

8.2 Continuity equations
Continuity equations are partial quaternionic differential equations.

8.2.1 Field excitations
Field excitations are solutions of second-order partial differential
equations.



One of the second-order partial differential equations results from
combining the two first-order partial differential equations ¢=Vy and

g=Vg.
C=Vp=V'Vy :#V#V v=(Ve+V)(Ve=V)y+9) (8.2.1)
:(vrvr +<V,V>)l//

Integration over the time domain results in the Poisson equation
pzﬁ,ﬁ)yf (8.2.2)
Under isotropic conditions, a very special solution of the Poisson

equation is the Green’s function% of the affected field. This
47r‘q - ‘

solution is the spatial Diracd(q) pulse response of the field under strict

isotropic conditions.

vt =—(q_i? (8.2.3)
TN
R Y S
<V’V>W=<V'V—\a—a\>
(8.2.4)

Under isotropic conditions, the dynamic spherical pulse response of the
field is a solution of a special form of the equation (8.2.1)

(VrVr +<§,§>)w:4ﬁ§(q—a')0(rir') (8.2.5)

Here 6(7) is a step function and &(d) is a Dirac pulse response.



After the instant 7', this solution is described by

~ f(‘d—ﬂic(r—r')ﬁ)
T g

(8.2.6)

The normalized vector i can be interpreted as the spin of the solution.
The spherical pulse response acts either as an expanding or as a
contracting spherical shock front. Over time this pulse response
integrates into the Green’s function. This means that the expanding
pulse injects the volume of the Green’s function into the field.
Subsequently, the front spreads this volume over the field. The
contracting shock front collects the volume of the Green’s function and
sucks it out of the field. The + sign in equation (8.2.5) selects between
injection and subtraction.

Apart from the spherical pulse response equation (8.2.5) supports a
one-dimensional pulse response that acts as a one-dimensional shock
front. This solution is described by

W= f(‘q—a‘ic(r—r')ﬁ) (8.2.7)

Here, the normalized vector fican be interpreted as the polarization of
the solution. Shock fronts only occur in one and three dimensions. A
pulse response can also occur in two dimensions, but in that case, the
pulse response is a complicated vibration that looks like the result of a
throw of a stone in the middle of a pond.

2

Equations (8.2.1) and (8.2.2) show that the operators %and <§ﬁ> are
T

valid second-order partial differential operators. These operators
combine in the quaternionic equivalent of the wave equation.

o~ 22 (9.9) o 828


https://en.wikipedia.org/wiki/Wave_equation

This equation also offers one-dimensional and three-dimensional shock
fronts as its solutions.

(8.2.9)

W= f(‘q’—q"ic(r—r')) (8.2.10)

These pulse responses do not contain the normed vector ii. Apart from
pulse responses, the wave equation offers waves as its solutions.

By splitting the field into the time-dependent part T(zr)and a location-
dependent part, A(G), the homogeneous version of the wave equation
can be transformed into the Helmholtz equation.

oY = =

y:W’VW:“"Z'/’ (8.2.11)
w(d,7)=AG)T(7) (8.2.12)

16T 1,- - )

?W=K<V,V>A=—a) (8.2.13)
<?,6>A+a)ZA (8.2.14)

The time-dependent part T(z) depends on initial conditions, or it
indicates the switch of the oscillation mode. The switch of the
oscillation mode means that temporarily the oscillation is stopped and
instead an object is emitted or absorbed that compensates the
difference in potential energy. The location-dependent part of the field
A(q) describes the possible oscillation modes of the field and depends
on boundary conditions. The oscillations have a binding effect. They
keep the moving objects within a bounded region.


https://en.wikipedia.org/wiki/Helmholtz_equation

For three-dimensional isotropic spherical conditions, the solutions
have the form

A(r.6,0) iZ{(a,m iy (k) +B,Y," (6,0)] (8.2.15)

1=0 m=—I

Here j, and y, are the spherical Bessel functions, and Y," are

the spherical harmonics . These solutions play a role in the
spectra of atomic modules.

Planar and spherical waves are the simpler wave solutions of the equation
(8.2.11)

w(q,r):exp{ﬁ«lz,q—a0>—a)r+(p)} (8.2.16)
l//(qlf)=exp{ﬁ«k’?q,__q;j_mw)} (8.2.17)

A more general solution is a superposition of these basic types.

