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Abstract: The Riemann zeta function is one of the most Euler’s important and fascinating functions in mathematics.
By analyzing the material of Riemann’s conjecture, we divide our analysis in the {(z) function and in the proof of the
conjecture, which has very important consequences on the distribution of prime numbers. The proof of the Hypothesis

of Riemann result from the simple logic, that when two properties are associated, (the resulting equations that based in
two Functional equations of Riemann ), if zero these equations, ie {(z) = { (I-z)= 0 and simultaneously they to have the

proved property 1-1 of the Riemann function {(z). Thus, there is not margin for to non exist the Re (z) = 1/2 {because
((z) = {(1-z)=0 and also {(z) as and {(1-z) are 1-1}.This, as it stands, will gives the direction of all the non-trivial
roots to be all in on the critical line, with a value in the real axis equal 1/2.

#1.Theorem 1.
The R-Hypothesis focuses on the point where we
must prove that if s = Re(s) + Im(s)*I ...
I) The functions {(s) and {(1-s) are 1-1 on the critical
strip.
II) The common roots of the equations {(s)-{(1-s) =0
they have Re(s)=Re(1-s)=1/2 within the interval (0,1)
and determine unique position, which is called
critical line.
Proof:
The functions {(s) and {(1-s) are 1-1 on the critical strip.
For this we need to analyze when and where the

exponential function n° is 1-1 when neZ".
The exponential functionz” ...

I) is 1-1 in each of these strips defined by the intervals
2mk/In(n) and 27t(k+1)/In(n) “ where k e Z . For this we
must prove two cases... If ACc CAf:4—>C

then if f(z,)= f(z,) then z, =z, thatis.
X, =X, Ay, =,.Indeed,

ifzy=x,+i-y,,z, =x, +i-y, aretwo points

o —

within into a such strip such that e® =e™ then,,
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nlyl V2

=p" = ‘nzl‘z‘n“ nn

=>

nfln%‘i‘ —

=>

X, =X, andsince X, = X,, the relation

z-In(n) — z,-In(n)

e

e i~y In(n) — ei-y2~ln(n) 50

gives €

¥, — ¥, =2km /In(n), is an integer multiple of 2. But

Z, and Zz, belong to the strip, so |y, - y,| <27 /In(n)

That is, the difference y, — y, is at the same time a
multiple of 27/In(n) and at an absolute value of less than

27n/In(n).The only case that this is true is when
Y, =),. We finally conclude that z, =z,,son"is

1-1 in the strip
{z:2kn/In(n) <Im(z) < 2(k + )7z /In(n)}."lines

down closed — open up”. We also notice that 7°is on

C-{0}.Because if w# 0 and we put

z=In|w|/In(n)+iargw/In(n) then

n

z _ nlnM/ln(n)+iargw/ln(n) — nln‘vﬂniarng/ln(n) — ‘M . niargw/ln(n) —

2(k + 1)mi/Ln(n)

27 /Li{n)

2kni /Ln(n)

Fig.1 The z, and Z, belong to the lane width 27 / In(n)

Formation of the strips 1-1 for {(s) and {(1-s).

al.) If we accept the non-trivial zeroes on critical strip

of the Riemann Zeta Function {(s) as s,= o, + if, and

s,= 0, +it,with ‘Sz‘ > ‘Sl‘ , and if we suppose that

w



the real coordinates ¢,,0, of each non-trivial zero of
the Riemann Zeta, [1,2,3,4] function {(s) correspond to
two imaginary coordinates #1 and # , then, we have the

following equations group:

1 1 1

é/(al it ) 10’1+l t) 2o'l+l-t, 30'|+l't| no'lﬂ-t] +...=0
1 1 1

;(O‘z it ) lcrzﬂ t) 20'2+l<[2 302“42 ""+n02+t»t2 +...=0

Taking the first equation and deducting the second, we

obtain:
1
(o, +14) (0, +10) = Z( )=
n=1 n
0 n0'2+14t2 no’ﬁrtl in ez ty- ln(n)_n ,ei-tl-ln(n) 0
— n“’z”"z .n51+"’1 — nazﬂ-tz .n0'1+t-t,

