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Abstract: The Riemann zeta function is one of the most Euler’s important and fascinating functions in mathematics.
By analyzing the material of Riemann’s conjecture, we divide our analysis in the ζ(z) function and in the proof of the
conjecture, which has very important consequences on the distribution of prime numbers. The proof of the Hypothesis
of Riemann result from the simple logic, that when two properties are associated, (the resulting equations that based in
two Functional equations of Riemann ), if zero these equations, ie ζ(z) = ζ (1-z)= 0 and simultaneously they to have the
proved property 1-1 of the Riemann function ζ(z).Thus, there is not margin for to non exist the Re (z) = 1/2 {because
ζ (z) = ζ (1-z)=0 and also ζ(z) as and ζ(1-z) are 1-1}.This, as it stands, will gives the direction of all the non-trivial
roots to be all in on the critical line, with a value in the real axis equal 1/2.

#1.Theorem 1.
The R-Hypothesis focuses on the point where we
must prove that if s = Re(s) + Im(s)*I …
I) The functions ζ(s) and ζ(1-s) are 1-1 on the critical
strip.
II) The common roots of the equations ζ(s)-ζ(1-s) = 0
they have Re(s)=Re(1-s)=1/2 within the interval (0,1)
and determine unique position, which is called
critical line.
Proof:
The functions ζ(s) and ζ(1-s) are 1-1 on the critical strip.
For this we need to analyze when and where the

exponential function zn is 1-1 when Zn .

The exponential function zn …

I) is 1-1 in each of these strips defined by the intervals
2πk/ln(n) and 2π(k+1)/ln(n) “ where Zk . For this we
must prove two cases… If CAfCA  :

then if )()( 21 zfzf  then 21 zz  that is..

2121 yyxx  . Indeed,

if 111 yixz  , 222 yixz  are two points

within into a such strip such that 21 zz ee  then,,

  iyxiyxzziyxiyx nnnnnnnn 2211211111

21 xx  and since 21 xx  , the relation

)ln()ln( 21 nznz ee   gives )ln()ln( 21 nyinyi ee   , so

)ln(/221 nkyy  , is an integer multiple of 2π. But

1z and 2z belong to the strip, so )ln(/221 nyy 

That is, the difference 21 yy  is at the same time a

multiple of 2π/ln(n) and at an absolute value of less than
2π/ln(n).The only case that this is true is when

21 yy  . We finally conclude that 21 zz  , so zn is

1-1 in the strip
)}ln(/)1(2)Im()ln(/2:{ nkznkz   .''lines

down closed – open up”. We also notice that zn is on

C-{0}.Because if 0w and we put
)ln(/arg)ln(/||ln nwinwz  then

wnwnnnn nwinwiwnwinwz   )ln(/arg)ln(/argln)ln(/arg)ln(/ln

Fig.1 The 1z and 2z belong to the lane width )ln(/2 nk

Formation of the strips 1-1 for ζ(s) and ζ(1-s).
a1.) If we accept the non-trivial zeroes on critical strip

of the Riemann Zeta Function ζ(s) as 111 its   and

222 its   with 12 ss  , and if we suppose that
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the real coordinates 21 , of each non-trivial zero of

the Riemann Zeta, [1,2,3,4] function ζ(s) correspond to
two imaginary coordinates t1 and t2 , then, we have the
following equations group:
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Taking the first equation and deducting the second, we
obtain:
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From the previous relation, we conclude that if

1,01122   nnn tt  then

,...)2,1(,
)ln(

2
1212  k

n
ktt  .That is to say t1

and t2 can take any value, but according to the previous
relation. So from Fig.1, that means ζ (s) is 1-1 on the lane
of critical Strip in Intervals such as defined, therefore
and on the critical Line. So zn is 1-1 in the strip
and )}ln(/)1(2)Im()ln(/2:{ nkznkz   .''lines

down closed – open up”

a2.) If we do the same work with 12 ss  for the

case ζ(1-s) will we have:
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From the previous relation, we see that if

1,01122 11   nnn tt 

 )}11({& 1212 
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So, from Figure.1, it follows that ζ (1-s) is 1-1 on the
critical Strip, So )1( zn  is 1-1 in the strip
and )}ln(/)1(2)Im()ln(/2:{ nkznkz   .''lines

up closed – down open”

As we have seen before, the complex exponential form

zn but and zn is also periodic with a period of

2π/ln(n). For example znLogiziz nnnn   )(/22  the
zn is repeated in all the ''lines down closed – open up”

horizontal strips with 2π/Ln(n) on Fig.2 below.

Fig 2. All the ''bottom - closed upper “horizontal strips

with 2π/ln(n) for Znnn z  ,1, .

If we are asked to find the strips that are 1-1 of the

function 



n

i
zn

z
1

1)( it will be the union of the strips

formed with period nln/2   where n, .

This results from the analysis we made for the cases a1,
a2. Therefore, if we analytically assume that n = 2, 3, …
then the exponential complex function will be 1-1 in
each of the strips, i.e. in each one set of the
form…

ZknkznkzSn  )},ln(/)1(2)Im()ln(/2:{ 

and therefore in each one subset of the unified

expanded set.... 





n

i
iSS

2
.

The largest strip obviously contains all the rest it is wide,
and has width 2ln/2  i.e. with n = 2.
Overlapping contiguous Strips.
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If we start from the upper bound of the strip with n = 2
and κ = 1, Fig.3 the upper ones will descend to zero by
increasing n with a width difference the interval δ =
2π/Ln(n-1) - 2π/Ln(n). In addition, we will prove that the
strip i=n>=2 primary (κ=1) that generated in ascending
order, the upper limit of that created of its double width
enters the zone of the previous of (I = n-1, κ = 1) also
primary.

Fig3. The upper ones will go down to zero
by increasing n.

Apply  2)1(ln/22)1ln(/2 nnnn 

2
530132 

 nnn and because we talked

about integers then 3n .The same phenomenon is also
created at higher level strips.