Two quite similar homogeneous second-order partial differential
equations exist. They are the homogeneous versions of equation (8.2.5)
and equation (8.2.8). The first equation has spherical shock front
solutions with a spin vector that behaves like the spin of elementary
fermionic particles. The second equation has spherical shock front
solutions that behave more like elementary bosons.

The inhomogeneous pulse activated equations are

(v,vr i<§,§>)w=4ﬁ5(q—a)0(rir') (8.2.18)

The paper treats quaternionic differential equations more extensively in
chapter 14.


https://en.wikipedia.org/wiki/Spherical_Bessel_Function
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8.3 Enclosure balance equations

Enclosure balance equations are quaternionic integral equations that
describe the balance between the inside and the outside of an
enclosure.

These integral balance equations base on replacing the del operator vV
by a normed vector ni.

Vy, & fiy,
Vxy < Axy (8.3.1)
<§,1/7> < ()
With respect to a local part of a closed boundary that is oriented
perpendicular to vector i the partial differentials relate as

Vi =—(V,5)+ V. +Vxij o i
v =~V )V £V iy (8.3.2)
=—(M,y)+ny, £ixy
This is exploited in the surface-volume integral equations that are

known as Stokes and Gauss theorems.

[[[Vyav =dprvds (8.3.3)
JIJ(V.w)dv =qp(ny)ds (8.3.4)
[V =wav =gprixyids (8.3.5)
JI]V.av ={priy,ds (8.3.6)

This result turns terms in the differential continuity equation into a
set of corresponding integral balance equations.

The method also applies to other partial differential equations. For
example



jjj{ﬁx(ﬁmp)} v :iﬁ{?(ﬁ,;ﬁ)}ds —géls{w,ﬁ)w}ds (8.3.8)
One dimension less, a similar relation exists.
Il (Wxa,ﬁ))ds =§(a,dl) (8.3.9)
; ¢
The curl can be presented as a line integral
(V)= |im[195<y7,dr>) (8.3.10)

8.4 Derivation of physical laws
The quaternionic equivalents of Ampere's law are

J=VxB=V,EoJ=ixB=V,E (8.4.1)
[[{(V=B,n)ds =(B.dl') = [[(J+V,E.n)ds (8.4.2)
S C S

The quaternionic equivalents of Faraday's law are:

V.B=Vx(Vy)=-VxE<V,B=0x(Vy)=-VxE  (8.4.3)

35(5 dl> H<VXE n>dS——H< v, B,ri)ds (8.4.4)
J :ﬁx(é—é)zﬁxé—vrézvp (8.4.5)
jj(ﬁxgz,ﬁ)dszgS((@,dr)): [(vp+v,¢.m)ds (8.4.6)

The equations (8.4.4) and (8.4.6) enable the derivation of the Lorentz
force.

VxE=-V B (8.4.7)
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S(7o)

The Leibniz integral equation states
iﬂmro),ﬁ}ds
. ”< )+ (VX (2))¥(7).1)dS = § (¥(70)x X (7))

With X =8 and (V.B)=0 follows

ims*(f),ﬁ}ds:jj (B(z,).7i)ds - fﬁ (V(20)xB(z,).0)  (8.4.10)

(8.4.11)

F=qE+qVxB (8.4.12)

9 Stochastic control

Stochastic processes that own a characteristic function control the
coherence and part of the dynamics of most of the discrete objects in
the model. A displacement generator that can be considered as part of
the characteristic function determines the location of geometric center
of the object.


https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force

9.1 Elementary modules

Elementary modules are controlled by the first type of stochastic
processes. These processes are inhomogeneous spatial Poisson point
processes. They can be considered as a combination of a genuine
Poisson process and a binomial process that is implemented by a spatial
point spread function. The process generates an ongoing hopping path
that recurrently regenerates a coherent hop landing location swarm. A
location density distribution describes this swarm and equals the
Fourier transform of the characteristic function of the process. Further
it equals the square of the modulus of what physicists would call the
wavefunction of the elementary module.

Each elementary particle behaves as an elementary module. Together,
the elementary modules constitute all modules that exist in the
universe. Some modules constitute modular systems.

9.2 Composite modules

Composite modules are controlled by the second type of stochastic
processes. The characteristic function of these stochastic processes are
dynamic superpositions of the characteristic functions of their
components. The superposition coefficients act as displacement
generators. This means that the composition of composite modules is
defined in Fourier space. In that environment location in configuration
space has no significance. Thus, components of a composite can locate
far from each other in configuration space. This is the reason that
entanglement exists. Entanglement becomes noticeable when
components obey exclusion principles.