From the previous relation, we conclude that if

o)+t o
n ‘n

2 0,n>1 then

2kn
=0, At, =t T ——,
In(n

o, (k=1,2,...).That is to say t;
and t can take any value, but according to the previous
relation. So from Fig.1, that means { (s) is 1-1 on the lane
of critical Strip in Intervals such as defined, therefore
and on the critical Line. Son “is 1-1 in the strip

and {z : 2k /In(n) < Im(z) < 2(k + 1)z /In(n)} ."lines

down closed — open up”
a2.) If we do the same work with ‘Sz‘ > ‘Sl‘ for the

case {(1-s) will we have:

> 1 1
;(1—01 _l.tl)_g(l_o-z _l.t2) = Z( Tott, oyt ) =
n=1 n n
i I-oy—ut, _nl o=t i 1 aze—i-tz-ln(n) _nl—ale—i-ll-ln(n) o
1 —0,—I't 1 o —I't, 1-0,-1t. 1-o—1, -
“— 27l | 170 = p Tt pioth

From the previous relation, we see that if

-0,y n -0y -

n 2 0,n>1

&({l-o,=1-0,}vo,=0)A

L 2kw
k=
()( o)

Aty =

2

So, from Figure.1, it follows that { (1-s) is 1-1 on the

critical Strip, Son™ " is 1-1 in the strip

and {z : 2k /In(n) < Im(z) < 2(k + 1)z /In(n)}

up closed — down open”

!Mlines

As we have seen before, the complex exponential form

n° butand 7~ is also periodic with a period of

z+2-7wi 2-m-i/ Log(n)

27/In(n). For example n =n°-n =n" the
n’ is repeated in all the "'lines down closed — open up”

horizontal strips with 2n/Ln(n) on Fig.2 below.
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+2mi/Log(n) g

+2milLog(n) >
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Fig 2. All the "bottom - closed upper “horizontal strips

with 27/In(n) forn™*,n>1,ne Z.

If we are asked to find the strips that are 1-1 of the

function L(2)= Zn:iz it will be the union of the strips
i=1

formed with period 2-7-x/Inn where x,neZ.

This results from the analysis we made for the cases al,

a2. Therefore, if we analytically assume thatn=2, 3, ...

then the exponential complex function will be 1-1 in

each of the strips, i.e. in each one set of the

form...
S, ={z:2kx/In(n) <Im(z) < 2(k+ D7z /In(n)}, ke Z

and therefore in each one subset of the unified

n—0

expanded set.... S= USi

i=2
The largest strip obviously contains all the rest it is wide,
and has width 2.7 /In2 i.e. withn=2.

Overlapping contiguous Strips.



If we start from the upper bound of the strip with n =2
and k = 1, Fig.3 the upper ones will descend to zero by
increasing n with a width difference the interval 6 =
2n/Ln(n-1) - 2n/Ln(n). In addition, we will prove that the
strip i=n>=2 primary (k=1) that generated in ascending
order, the upper limit of that created of its double width

enters the zone of the previous of (I =n-1, k= 1) also

primary.

—— | S— — +4ilLog(n)

] 58 ¢ +2mi/Log(n-1)

— * +2milLog(n)

A ! o —

Fig3. The upper ones will go down to zero

by increasing n.
Apply 2-7/In(n—-1)<2-2-7/Ihn=>n<(n-1)>=
3+4/5

2

about integers then » >3.The same phenomenon is also

n=3-n+l>0=>n> and because we talked

created at higher level strips.

|
The {(z)=) — itisdirectly 1-1 from the

i=1

comparison of 2 points z,,z,, when {(z,) ={(z,)

Proof:
From the equality

O IES)

1
z2
n 1 n

=¢(z)=

— 1 + 27(x1+y1-i) + 37(x1+y14i) + .“nf(xltvl»i) — é'(Zz) —

4G22 4 322 22

with comparison of similar terms the result arises.