The 
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1)( it is directly 1-1 from the

comparison of 2 points 21 z,z , when )ζ(z)ζ(z 21 

Proof:
From the equality
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)11()11()11( zn iyxiyxiyx 

  )22()22()22( ...321 iyxiyxiyx n
with comparison of similar terms the result arises.
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kyyxx ,
)ln(
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2121



If we need  21 zz 2121 yyxx  therefore it will

be 1-1 as shown in sections a1, a2 pages 1-2... Also
according to Lagrange's generalized theory, each of the
roots according to the obvious relation )1()( zz 
will result from the generalized theorem of Lagrange.
From the equation that results from 3 Functional
Equations, with condition of common roots. We take

)1()( zz   and for first approach we then follow

the 3 first terms on each ζ-equation we will have in the
Regular form )1(),( zz  with the analysis below.
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we consider it as initial value for the solution
of Transcendental equation with the method of
Lagrange inversion , then:
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Some solutions for k
1st 0.4985184869351 +/− 3.6072014300530 I�k = 1

2st 0.4997077392995+/− 10.329023684711 I�k = 3

3st 0.5003426560276+/− 13.990255078243 I�k = 4

4th 0.4993087825728 +/− 17.585326315022 I�k = 5

5st 0.5026747758005+/− 21.304192633721 I� k = 6

And so on for the sequence of infinity. We now
see that we approach the real roots and its complexities.
With the additional method Newton or the Bisection
method we approach more rapidly to them. And these
roots will be contained in corresponding strips that we
have previously defined and in closer relation with their
position on the critical line. By this logic for the previous
approximation equation in relation to its solutions of
Zeta[z] the strips which determine the imaginary roots of
the equation, will be between the intervals

  ,6ln/2 as defined by the analysis of the

generalized Theorem of Lagrange. The strips of the
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imaginary part of the roots, as they appear for 6
consecutive intervals of the approximate equation

Strips – Imaginary Roots:

1st (7.013424977055179 3.506712488527589)
2st (10.52013746558276 7.013424977055179
3st (14.02684995411035 10.52013746558276)
4st (17.53356244263794 14.02684995411035)
5st (21.04027493116553 17.53356244263794)
6st (24.54698741969312 21.04027493116553)

Ιt is clear the first root 3,607..i is located in 1st of strip
(7.01-3.506), the second 10.3290..i in the 2st strip
(7.013-10.52) etc. Now the root 13.99..i which
approximates the first root of ζ(z) = ζ(1-z) = 0 i.e. the
14.1347..i, is in the 4st strip (14.02-17.533) with a lower
limit the 14.026..i a value that is very close to the one
required for the approximate and exclusive (1st root) when
ζ(z) = 0 of the Riemann Hypothesis.
Сorollary 1.
The only roots of the Zeta function not included in the
set {z ∈C: 0 ≤ Re (z) ≤ 1} are the points -2, -4,
-6..[11.page 47]
Proof..
On the functional equation…

zzzzz  )2()2/cos()()(2)1(  we know that

for Re (z)> 1 the functions ζ(z) and Γ(z) do not equal
zero(Proof-Th.3.p6).We also find that for Re (z)> 1 the
1 -Re (z) <0 and putting u = 1-z we will find all the roots
of ζ (u) for Re (u) <0.Therefore we will have that ζ (u)
will be zero , where it is zeroed the )2/cos( z i.e.

z = 3,5,7..Then the roots of ζ (u) for Re (u) <0 will be the
points -2, -4, -6... and will be all the roots of the function
ζ out of the strip {z ∈C: 0 ≤ Re (z) ≤ 1}.

Theorem Ηelpful.
Τhe Riemann's Ζ-function has no roots on the lines
Re(z) = 1 and Re(z) = 0.
The proof is detailed in the book [11] page 50-51.

II.)The common roots of the equations ζ(s) - ζ(1-s) = 0
they have Re(s)= Re(1-s)=1/2 within the interval (0,1)
if moreover apply ζ(s)=0.(Refer to Theorem 3, page 5).

Proof: Let us assume z to be such that for

complex 00 iyxz  , 0)Im(1)Re(0  zz and

.0)1()(  zz  According to the two equations,

they must apply to both, because they are equal to zero

that... 0)1()1(0)()(
_______

 zzzz  . But

from [Theorem 1, ΙΙ, a1, a2] the ζ(z) and ζ (1-z) are 1-1on
the critical Strip.. If suppose generally

that 0)1()( 0000  iyxiyx  then:

0000 1 xxyy  , but because are the 1-1 then we

will apply two cases for complex z i.e.

 /
00

/
000

/
0 yy,xx,x-1[xz

]yy,
2
1xx,x-1x /

00
/
000

/
0 

[Corollary.1 and Theorem{Ηelpful},because we
suppose .0)1()(  zz  ] We conclude that

0< 0x <1. Therefore we have two cases:

a) If
2
1xx /

00  we apply the obvious

i.e.
 0) iyζ(1/2) iy1/2ζ(1) iyζ(1/2 000

00 yy  . Which fully meets the requirements of

hypothesis!!

b) If 1
2
1xx0 /

00  In this

case 1 /
00

/
00 xxx xif or 1xxx x /

00
/
00 

then for the Functional equation ζ(s) - ζ(1-s) = 0
simultaneously apply:

 ) iyζ(x0) iyζ(x) iyζ(x /
0

/
00000

0 ) iyζ(x /
0

/
0 . So let's assume that…

.,
2
1

2
11 baba  /

00
/
00

/
00 x xxxx x.st1

But apply a.b1a-b11xx /
00  Τhat is,
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a,b is symmetrical about of
2
1 . But the ζ(z) and ζ (1-z)

are 1-1on the critical Strip then apply

 }
2
1( /

00
/
00 yy) iy

2
1ζ() iy aa

must 002
2
1

2
1

 aaaa

therefore /
00 xx  .