9.3 Atoms

Compound modules are composed modules for which the geometric
centers of the platforms of the components coincide. The charges of the
platforms of the elementary modules establish the binding of the



corresponding platforms. Physicists and chemists call these compound
modules atoms or atomic ions.

In free compound modules, the symmetry-related charges do not take
part in the oscillations. The targets of the private stochastic processes of
the elementary modules oscillate. This means that the hopping path of
the elementary module folds around the oscillation path and the hop
landing location swarm gets smeared along the oscillation path. The
oscillation path is a solution of the Helmholtz equation. Each fermion
must use a different oscillation mode. A change of the oscillation mode
goes together with the emission or the absorption of a photon. The
center of emission coincides with the geometrical center of the
compound module. During the emission or absorption, the oscillation
mode and the hopping path halt, such that the emitted photon does not
lose its integrity. Since all photons share the same emission duration,
that duration must coincide with the regeneration cycle of the hop
landing location swarm. Absorption cannot be interpreted so easily. In
fact, it can only be comprehended as a time-reversed emission act.
Otherwise, the absorption would require an incredible aiming precision
for the photon.

The type of stochastic process that controls the binding of components
appears to be responsible for the absorption and emission of photons
and the change of oscillation modes. If photons arrive with too low
energy, then the energy is spent on the kinetic energy of the common
platform. If photons arrive with too high energy, then the energy is
distributed over the available oscillation modes, and the rest is spent on
the kinetic energy of the common platform, or it escapes into free
space. The process must somehow archive the modes of the
components. It can apply the private platform of the components for
that purpose. Most probably, the current value of the dynamic



superposition coefficient is stored in the eigenspace of a special
superposition operator.

9.4 Molecules

Molecules are conglomerates of compound modules that each keep
their private geometrical center. However, electron oscillations are
shared among the compound modules. Together with the symmetry-
related charges, this binds the compound modules into the molecule.

10 Gravity

Mainstream physics considers the origin of the deformation of our living
space as an unsolved problem. It presents the Higgs mechanism as the
explanation of why some elementary particles get their mass. The
Hilbert Book Model relates mass to deformation of the field that
represents our universe. This deformation causes the mutual attraction
of massive objects.

10.1 Difference between the Higgs field and the universe field

The Higgs field corresponds with a Higgs boson. The dynamic field that
represents our universe does not own a field generating particle like the
Higgs boson that is supposed to generate the Higgs field. The universe
field exists always and everywhere. In fact, a private stochastic process
generates each elementary particle. The stochastic process produces
guaternions that break the symmetry of the background parameter
space. Consequently, the embedded quaternion breaks the symmetry
of the functions that apply this parameter pace. Thus, the quaternion
breaks the symmetry of the field that represents the universe. However,
only isotropic symmetry breaks can produce the spherical pulse
responses that temporarily deform the universe field. These spherical
pulse responses act as spherical shock fronts. The pulse injects volume
into the field, and the shock front distributes this volume over the
whole field. The volume expands the field persistently, but the initial



deformation fades away. The front wipes the deformation away from
the location of the pulse.

10.2 Center of mass
In a system of massive objects p,,i=12,3,...n, each with static mass m, at

locations r, the center of massR follows from

>'m, (7 -R)=0 (10.2.1)
=
Thus
ﬁ:ﬁé“mﬁ (10.2.2)
Where
M=>"m (10.2.3)

In the following, we will consider an ensemble of massive objects that
own a center of massR and a fixed combined massM as a single
massive object that locates atR. R can be a dynamic location. In that
case, the ensemble must move as one unit. In physical reality, this
construct has no point-like equivalent that owns a fixed mass. The
problem with the treatise in this paragraph is that in physical reality,
point-like objects that possess a static mass do not exist. Only pulse
responses that temporarily deform the field exist. Except for black
holes, these pulse responses constitute all massive objects that exist in
universe.

10.3 Newton
Newton’s laws are nearly correct in nearly flat field conditions. The
main formula for Newton’s laws is

F=ma (10.3.1)



Another law of Newton treats the mutual attraction between massive
objects.

If(Fl—Fz)leéz MM ( ") (10.3.2)

Wl

Newton deduced this universal law of gravitation from results of
experiments, but this gravitational attraction can also be derived
theoretically from the gravitational potential that is produced by
spherical pulse responses.