2.k
In(n)

If we need z, =z, = x, =x, Ay, =y, therefore it will

X, =X, AV, =Y, — keZ=>

be 1-1 as shown in sections al, a2 pages 1-2... Also
according to Lagrange's generalized theory, each of the
roots according to the obvious relation {(z) =4 (1-2z)
will result from the generalized theorem of Lagrange.
From the equation that results from 3 Functional
Equations, with condition of common roots. We take

¢ (z) = ¢ (1 - z) and for first approach we then follow
the 3 first terms on each {-equation we will have in the
Regular form £'(z),{ (1 —z) with the analysis below.

17427437 =10 42 1 3709 9= 4 3 :%22 +%3Z =

27 437 -2 30 Z 0= 67 247 ~3-3() =0
2 3
With the replacement
6 :y:”'LOg(@=L0g(y)+2-k-;;.i:>Z:M
Log(6)
_Log(»)+2-k-m-i
in Log(6)

we consider it as initial value for the solution
of Transcendental equation with the method of
Lagrange inversion , then:

_ Log(y)+2-k'ﬂ'-i+

Log(6)
w1y el Log(y)+2k-mi Log(y)+2k-mi
+Z ( 1) d - (( 1 )(24 Log(6) _3.(7) Log(6) )W)y_)3
ST(w+1) dy™' " y-Log(6)’ 2 3

Some solutions for k €7

1st 0.4985184869351 +/— 3.6072014300530 Lk = 1
2st0.4997077392995 +/— 10.329023684711 Lk =3
3st0.5003426560276 +/— 13.990255078243 Lk = 4

45t 0.4993087825728 +/—17.585326315022 Lk = 5

55t 0.5026747758005 +/— 21.304192633721 L, k=6
And so on for the sequence of infinity. We now

see that we approach the real roots and its complexities.
With the additional method Newton or the Bisection
method we approach more rapidly to them. And these
roots will be contained in corresponding strips that we
have previously defined and in closer relation with their
position on the critical line. By this logic for the previous
approximation equation in relation to its solutions of
Zeta[z] the strips which determine the imaginary roots of
the equation, will be between the intervals

2-7-x/ln6,x € Z as defined by the analysis of the
generalized Theorem of Lagrange. The strips of the



imaginary part of the roots, as they appear for 6

consecutive intervals of the approximate equation

Strips — Imaginary Roots:

1st
2st
3st
4st
5st
6st

(7.013424977055179
(10.52013746558276
(14.02684995411035
(17.53356244263794
(21.04027493116553
(24.54698741969312

3.506712488527589)
7.013424977055179
10.52013746558276)
14.02684995411035)
17.53356244263794)
21.04027493116553)

It is clear the first root 3,607..1 is located in 1% of strip
(7.01-3.506), the second 10.3290..i in the 2% strip
(7.013-10.52) etc. Now the root 13.99..i which
approximates the first root of {(z) = {(1-z) = 0 i.e. the
14.1347..1, is in the 4% strip (14.02-17.533) with a lower
limit the 14.026..1 a value that is very close to the one
required for the approximate and exclusive (1* root) when
{(z) = 0 of the Riemann Hypothesis.

Corollary 1.

The only roots of the Zeta function not included in the
set {z €C: 0 <Re (z) < 1} are the points -2, -4,
-6..[11.page 47]

Proof..

On the functional equation...
C(1-2)=2-¢(2)-T(z)-cos(z/2-z)-(27) * we know that

for Re (z)> 1 the functions {(z) and I'(z) do not equal
zero(Proof-Th.3.p6).We also find that for Re (z)> 1 the

1 -Re (z) <0 and putting u = 1-z we will find all the roots
of £ (u) for Re (u) <0.Therefore we will have that { (u)
will be zero , where it is zeroed the cos(z/2-z) i.e.

z =3,5,7..Then the roots of { (u) for Re (u) <0 will be the
points -2, -4, -6... and will be all the roots of the function
C out of the strip {z €C: 0 <Re (z) < 1}.

Theorem Helpful.

The Riemann's Z-function has no roots on the lines
Re(z) =1 and Re(z) = 0.

The proof is detailed in the book [11] page 50-51.

I1.)The common roots of the equations {(s) - {(1-s) =0
they have Re(s)= Re(1-s)=1/2 within the interval (0,1)
if moreover apply {(s)=0.(Refer to Theorem 3, page 5).