.
2
1

2
11  /

00
/
00

/
00 x xxxx x. and2

as before. Then because the ζ(z) and ζ (1-z) are
1-1on the critical Strip will apply…

}
2
1( /

00
/
00 yy) iy

2
1ζ() iy  aa that

002
2
1

2
1

 aaaa

therefore /
00 xx  .We see that in all acceptable cases

is true that “The non-trivial zeros of ζ (z)- ζ (1-z)=0
have real part which is equal to ½ within the interval
(0,1) . In the end, we see still one partial case that
appears in the roots of the equation

.0)1()(  zz 

c) If 0 /
00 xx1 Furthermore, in this case withthat

is, it is symmetrical about

1xx /
00  then for the functional equations we apply

 ) iyζ(x) iyxζ(1-) iyζ(x 000000

/
0y 0y) iyx-ζ(1 00 and for the three cases it is

valid 0)y0(y 00  . This case applies only when

aa  /
00 xx0) z-ζ(1) ζ(z ,1 , and not for

the equality of ζ function with zero. But in order to
have common roots of the two functions ζ (z) and ζ (1-z)
«because they are equal to zero and equal to each

other», then first of all, it must be /
00 xx  and also

because the ζ (z) is 1-1 and for each case applies

( 0y 0  and 0y 0  ) or ( 0y 0  and 0y 0  ),

therefore we will apply 0yy
2
1xx 0

/
00  and

with regard to the three cases {a, b,c } the cases {b, c}
cannot happen, because they will have to be within (0,1)
and will therefore be rejected.
Therefore if 0z)ζ(1ζ(z)  then because “these two

equations of zeta function are 1-1 on the lane of critical
strip” as shown in theorem 1, is “sufficient condition”
that all non - trivial zeros are on the critical line
Re(z)=1/2. That means that the real part of z of 0ζ(z)  ,

equals to 1/2 ”.. This, like Theorem 1, has been proved
and it helps the Theorem 3 below.

2#. Theorem 2.
For the non- trivial zeroes of the Riemann Zeta
Function ζ(s) apply
i)There exists an upper-lower bound of Re s of the
Riemann Zeta Function ζ(s) and more specifically in the

closed interval 








 2ln
ln,

2ln
2ln . The non-trivial zeroes

of the Riemann Zeta function ζ(s) of the upper-lower
bound are distributed symmetrically on the straight
line Re s = 1/2.

ii).The average value of the upper lower bound of
Re s = 1/2.

Proof:
i). Here, we formulate two of the functional equations
from E - q.
Set

0Re),()2/()2(2)(/)1(   sssCosss s 

1Re),1()2/()2(2)1(/)( 1   sssSinss s 

We look at each one equation individually in order to
identify the set of values that we want each time.
a). For the first equation and for real values with
Re s > 0 and by taking the logarithm of two sides of the
equation [5], we have…

  )()2/()2(2)(/)1( ssCosss s 
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 ]2[]2[)](/)1([  sLogLogssLog
ikssCosLog  2)]()2/([  but solving for s and if

)()2/()( ssCossf   and from Lemma 2[6,p6,

Part1] if 1)(/)1(lim
0




ss
ss

 or

0)](/)1(lim[
0




ssLog
ss

 we get:

]2[
2)]([

]2[
]2[




 Log
iksfLog

Log
Logs 

 with

0
]2[
2)]([






Log

iksfLog Finally, because we need real s

we will have 3771.0
]2[

]2[Re 
Log

Logs . This is the

lower bound, which gives us the first ζ(s) of Riemann’s
Zeta Function.
b). For the second equation, for real values with Re s < 1
and by taking the logarithm of the two parts of the
equation, we will have:

  )1()2/()2(2)1(/)( 1 ssSinss s 

 ]2[)1(]2[)]1(/)([  LogsLogssLog

ikssSinLog  2)]1()2/([  but solving for s

and if )1()2/()( ssSinsf   and from

Lemma 2[6,{p6,Part Ι}] if 1)1(/)(lim
0




ss
ss

 or

0)]1(/)(lim[
0




ssLog
ss

 we

get…
]2[
2)]([

]2[
][







Log
iksfLog

Log
Logs 

 with

0
]2[
2)]([






Log

iksfLog

In the following, because we need real s we will take Re

62286.0
]2[
][





Log
Logs . This is the upper bound,

which gives us the second of Riemann’s Zeta Function
of ζ(s). So, we see that the lower and the upper bound
exist for Re s and they are well defined.
c). Assuming that klowk its   and

kupper its   with
]2[

]2[



Log
Log

low  and

]2[
][



Log
Log

upper  we apply low 1 and

upper 2 [fig.4]. If we evaluate the difference and

1228.02/12/1ReRe  upperss 

1228.02/1Re2/1Re  lowss 

This suggests for our absolute symmetry

of
Fig.4 Arrangement of low and upper of real part of
zeros from 2 functional equations of Riemann.

ii) The average value of the upper lower bound is Re s =
1/2 because from (fig. 4):

2/1
]2[

][]2[2/1Re 






Log

LogLogs

#3. Theorem 3
The Riemann Hypothesis states that all the nontrivial
zeros of ζ (z) have real part equal to 1/2.

Proof: In any case, we Assume that: Τhe Constant
Hypothesis ζ (z) = 0, Cz . In this case, we use the
two equations of the Riemann zeta function, so if they
apply what they represent the ζ (z) and ζ (1-z) to
equality. Before developing the method, we make the
three following assumptions:
I). Analysis of specific parts of transcendental
equations, which are detailed…
a). For Cz ,{ 0Re00  zaa z } which
refers to the inherent function similar to two Riemann

zeta functions as 0)2( z or 0)2( 1 z and it seems

that they do not have roots in C - Z, because 0)2(  .

b). This forms Gamma(z) = 0 or Gamma(1-z) = 0 do
not have roots in C-Z.
c). Solution of Sin(π/2z)=0 or Cos(π/2z)=0. More
specifically if z = x+yi, then…
1.   x)/2]Sin[( y)/2] Cosh[(  0)2/(  zSin

0y)/2] Sinh[( x)/2]Cos[( I  
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If )(, IntegersNmk  then all the solutions can be

found with a program by the language of Mathematica.