Massive objects deform the field that embeds these objects. At large
distances, a simplified form of the gravitational potential describes
properly what occurs.

The following relies heavily on the chapters on quaternionic differential
and integral calculus.

10.4 Gauss law
The Gauss law for gravitation is

p(g.dA) = [[[(V.g)dV =—4zG[[[ pdv =-42GM  (10.4.1)

ov

Here g is the gravitational field. G is the gravitational constant. M is the
encapsulated mass. p is the mass density distribution. The differential
form of Gauss law is

(V.G)=(V,V)$=-42Gp (10.4.2)

G=-Vg¢ (10.4.3)

¢ is the gravitational field. Far from the center of mass this gravitation
potential equals

qﬁ(r):“"TG (10.4.4)



10.5 A deforming field excitation

A spherical pulse response is a solution of a homogeneous second-order
partial differential equation that was triggered by an isotropic pulse.
The corresponding field equation and the corresponding solution are
repeated here.

(VrVr +<§,§>)w:4ﬂ5(q—a)9(rir') (10.5.1)
Here the =+ sign represents time inversion.
~ f (‘d—ﬂic(r—r')ﬁ)
S

(10.5.2)

The spherical pulse response integrates over time into the Green’s
function of the field. The Green’s function is a solution of the Poisson
equation.

p=<§ﬁ>y/ (10.5.3)

The Green’s function occupies some volume.

o 1
SO

(10.5.4)
This means that locally the pulse pumps some volume into the field, or
it subtracts volume out of the field. The selection between injection and
subtraction depends on the sign in the step function in the equation
(10.5.1). The dynamics of the spherical pulse response shows that the
injected volume quickly spreads over the field. In the case of volume
subtraction, the front first collects the volume and finally subtracts it at
the trigger location. Gravitation considers the case in which the pulse
response injects volume into the field.

Thus, locally and temporarily, the pulse deforms the field, and the
injected volume persistently expands the field.



This paper postulates that the spherical pulse response is the only field
excitation that temporarily deforms the field, while the injected
volume persistently expands the field.

The effect of the spherical pulse response is so tiny and so temporarily
that no instrument can ever measure the effect of a single spherical
pulse response in isolation. However, when recurrently regenerated in
huge numbers in dense and coherent swarms, the pulse responses can
cause a significant and persistent deformation that instruments can
detect. This is achieved by the stochastic processes that generate the
footprint of elementary modules.

The spherical pulse responses are straightforward candidates for what
physicists call dark matter objects. A halo of these objects can cause
gravitational lensing.

10.6 Gravitational potential

A massive object at a large distance acts as a point-like mass. Far from
the center of mass, the gravitational potential of a group of massive
particles with combined mass M is

¢(r) z% (10.6.1)

At this distance the gravitation potential shows the shape of the
Green’s function of the field; however, the amplitude differs. The
formula does not indicate that the gravitational potential can cause
acceleration for a uniformly moving massive object. However, the
gravitational potential is the gravitational potential energy per unit
mass. The relation to Newton’s law is shown by the following.

The potential ¢ of a unit mass mat a distance r from a point-mass of
mass M can be defined as the work W that needs to be done by an
external agent to bring the unit mass in from infinity to that point.



) W 1Ff 1%/GmMF ..\ GM
H:R[( )= j< m|3r,dr>: i (10.6.2)

10.7 Pulse location density distribution

It is false to treat a pulse location density distribution as a set of point-
like masses as is done in formulas (10.2.1) and (10.2.2). Instead, the
gravitational potential follows from the convolution of the location
density distribution and the Green’s function. This calculation is still not
correct, because the exact result depends on the fact that the
deformation that is due to a pulse response quickly fades away and the
result also depends on the density of the distribution. If these effects
can be ignored, then the resulting gravitational potential of a Gaussian
density distribution would be given by

ERF(r)

g(r)~GM ———= (10.7.1)

Where ERF(r) is the well-known error function. Here the gravitational
potential is a perfectly smooth function that at some distance from the
center equals the approximated gravitational potential that was
described above in equation (10.6.1). As indicated above, the
convolution only offers an approximation because this computation
does not account for the influence of the density of the swarm and it
does not compensate for the fact that the deformation by the individual
pulse responses quickly fades away. Thus, the exact result depends on
the duration of the recurrence cycle of the swarm.

In the example, we apply a normalized location density distribution, but
the actual location density distribution might have a higher amplitude.