Proof: Let us assume z to be such that for
complex z =X, +1);,0 <Re(z) <1AIm(z) #0 and
$(z) = ¢ (1-z) = 0.According to the two equations,
they must apply to both, because they are equal to zero
that.. {(2)=¢(z2)=0A¢(1-2)=¢(1-z)=0.But

from [Theorem 1, II, al, a2] the {(z) and { (1-z) are 1-1on
the critical Strip.. If suppose generally

that§(x, £y, 1) = (1—x, £ y; i) =0 then:

Vo = y(') ANx,=1- x(') , but because are the 1-1 then we
will apply two cases for complex z i.e.

/ / /
Z=[Xxo =1-X0,Xg #X0,Yo =Yo V

1
Vv Xg =1-Xg,Xq = Xg :Ea}’o =Yl
[Corollary.1 and Theorem{Helpful},because we

suppose ; (z) = £ (1 —z) = 0.] We conclude that
0< X <1. Therefore we have two cases:

1

a) If Xo = Xé —_— we apply the obvious

N

1.e.

G112 ty,-i)=C1-1/2+y;-i)=¢(1/2 £y -i)=0n
AYo = y{) . Which fully meets the requirements of
hypothesis!!

b)If 0<x, = x} ¢%<1 In this

caseif X, < Xy A Xq +Xp =10 Xy >Xg AXq +Xp =1

then for the Functional equation {(s) - {(1-s) =0

simultaneously apply:
((x0+y0~i)=§(x0—y0-i)=OA((xg+y{)~i)=

= ((Xg _yé)i )=0. So let's assume that...

1. Xy <Xp AXq + X =1=>X, :%—ang :%+b,a¢b.

But apply X, + X, =1=>1+b-a=1=>b =a.That s,



a,b is symmetrical about of 1 . But the {(z) and { (1-z)
2

are 1-1on the critical Strip then apply
1 . 1 .
(G matyo )= +atys-i)ay, =yo}=>
1 1
must ——g=—+a=>2a=0=>a=0
2 2
therefore X, :X{).

1 1
2" Xy > X AXy +Xg =l=>Xy =—+aAX) =——a.
2 2

as before. Then because the {(z) and  (1-z) are
1-1on the critical Strip will apply...

1 . 1 :
(G ratyo )= —atyo-i)ay, =yo} that

l+a=l—a=>2a=0=>a=0
2 2

therefore X, = X{) .We see that in all acceptable cases

is true that “The non-trivial zeros of { (z)- £ (1-z)=0
have real part which is equal to %2 within the interval
(0,1) . In the end, we see still one partial case that

appears in the roots of the equation

¢(2)-¢(-2)=0.
olIf 1< Xo A X{) <0 Furthermore, in this case withthat
is, it is symmetrical about

Xo + X() = 1then for the functional equations we apply
CXo=Yo 1)=0(1-Xg =Y, i)AL(Xq +Y,-1)=
={(1-X, +Y,i )AY, =y, and for the three cases it is

valid y , =0vy, #0). This case applies only when

{(z)=C¢(1-z)#0AX, =1+a,Xy =—a,and not for

the equality of { function with zero. But in order to
have common roots of the two functions ¢ (z) and € (1-z)

«because they are equal to zero and equal to each
other», then first of all, it must be X, = Xé and also

because the { (z) is 1-1 and for each case applies

(yo,=0 and y' =0)or(y,#0 and yg-#0),

therefore we will apply Xo = xg = ; AYo = yb and

with regard to the three cases {a, b,c¢ } the cases {b, c}
cannot happen, because they will have to be within (0,1)
and will therefore be rejected.

Therefore if {(z) = {(1— z) = 0 then because “these two
equations of zeta function are 1-1 on the lane of critical
strip” as shown in theorem 1, is “sufficient condition”
that all non - trivial zeros are on the critical line
Re(z)=1/2. That means that the real part of z of {(z) = 0,
equals to 1/2 ”.. This, like Theorem 1, has been proved
and it helps the Theorem 3 below.

2#. Theorem 2.