}21(2),42().{ miykxi 
}21(2,4).{ miykxii 

}41(),41().{ miykxiii 

}41(),41().{ miykxiv 

}41(),41().{ miykxv 

}41(),41().{ miykxvi 
}4(),42().{ miykxvii 

}21(2),42().{ miykxviii 

From the generalized solution, it seems that in the pairs (x,
y) will always arise integers which make impossible the
case 0 < x <1, therefore there are no roots of the equation
Sin(πz/2)=0 in C-Z.
Also, because as we see, all the roots given by the
union of the sets 011  xxx all are Integers.
So it cannot be true that for our
case:   x)/2]Cos[( y)/2] Cosh[(  0)2/(  zCos

0y)/2] Sinh[( x)/2]Sin[( I-  
If )(, IntegersNmk  and the solutions are:

)}41(,4).{ miykxi 

}41(,4).{ miykxii 
}4(),41().{ miykxiii 

}21(2),41().{ miykxiv 
}4),41().{ miykxv 

}41(),41().{ miykxvi 
}41(),42().{ miykxvii 

}41(),42().{ miykxviii 
As we can see, again from the generalized solution, it
seems that in the pairs (x, y) will always arise integers,
which make impossible the case is 0 < x <1, therefore
there are not roots receivers of the equation
Cos(πz/2) = 0. Since all the roots are given by the union
of the sets 011  xxx it follows that they
are Integers.

Great Result.
«With this three - cases analysis, we have proved that
the real part of x, of the complex z = x+yi cannot be in

the interval 0<x<1, and in particular in cases {a, b, c},
when they are zeroed. Therefore they cannot represent
roots in the critical line».
II) Therefore, now we will analyze the two equations of
the Riemann zeta function and we will try to find any
common solutions.
1. For the first equation and for real values with
Re z > 0 we apply:

Where   )()2/()2(2)( zzCoszf z 

)()()1( zzfz   but this means that the

following two cases occur:

a). ζ(z)z)ζ(1  , where z is complex number. This

assumption implies
that .0)(0))(1()(  zzfz  In theorem 1(I,

II), (pages 1-2), we showed that the functions ζ(z) and
ζ(1-z) are 1-1 and therefore if

i)()i( 0000 yxyx   then , but we also apply

that 0i)()i( 0000  yxyx  , because we

apply it for complex roots. The form )()1( zz  

means that if i00 yxz  we apply 001 xx 

namely 2/10 x because in this case it will be verified

that  )2/1()2/1()1( 0000 iyiyiyx 

0)1( 00  iyx and

because 00 yy 

 )2/1()2/1()( 0000 iyiyiyx 

0)( 00  iyx and these are the two forms of the ζ

equation, they have common roots and therefore it can be
verified by the definition of any complex equation, when

it is equal to zero. Therefore if i00 yxz  then

2/10 x which verifies the equation 0)( z .

b). ζ(z)z)ζ(1  , when z is a complex number.
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To verify this case must be:
0)(0)()()1()(  zfzzfzz  .

But this case is not possible, because as we have shown in
Section I(a, b, c), the individual functions of f(z) cannot
be zero when z is a complex number.
2. For the second equation and for any real values
with Re z < 1 we apply

  )1()2/()2(2)1(/)( 1 zzSinzz z 

)1()()( zzfz   , where

)1()2/()2(2)( 1 zzSinzf z    but this also

means that two cases occur:

a). ζ(z)z)ζ(1  , when z is a complex number.

This case is equivalent to 1.a, and therefore if

i00 yxz  then 2/10 x in order to verify the

equation 0)( z we follow exactly the same process

algebraically.

b). ζ(z)z)ζ(1  , where z is a complex number.

Similarly, the above case is equivalent to 1.b and
therefore it cannot be happening, as it has been proved.

#4.Forms of the Riemann ζ Functional Equations
The Riemann ζ function has three types of zeros: [7]

1Ress),ζ(1s)Γ(1s/2)sin(π1sπ)(22ζ(s)

0Resζ(s),Γ(s)s/2)cos(πsπ)(22s)-ζ(1



 (Ι,ΙΙ)

Eq. Set And

s)ζ(1
)

2
sΓ(

)
2

s1Γ(
πζ(s) 1/2s 



  (ΙΙΙ)

Usually referred to as the trivial zeros, and non-trivial
complex zeros.Τherefore has been proved that any
non-trivial zero lies in the open strip

}1)Re(0:{  sCs that is called the critical

Riemann Strip: And all complex zeros of the function ζ
lie in the line }2/1)Re(:{  sCs which is called

the critical line.
Solving of the Riemann ζ Functional Equations.
To find the imaginary part we must solve the functional

equations (Eq. set), and for the cases which the real part
of the roots lies on the critical line. Cases # 4.1 & # 4.2
[6].

# 4.1: 1st type roots of the Riemann zeta functions (1st

equation from the Eq. set).
For the first category roots and by taking the logarithm of
two sides of the equations, and thus we get … [5]

  )()2/()2(2)(/)1( zzCoszz z 
 ]2[]2[)](/)1([  zLogLogzzLog

ikzzCosLog  2)]()2/([ 

and the total form from the theory of Lagrange inversion
theorem, [5] for the root is szp )(1 which means that

zspsf   )()( 1
1 , but with an initial value for s which is

)Log(2
iπk2

]Log[2
]Log[s in 




2 ,

by setting values for k we can simply calculate the roots
of the (1st equation from the Eq. set)…

Therefore, for the first six roots for z we take:
1st 0.377145562795

2nd 0.377145562795 +/− 3.41871903296 I

3rd 0.3771455627955+/− 6.83743806592 I

4rth 0.3771455627955+/− 10.2561570988 I

5th 0.3771455627955+/− 13.6748761318 I

6th 0.3771455627955+/− 17.0935951646 I

A simple program in mathematica is..