This might explain why some elementary module types exist in three
generations.
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Due to the convolution, and the coherence of the location density
distribution, the blue curve does not show any sign of the singularity
that is contained in the red curve, which shows the Green’s function.

In physical reality, no point-like static mass object exists. The most
important lesson of this investigation is that far from the gravitational
center of the distribution the deformation of the field is characterized
by the here shown simplified form of the gravitation potential

4(r) zGTM (10.7.2)

Warning: This simplified form shares its shape with the Green’s
function of the deformed field. This does not mean that the Green’s

function owns a mass that equals M :é. The functions only share the

form of their tail.

10.8 Inertia

The relation between inertia and mass is complicated. We apply a field
that resists its changing. The condition that for each type of massive
object, the gravitational potential is a static function and the condition
that in free space, the massive object moves uniformly, establish that
inertia rules the dynamics of the situation. These conditions define an
artificial quaternionic field that does not change. The real part of the
artificial field is represented by the gravitational potential, and the



uniform speed of the massive object represents the imaginary (vector)
part of the field.

The change of the quaternionic field can be divided into five separate
changes that partly can compensate each other.

The first-order change of a field contains five terms. Mathematically,
the statement that in first approximation nothing in the field £changes,
indicates that locally, the first-order partial differential V& will be equal

to zero.
g:vg:vg,{ﬁg§+€§+vg¢6x§=o (10.8.1)

Thus
£ =V.E —W,g}:o (10.8.2)
F=VE+V.ELVXE=D (10.8.3)

These formulas can be interpreted independently. For example,
according to equation (10.8.2) the variation in time of & must equal the
divergence of £. The terms that are still eligible for change must
together be equal to zero. For our purpose, the curl Vx & of the vector
field & is expected to be zero. The resulting terms of equation (10.8.3)
are

V.E+VE =0 (10.8.4)

In the following text plays £ the role of the vector field and & plays the
role of the scalar gravitational potential of the considered object. For
elementary modules, this special field supports the hop landing location
swarm that resides on the floating platform. It reflects the activity of
the stochastic process, and the uniform movement in free space of the
floating platform over the background platform. It is characterized by a
mass value and by the uniform velocity of the platform with respect to



the background platform. The real part conforms to the deformation
that the stochastic process causes. The imaginary part conforms to the
speed of movement of the floating platform. The main characteristic of
this field is that it tries to keep its overall change zero. We call ¢ the
conservation field.

At a large distance r, we approximate this potential by using formula

¢(r) z@ (10.8.5)

The new artificial field & :{G—M,V} considers a uniformly moving mass
r

as a normal situation. It is a combination of the scalar potential M and
r

the uniform speed v.

If this object accelerates, then the new field {%\7} tries to counteract
r

the change of the field v by compensating this with an equivalent
change of the real part GTM of the new field. According to the equation

(10.8.4), this equivalent change is the gradient of the real part of the
field.

a:ﬁ:-ﬁ(GMj:GM r (10.8.6)

This generated vector field acts on masses that appear in its realm.

Thus, if two uniformly moving masses M, and M, exist in each other’s
neighborhood, then any disturbance of the situation will cause the
gravitational force

(10.8.7)
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The disturbance by the ongoing expansion of the embedding field
suffices to put the gravitational force into action. The description also
holds when the field &£describes a conglomerate of platforms and M
represents the mass of the conglomerate.

The artificial field & represents the habits of the underlying model that
ensures the constancy of the gravitational potential and the uniform
floating of the considered massive objects in free space.

Inertia ensures that the third-order differential (the third-order change)
of the deformed field is minimized. It does that by varying the speed of
the platforms on which the massive objects reside.

Inertia bases mainly on the definition of mass that applies to the region
outside the sphere where the gravitational potential behaves as the

Green’s function of the field. There the formula & :?applies. Further,

it bases in the intention of modules to keep the gravitational potential
inside the mentioned sphere constant. At least that holds when this
potential is averaged over the regeneration period. In that case, the
overall change ¢ of the conservation field £ equals zero. Next, the
definition of the conservation field supposes that the swarm which
causes the deformation moves as one unit. Further, the fact is used that
the solutions of the homogeneous second-order partial differential
equation can superpose in new solutions of that same equation.