For the non- trivial zeroes of the Riemann Zeta
Function {(s) apply

i)There exists an upper-lower bound of Re s of the

Riemann Zeta Function {(s) and more specifically in the

In2 Innx

closed interval [ } . The non-trivial zeroes

In27z " In2x
of the Riemann Zeta function {(s) of the upper-lower
bound are distributed symmetrically on the straight
line Re s = 1/2.

ii).The average value of the upper lower bound of
Res=1/2.

Proof:

i). Here, we formulate two of the functional equations
from E - q.

Set

CA-5)/C(s)=22n ) Cos(ns/2)['(s),Res >0
C(s)/C(A-s)=22n) "' Sin(ns/2)I'(1-s),Res <1

We look at each one equation individually in order to
identify the set of values that we want each time.

a). For the first equation and for real values with

Re s > 0 and by taking the logarithm of two sides of the
equation [5], we have...

C(=5)/¢(s)=2Qn) " Cos(ms /2)T'(s) =>



Log[£(1-5)/ £ ()] = Log[2] - sLog[27] +
+ Log[Cos(7s /2)['(s)]+ 2kz but solving for s and if
f(s)=Cos(ms/2)['(s) and from Lemma 2[6,p6,

Partl] if Iim{(1-s)/{(s)=1 or

Log{lim ¢ (1-5)/¢ (5)] = 0 we get:

_ Log[2]

Log[2r]

Log[f (s)]+2k7
Log[2r]

N Log[f(s)]+ 2kmi with
Log[2r]

>=( Finally, because we need real s

Log|2]
Log[2r]

we will have Re g > =(.3771. This is the

lower bound, which gives us the first {(s) of Riemann’s
Zeta Function.

b). For the second equation, for real values with Re s < 1
and by taking the logarithm of the two parts of the
equation, we will have:

C(s)/ EA-5)=2Q2x) " Sin(ms /2)['(1-5) =

Logl[¢ (s)/ ¢(1—s)]= Log[2]+ (s —1)Log[2x]+
+ Log[Sin(x -s/2)I"(1—s)]+ 2k but solving for s

and if f'(s) = Sin(zs/2)I'(1—s) and from

Lemma 2[6,{p6,Part I}] if lim¢(s)/{(1—s)=1 or

Logllim ¢ (s)/ ¢ (1-5)] =0 We

_ Log[r] _LogU(s)]+2k7n'

get... g = with
Log[2r] Log[2r]
Loglf (s)]+ 2k o2 0
Log[2r]
In the following, because we need real s we will take Re
s < LL[E] =0.62286. This is the upper bound,
Log[2r]

which gives us the second of Riemann’s Zeta Function
of {(s). So, we see that the lower and the upper bound
exist for Re s and they are well defined.

¢). Assuming that g W= O Tl and

+it, with Criow :LL[Z] and

Log[2r]

’

s K Gupper

_ Log[r]

er = we apply o, =0, and
P Log[2r]

O, = O, [fig.4]. If we evaluate the difference and

ReAs; =Res, -1/2=c,,,—1/2=0.1228

ReAs =1/2-Res_=1/2-c, =0.1228

This suggests for our absolute symmetry

LS oy + ity
\u
oy +ity T Yo, ity
o Res+ ¥ log
o ity '

of
Fig.4 Arrangement of low and upper of real part of

zeros from 2 functional equations of Riemann.

i1) The average value of the upper lower bound is Re s =
1/2 because from (fig. 4):

Res=1/2. Logll¥ Loglzl _y )y
Log[2r]
#3. Theorem 3

The Riemann Hypothesis states that all the nontrivial

zeros of { (z) have real part equal to 1/2.

Proof: In any case, we Assume that: The Constant
Hypothesis  (z) =0, z € C. In this case, we use the
two equations of the Riemann zeta function, so if they
apply what they represent the £ (z) and { (1-z) to
equality. Before developing the method, we make the
three following assumptions:

I). Analysis of specific parts of transcendental
equations, which are detailed...

a).For ze C,{a°=0=a=0ARez >0} which

refers to the inherent function similar to two Riemann

zeta functions as (27)” =0or(27)*" = 0 and it seems

that they do not have roots in C - Z, because (27) = 0.
b). This forms Gamma(z) = 0 or Gamma(1-z) = 0 do
not have roots in C-Z.