With ,...2,1,0 k

But because the infinite sum approaching zero,
theoretically x gets the initial value

)Log(2
iπk2

]Log[2
Log[2]z






So we have in this case, in part, the consecutive intervals
with k = n and k = n+1 for any n >= 4 and for the
imaginary roots.

#4.2:2nd type of roots of the Riemann zeta functional
equations (2nd equation from the Eq. set).
Same as in the first category roots by taking the
logarithm of two sides of the equations, and thus we get:
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  )1()2/()2(2)1(/)( 1 zzSinzz z 
 ]2[)1(]2[)]1(/)([  LogzLogzzLog

ikzzSinLog   2)]1()2/([
Now, we will have for total roots of 3 groups fields (but I
have interest for the first group), and therefore for our
case we will get szp )(1 which means that:

zspsf   )()( 1
1 ,

but with an initial value for s that is

)Log(2
iπk2

]Log[2
]Log[s in 

 


the overall form from the Lagrange inverse theory
succeeds after replacing the above initial value and
therefore for the first six roots after calculating them
we quote the following table…

for z is:
1st 0.622854437204

2nd 0.622854437204 −/+ 3.41871903296 I

3rd 0.622854437204 −/+ 6.83743806592 I

4rth 0.622854437204 −/+ 10.2561570988 I

5th 0.622854437204 −/+ 13.6748761318 I

6th 0.622854437204 −/+ 17.0935951648 I

A simple program in mathematica is..

Therefore, with ,...2,1,0 k
But because the infinite sum approaches zero,
theoretically s gets initial value

)Log(2
iπk2

]Log[2
]Log[z


 



So we have in this case, in part, the consecutive intervals
with k = n and k = n+1
for any n >= 4 and for the imaginary roots. And for the
cases we have for Im(s) the relationship

Zk
Log

kz 


 ,
]2[

2)Im(




For the 3rd functional equation, one has been previously
put on the (as in the other two in #4, page 7) and we take
as imaginary part

Zk
Log

kzz 


 ,
][

2)Im(
2
1)Re(




Following to complete the roots of the two sets of the
functional equations Eq. Set, we solve the functions as
cosine or sin according to its Generalized theorem of
Lagrange [5]

#4.3: Transcendental equations for zeros of the
function (Explicit formula)
The main new results presented in the next few sections
are transcendental equations satisfied by individual zeros
of some L-functions. For simplicity, we first consider the
Riemann-function, which is the simplest Dirichlet
L-function.
*Asymptotic equation satisfied by the n-th zero on the
critical line. [9, 10, 11]
As above, let us define the function

which satisfies the functional equation

Now consider the Stirling's approximation

where z = x + iy, which is valid for large y. Under this
condition, we also have

Therefore, using the polar representation

and the above expansions, we can write
were

The final transactions we end up with
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Establishing the convention that zeros are labeled by

positive integers, nn yiz  2/1

where n = 1, 2,3,4…, we must replace 2 nn .
Therefore, the imaginary parts of these zeros satisfy the
transcendental
equation

eq. A
Let us recall the definition used in, namely:

These points are easy to find, since they do not depend on
the uctuating S(y).
We have:

The Riemann-Siegel # function is defined by

Since the real and imaginary parts are not both zero, at
y(+)n then G = 1,whereas at y(-)n then G = -1. Thus

they can be written in the form of Εq. b

where above n = 1, 2… and the Labert – Function W
denotes the principal branch W(0). The y(+)n are actually
the Gram points. From the previous relation, we can see
that these points (Fig. 5) are ordered in a regular
manner…[8,12]

Fig,5 The y(+/-)n are actually the Gram points.
With this method, we are able to create intervals so as to
approximate the correct values of imaginary part of
non-trivial zeros. We did something similar in the cases
#4.2. What it has left, is to find a method that
approximates the values of imaginary part accurately.

Fig.6
The black dots represent the zeros of ζ(s) function
including possible zeros which do not lie on the critical
line
The zeros of the Riemann Zeta function.

“PROGRAMMING”

#5.1The M Function – Bisection Method…
Knowing the time of the successive steps (k, k+1) of the
relationship of imaginary parts

]2[
2)Im(




Log
kz 

 ,

][
2)Im(




Log
kz 

 (Eq Ι, ΙΙ, ΙΙΙ, page 7) with Nk  , we

can calculate the roots by solving the equation
0)2/1(  yi using the Bisection Method.

Bisection is the division of a given curve, figure, or
interval into two equal parts (halves). A simple bisection
procedure for iteratively converging on a solution, which
is known to lie inside some interval ],[ ba proceeds by

evaluating the function in question at the midpoint of the

original interval
2
bay 

 and testing to see in which

of the subintervals ]2/)(,[ baa  or ]],2/)[( bba the

solution lies. The procedure is then repeated with the
new interval as often as needed to locate the solution to

the desired accuracy. Let nn ba , be the endpoints at

the n th iteration (with aa 1 and bb 1 ) and let



11

nr be the n th approximate solution. Then, the number

of iterations required to obtain an error smaller than is

found by noting that…
12 


 nnn

abab and that nr is

defined by )(
2
1

nnn bar  In order for the error to be

smaller than  ,

then…   )(2)(
2
1 ababrr n

nnn .Taking the

natural logarithm of both sides gives:
)ln(ln2ln abn   .Therefore, we have for steps:

2ln
ln)ln( 


abn .

#5.2: M-function of the Bisection Method..