The popular sketch in which the deformation of our living space is
presented by smooth dips is obviously false. The story that is
represented in this paper shows the deformations as local extensions of
the field, which represents the universe. In both sketches, the
deformations elongate the information path, but none of the sketches
explain why two masses attract each other. The above explanation
founds on the habit of the stochastic process to recurrently regenerate



the same time average of the gravitational potential, even when that
averaged potential moves uniformly. Without the described habit of the
stochastic processes, inertia would not exist.

The applied artificial field also explains the gravitational attraction by
black holes.

The artificial field that implements mass inertia also plays a role in other
fields. Similar tricks can be used to explain the electrical force from the
fact that the electrical field is produced by sources and pits that can be
described with the Green’s function.

10.9 Elementary particles

For elementary particles, a private stochastic process generates the hop
landing locations of the ongoing hopping path that recurrently forms
the same hop landing location density distribution. The characteristic
function of the stochastic process ensures that the same location
density distribution is generated. This does not mean that the same hop
landing location swarm is generated! The squared modulus of the
wavefunction of the elementary particle equals the generated location
density distribution. This explanation means that all elementary
particles and all conglomerates of elementary particles are recurrently
regenerated.

10.10 Mass
Mass is a property of objects, which has its own significance. Since at
large distance, the gravitational potential always has the shape

A(r) zGTM it does not matter what the massive object is. The formula

can be used to determine the mass, even if only is known that the
object in question deforms the embedding field. In that case, the
formula can still be applied. This is used in the chapter about mixed
fields.



In physical reality, no static point-like mass object exists.

10.11 Hop landing generation

The generation of the hopping path is an ongoing process. The
generated hop landing location swarm contains a huge number of
elements. Each elementary module type is controlled by a
corresponding type of stochastic process. For the stochastic process,
only the Fourier transform of the location density distribution of the
swarm is important. Consequently, for a selected type of elementary
module, it does not matter at what instant of the regeneration of the
hop landing location swarm the location density distribution is
determined. Thus, even when different types are bonded into
composed modules, there is no need to synchronize the regeneration
cycles of different types. This freedom also means that the number of
elements in a hop landing location swarm may differ between
elementary module types. This means that the strength of the
deformation of the embedding field can differ between elementary
module types. The strength of deformation relates to the mass of the
elementary modules according to formula (10.6.1).

The requirement for regeneration represents a great mystery. All mass
that by elementary modules generate appears to dilute away and must
be recurrently regenerated. This fact conflicts with the conservation
laws of mainstream physics. The deformation work done by the
stochastic processes vanishes completely. What results is the ongoing
expansion of the field. Thus, these processes must keep generating the
particle to which they belong. The stochastic process accurately
regenerates the hop landing location swarm, such that its rest mass
stays the same.

Only the ongoing embedding of the content that is archived in the
floating platform into the embedding field can explain the activity of the



stochastic process. This supposes that at the instant of creation, the
creator already archived the dynamic geometric data of his creatures
into the eigenspaces of the footprint operators. These data consist of a
scalar timestamp and a three-dimensional spatial location. The
guaternionic eigenvalues act as storage bins.

After the instant of creation, the creator left his creation alone. The set
of floating separable Hilbert spaces, together with the background
Hilbert space, act as a read-only repository. After sequencing the
timestamps, the stochastic processes read the storage bins and trigger
the embedding of the location into the embedding field in the
predetermined sequence.

10.11.1 Open question

If the instant of archival proceeds the passage of the window that scans
the Hilbert Book Base Model as a function of progression, then the
behavior of the model does not change. This indicates a freedom of the
described model.

10.12 Symmetry-related charges

Symmetry-related charges only appear at the geometric center of the
private parameter space of the separable Hilbert space that acts as the
floating platform for an elementary particle. These charges represent
sources or sinks for the corresponding symmetry-related field. Since
these phenomena disturb the corresponding symmetry-related field in a
static way that can be described by the Green’s function of the field, the
same trick that was used to explain inertia can be used here to explain
the attraction or the repel of two symmetry-related charges Q, and Q, .

a:ﬁ:-ﬁ(gjzg (10.12.1)
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lf(rl—rz)leaeM (10.12.2)

10.13 Color confinement

Some elementary particle types do not possess an isotropic symmetry.
Mainstream physics indicates this fact with a corresponding color
charge. Spherical pulse responses require an isotropic pulse. Thus,
colored elementary particles cannot generate a gravitational potential.
They must first cling together into colorless conglomerates before they
can manifest as massive objects. Mesons and baryons are the colorless
conglomerates that become noticeable as particles that attract other
massive particles.
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