We define the functions 
dd MM , on

an interval (α,b) according to the scheme:

I. mddd MMM 
  oflarger Nearest    thewith  , 1

2,2,
2

1 
  dmddMM mdd

1,
21 


 kbaM

II. mdd MM   ofsmaller  Nearest    thewith  ,M 1
-
d

2,2,
2

1 
  dmddMM mdd

1,
21 


 kbaM

For calculating the roots on solving the equation

0)2/1(  yi take the limit Sr according to the

scheme:

NsMMr nnnns  






,limlim with 

dM and 
dM ,

belong in the interval ),( ba , Nd and also

)
]2[

)1(2,
]2[

2(






Log

kb
Log

ka 



 , Nk  .k>=3 for the

x of 0)2/1(  sri .

#5.3 Program in Mathematica for the Bisection
method of 0)2/1(  yi .

Using the Intervals )
]2[

)1(2,
]2[

2(






Log

kb
Log

ka 



 and

successive steps, we can compute all the roots of
0)2/1(  yi .

We can of course use three types such intervals more
specifically in generall than

1.
]2[

)1(2,
]2[

2






Log

kb
Log

ka 



 or

2.
][

)1(2,
][

2






Log

kb
Log

ka 



 or

3. Were   nn ybya , .

We always prefer an interval that is shorter, in order to
locate fewer non trivial zeros.
The most important is to calculate all the roots in each
successive interval and therefore only then we will have
the program for data {example: Integer k = 4, and

)
]2[

10,
]2[

8(






Log
b

Log
a 




 and Error approximate tol =

10^-6 and Trials n=22}..

“Programm for Bisection method”

A program relevant by dividing intervals…

This program gives very good values as an approach to
the roots we ask if we know the interval. Selecting the
interval for the case

)
]2[

)1(2,
]2[

2(






Log

kb
Log

ka 



 , Nk  .k>=3 the results

are given below..

http://mathworld.wolfram.com/Interval.html
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With final value 14.1347216500 , error near of 10^-7.
This value is the approximate root of the

0)2/1(  yi by the nearest error <10^-7.

In the event that we have two or more uncommon roots
within the interval, we divide similar successive intervals
in the order of finding of the first root either above or
below. In such a case we have the k = 13, and at the
interval (47.8620664 , 51.280785) the two roots are
48.0051088 and 49.7738324.

#5.4 Explicit formula and the Zeros of
0)2/1(  yi

Consider its leading order approximation, or
equivalently its average since

0)2/1(  yiArg ..[11, 12]

Then we have the transcendental equation

8
11)

2
log(

2
 n

e
tt nn


Through the transformation

1)
8

11(2  nn xnt 

this equation can be written a

)
8

11(1   neex nx
n

Comparing the previous results, we obtain

)]
8

11([

)
8

11(2

1 




 neW

n
tn


where n = 1,2,3.....

# 5.5 Programm by Newton’s method, which finds the
Zeros of 0)2/1(  yi

Using Newton’s method we can reach the roots of the
equation 0)2/1(  yi at a very good initial value

from nty by the explicit formula.

It follows a mathematica program for the first 50 roots by
the Newton’s method. This method determines and
detects the roots at the same time in order to verify the
relation ζ (z) = 0 and always according to the relation...

)]
8

11([

)
8

11(2

1 




 neW

n
tn



where n = 1,2,3.... and W is the W-function.

A very fast method that ends in the root very quickly and
very close to the roots of ζ(s) = 0 as shown..

#5.6 Directly (from Explicit form) with the solution of
this equation
[8]

Using the initial value the relation

)]
8
11([

)
8
11(2

1 




 neW

n
tn

 the explicit formula..
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As already discussed, the
function )2/1( yiArg   oscillates around zero. At a

zero it can be well-defined by the limit, which is
generally not zero. For example, for the first Riemann
zero y1 = 14.1347..the limit δ0+ has value as...

..157873.0)2/1(lim  yiArg 

The argζ term plays an important role and indeed
improves the estimate of the n-th zero.
We can calculate by Newton’s method, and we locate the
first 30 imaginary part roots, of the
equation 0)2/1(  yi ,on the bottom of the

table...x=Im(1/2+yi)

Epilogue…

This analysis has proved the Riemann Hypothesis is
correct,since the real part of the non-trivial zero-equation
functions is always constant and equals 1/2. This proven
by 3 independent methods. Theorems {Th 1.I-II-page 1-5,
Theorem 2-pages 5-6,Theorem 3-pages 5-7}. This
analysis has also demonstrated that the imaginary part of
the non-trivial zero zeta function accepts certain values
according to the intervals defined by the solution of the 3
based functional equations {#4-I,II,III page 5}.
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Distribution of primes numbers and Zeros

#1.Indrotuction
The distribution of prime numbers is most simply
expressed as the (discontinuous) step function )(x ,
where )(x [Fig.] is the number of primes less than or

equal to x.

Fig 1.The function π(x) in relation to the random int. x.

It turns out that )(x can be expressed exactly as the
limit of a sequence of smooth functions Rn (x). To
define Rn(x) we first introduce the logarithmic
integral function Li(x), which appears throughout the
analytical theory of the prime distribution:

This is a smooth function which simply gives the area
under the curve of the function 1/log u in the interval
[2,x]. Don Zagier explains the reasoning behind the
function Li in his excellent introductory article
"The first 50 million prime numbers"from [2] , based on
his inaugural lecture held at Bonn University, May 5,
1975): "Α good approximation to )(x , which was
first given by Gauss is obtained by taking as starting
point the empirical fact that the frequency of prime
numbers near a very large number x is almost exactly
1/log x.

From this, the number of prime numbers up to x should
be approximately given by the logarithmic sum...

Li(x) = 1/log 2 + 1/log 3 + ... + 1/log x

or, what is essentially the same, by the logarithmic
integral.

Using Li(x) we then define another smooth function,
R(x), first introduced by Riemann in his original
eight-page paper, and given by

Riemann's research on prime numbers suggests that the
probability for a large number x to be prime should be
even closer to 1/log x if one counted not only the prime
numbers but also the powers of primes, counting the
square of a prime as half a prime, the cube of a prime as
a third, etc. This leads to the approximation:

or, equivalently [by means of the Möbius inversion
formula]

The function on the right side of this formula is denoted
by R(x), in honour of Riemann. It represents an
amazingly good approximation to )(x ..For those in
the audience who know a little function theory, perhaps I
might add that R(x) is an entire function of log x, given
by the rapidly converging power series:

http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-a.htm
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-a.htm
http://mathworld.wolfram.com/LogarithmicIntegral.html
http://mathworld.wolfram.com/LogarithmicIntegral.html
http://mathworld.wolfram.com/RiemannPrimeNumberFormula.html
http://mathworld.wolfram.com/RiemannPrimeNumberFormula.html
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/riemannpaper.pdf
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/riemannpaper.pdf
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where )1(  is the Riemann zeta

Fig.2 The non-trivial zeros in the Critical Line

Here we see the zeros of the Riemann zeta function in
the complex plane. These fall into two
categories, trivial and nontrivialzeros [Fig.2].Here are
some tables on nontrivial zeros compliled by Andrew
Odlyzko[4].The trivial zeros are simply the negative
even integers. The nontrivial zeros are known to all lie in
the critical strip that is 0 < Re[s] < 1, and always come
in complex conjugate pairs. All known nontrivial zeros
lie on the critical line Re[s] = 1/2. The Riemann
Hypothesis states that they all lie on this line.The
difference between the prime counting function and its
"amazingly good approximation"
R(x), i.e. the fluctuations in the distribution of primes,
can be expressedin terms of the entire set of zeros of zeta,
which we shall represent by  , via the function R itself:




 )()()( xRxR

Obviously some of the x are complex values, so here R
is the analytic continuation of the real-valued function R
defined previously. This was mentioned above by Zagier,
and is known as the Gram Series expansion:

The sum over  separates into two sums, over the

trivial and nontrivial zeros, respectively. The former sum

is of course just R(x-2) + R(x-4) + R(x-6) + ..., and the latter
can be written..

The contributions from the complex-conjugate

pairs  and    cancel each others' imaginary

parts, so

Where

are real-valued.We can now define the sequence of
functions Rn(x) which approximate )(x in limit:

where  is the th complex zero of the zeta function.

In this formula, )(zi (Mathematica's built-in
function ExpIntegral )(zi ) is the generalization of

the logarithmic integral to complex numbers. These
equations come from references [1], [2], and [3]. First,

let M be the smallest integer such that 2/1 Mx .
We need to add only the first M-1 terms (that is,

Mn ,...2,1 ) in the sum in equation (1). For each of

these values of N, we use equation (2) to compute the
value of )( /1 nxf . However, we will add only the first
Ν terms (that is,  ,...2,1 ) in the sum in equation

(2). Because the purpose of this Demonstration is to
show how the jumps in the step function )(x can be
closely approximated by adding to )(xR a correction

term that involves zeta zeros, we ignore the integral and
the 2log in second equation; this speeds up the
computation and will not noticeably affect the graphs,
especially for x more than about 5.The more zeros we
use, the closer we can approximate )(x . For larger x ,

the correction term must include more zeros in order to
accurately approximate )(x

http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/zetafn.htm
http://www.dtc.umn.edu/~Odlyzko/zeta_tables/index.html
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/riemannhyp.htm
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/riemannhyp.htm
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-i.htm
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-i.htm
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-i.htm
http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-i.htm
http://mathworld.wolfram.com/GramSeries.html
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#2.The GUE hypothesis.

While many attempts to prove the RH had been made, a
few amount of work has been devoted to the study of the
distribution of zeros of the Zeta function. A major step
has been done toward a detailed study of the distribution
of zeros of the Zeta function by Hugh Montgomery [6],
with the Montgomery pair correlation conjecture.
Expressed in terms of the normalized spacing ..

,
this conjecture is that, for M → ∞

∼ 
b

a
duup ),0( ∼  

b

a
du

u
u 2)sin(1


 .

In other words, the density of normalized spacing
between non-necessarily consecutive zeros

is 2)sin(1
u
u




 . It was first noted by the Freeman Dyson,

a quantum physicist, during a now-legendary short
teatime exchange with Hugh Montgomery[6], that this is
precisely the pair correlation function of eigenvalues of
random hermitian matrices with independent normal
distribution [ In figure 3&4] of its coefficients. Such
random hermitian matrices are called the Gauss unitary
ensemble (GUE). As referred by Odlyzko in [4] for
example, this motivates the GUE hypothesis which is the
conjecture that the distribution of the normalized spacing
between zeros of the Zeta function is asymptotically
equal to the distribution of the GUE eigen values. Where
p(0, u) is a certain probability density function, quite
complicated to obtain for an expression of it). As
reported by Odlyzko in [4], we have the Taylor
expansion around zero..

...
45

2
3

),0( 4
4

2
2

 uuup 

which under the GUE hypothesis entails that the
proportion of δn less than a given small value δ is

asymptotic to )(
9

53
2


 .Thus very close pair

of zeros are rare.

Fig3. Probability density of the normalized spacing
between non-necessarily consecutive zeros and the GUE
prediction[8]

Fig 4.Probability density of the normalized spacing δn and the

GUE prediction[8].

#3.Gaps between zeros..

The table below lists the minimum and maximal values
of normalized spacing between zeros δn and of δn
+δn+1, and compares this with what is expected under
the GUE hypothesis. It can be proved that p(0, t) have
the following Taylor expansion around 0

so in particular, for small delta

so that the probability that the smallest δn are less than δ
for M consecutive values of δn is about..
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This was the value used in the sixth column of the table.
The result can be also obtained for the δn + δn+1..

from which we deduce the value of the last column..

For very large spacing in the GUE, as reported by
Odlyzko in [4], des Cloizeaux and Mehta [5] have
proved that

which suggests that

Statistics of False zetazeros, δ-intervals and count of
primes.

#4.General equations.

With this statistic we find the crowd of individual parts
intervals defined by consecutive Zetazeros in a fixed
integer interval. Here we use δ = 1000. We have the
general Equation δ + Zetazero (kin) -Zetazero (kf) = 0
and after given initial value in kin, i calculate the kf
usually by the Newton method. From the initial and
final value of kin, kf and by performing the process of
successive intervals, i calculate the number(count) of the
primes ones that are within the intervals.In this way
i will have consecutive intervals..

)},(),()1({ kfkinkkZetazeropkZetazeroSk 

from where resulting the number of the primes in the
given consecutive interval. The sum of the primes in
the given interval δ = 1000 will be obvious..


t

a

k

ki
iSS





The False intervals will be in a normalized form

δδ S -1000=F over N>= 4000.

#5. The statistics

The Statistic looking for ways to show us which function
is the most ideal to get closer the points of interest, uses
the NonlinearModelFit method of the function

)(/()( xcdLogxbay 

and therefore after determining the variables{a, b, c, d}
we are able to make statistical and probable prediction at
higher levels of numbers .
This function is directly related to the function π(x)
= x / logx which was reportedin the introduction that is,
defining the number of primes numbers relative to x.
We will do a double statistic of the intervals
{δ, False intervals} and {δ, number of primes} that we
are ultimately interested in the statistics mainly the count
of the primes inside at δ-intervals.

#6.The first statistic is about count of False intervals
and the count of the primes that corresponding in
them. The table below gives it in aggregate until the
count of primes equal 29=p δ corresponding to the
count of False 971=Fδ and the Τotal range Integers for

a interval D=1000 to 14102  + 1000.

The diagram given below[Fig.5] shows the arrangement
of the points at the level (x, y) according to the data1[7]..
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Fig 5.The depiction of the intervals False and the primes ones

(file:data1) contained in the intervals N+δ-N = 1000.

Even more macroscopically [Fig.6] the points are shown
by the line y = 988.709 - 0.988372*x, which, as they
appear, are stacked on its lower right..

200 400 600 800 1000

200

400

600

800

1000

Fig.6 Graphic depiction of the line y = 988.709 -

0.988372*x with the archive(data1) points.

It is obvious that for {x = 999, y = 1.32} and for {y =
1000, x = 0.33}, a value located below the unit and
means that it can in such a interval, and we are talking
about this is for high order integers intervals so there is
not one prime within the interval δ = 1000, chosen at
random.

#7..The second statistic refers to the count of the primes
ones that located in the intervals [N,N+ δ] with N = 1000

up to 14102  , range δ = 1000 and the count of the
primes within successive ZetaZeros .After we found
the roots kf of general Equation δ + Zetazero (kin)
-Zetazero (kf) = 0 of given initial value kin, usually
by the Newton method. The data[7] that we have met
with the above method are..

Using the NonlinearModelFit[7] method of the function
� = (�+�∗�) (Log��+�∗�� and after specifying the
variables {a, b, c, d} the following result the function
will be..

y=
1108.254246288494−1.116325646187134�10−12�
Log�−4503.90336177023+5.425635171403081��

with very good approach and value performance in each
pairing.The diagram [Fig.7] of the above equation is
shown in more detail below with gravity in the latest
data.

Fig 7.The graphic depiction of the function

� = (�+�∗�) (Log��+�∗�� .Thus a test value for x
= 14102  gives us y = 25.6, close to 29 we took with the
analysis.
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They follow statistics ANOVA and t-Statistic[7,8] and
we get the tables ...

Αnalysis -ANOVA…

Αnalysis - Τ-statistic…

As we can see from the results, we have an important
Standard Εrror only for the variable a. The other
variables are observed to have a low statistical error and
have good compatibility. By adapting the method as we
see, we associate two lists of results of the number of
primes and long intervals, which although
disproportionately, work together with impeccable and
good contact.
Ronald Fisher introduced the term variance and proposed
its formal analysis in a 1918 article The Correlation
Between Relatives on the Supposition of Mendelian
Inheritance. His first application of the analysis of
variance was published in 1921. Analysis of variance
became widely known after being included in Fisher's
1925 book Statistical Methods for Research Workers.
One of the attributes of ANOVA that ensured its early
popularity was computational elegance. The structure of
the additive model allows solution for the additive
coefficients by simple algebra rather than by matrix
calculations. In the era of mechanical calculators this
simplicity was critical. The determination of statistical
significance also required access to tables of the F
function which were supplied by early statistics texts.

#.8. Standar –Error and Confidence –Interval

Part-1.
Where we observe, apart from 1-2 initial measurements,
the Standar –Error as well and the Confidence
Interval is stabilized at good and acceptable values..

https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
https://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
https://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
https://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers
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Part-2.

#9. Statistical comparison.

With statistical comparison it appears that as long as we
moving to a higher order of integer-size that are within a
given interval, we have chosen δ= 1000, the count
of the primes diminishes to disappear or to there are 1-2

primes at high order intervals of more than 2010 . This
also agrees with of Gram's law. In particular, the

problem of distribution of the differences nn tt 1

(that is of difference of ZetaZeros) is considered [9].
If we accept Gram's law then the order of this difference
does not exceed the quantity ...

 n
n

tt nn ,0
)ln(

2
1



for much larger integers [9,8] then mean and their
mean value is close to,,

 n
n
ntt nn ,0
)ln(
)ln(ln

1

And as the above analysis of - False intervals- as we
have shown, it is compatible with this result of law
Gram’s.

#.10. From above analysis they arise 3 big
conclusions:

1st . The number(Count) of primes located within δ
intervals is gradually decreasing with a higher order
size n of n10 .
2nd . The distribution of the number(Count) of the
primes, within interval δ follows a Nonlinear
correlation is expressed by the function

)(/()( xcdLogxbay  similar to the number
(Count) of the primes )(/)( xLogxx  , which is

apply approximating for large numbers.
3rd .The measurement(Count) of false intervals and the
count of the primes follows a linear correlation and it
increases if the order of magnitude size of the integer
increases.
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