¢). Solution of Sin(7t/2z)=0 or Cos(n/2z)=0. More
specifically if z = x+yi, then...

1.Sin(7/2z)=0= Cosh[( 7z -y)/2]Sin[(7 -x)/2] +
+1-Cos[(7-x)/2]Sinh[(7 - y)/2]=0



If k,m e N(Integers) then all the solutions can be
found with a program by the language of Mathematica.

DAx=Q2+4-k),y=2-i-(1+2-m}
i Ax=4-k,y=2-i-(1+2-m}

i) {x=(-1+4-k),y=i-(-1+4-m}
vy {x=(1+4-k),y=i-(1+4-m}
v){x=(1+4-k),y=i-(-1+4-m}
vi){x=(1+4-k),y=i-(1+4-m}

vi){x=2+4-k),y=i-(4-m}
viil).{x=2+4-k),y=2-i-(1+2-m}

From the generalized solution, it seems that in the pairs (x,

y) will always arise integers which make impossible the
case 0 <x <1, therefore there are no roots of the equation
Sin(7z/2)=0 in C-Z.
Also, because as we see, all the roots given by the
union of the sets x >1v x =—1v x = 0all are Integers.
So it cannot be true that for our
case: Cos(m/2z)=0= Cosh[( 7 y)/2] Cos[( 7 x)/2] —
-1Sin[(7 - x)/2] Sinh[(7 y)/2] =0
If k,m e N(Integers) and the solutions are:
DAix=4-k,y=i-(-1+4-m)}
i) {x=4-k,y=i-(1+4-m}
i) {x=(-1+4-k),y=i-(4-m}
) {x=(=1+4-k),y=2-i-(1+2-m}
v){x=(0+4-k),y=4-i-m}
vi){x=>(1+4-k),y=i-(1+4-m}
viD).{x=2+4 -k),y=i-(—-1+4-m}
viii). {x=(2+4-k), y=i-(1+4-m}
As we can see, again from the generalized solution, it
seems that in the pairs (x, y) will always arise integers,
which make impossible the case is 0 < x <1, therefore
there are not roots receivers of the equation
Cos(mz/2) = 0. Since all the roots are given by the union

ofthe sets X >1v x=—1v x=0it follows that they

are Integers.

Great Result.
«With this three - cases analysis, we have proved that

the real part of x, of the complex z = x+yi cannot be in

7

the interval 0<x<1, and in particular in cases {a, b, c},
when they are zeroed. Therefore they cannot represent
roots in the critical line».

II) Therefore, now we will analyze the two equations of
the Riemann zeta function and we will try to find any
common solutions.

1. For the first equation and for real values with

Re z> 0 we apply:
Where f(z)=202x) “Cos(zm-z/2)T'(z) =

= {(1-z) = f(z)-£(z) but this means that the

following two cases occur:
a). (1 —12z) ={(z), where z is complex number. This

assumption implies

that £(z)-(1- f(2))=0= ¢ (z) =0. In theorem 1(I,
II), (pages 1-2), we showed that the functions {(z) and
{(1-z) are 1-1 and therefore if

C(x, + i) = & (x; + y,i) then, but we also apply

that §(x, + y,1) = £ (x, — y,1) = 0, because we
apply it for complex roots. The form ¢(1—-z)={(z)

means that if z = x, + yoi we apply 1-x, = x,

namely x, =1/2 because in this case it will be verified

that &(1—x, - yii) = (1/2—yhi)=C(1/ 2+ yhi) =

¢(1—x, + yyi) =0and

because y, = y(')
C(xg =) =¢ 1/ 2= yi) =LA/ 2+ y,i) =
= (x,+y,i) =0 and these are the two forms of the {

equation, they have common roots and therefore it can be

verified by the definition of any complex equation, when

it is equal to zero. Therefore if z = x, + Y1 then

x, =1/2 which verifies the equation {'(z) =0.

b). {(1—1z) #{(z), when z is a complex number.



To verify this case must be:

C(2)=¢(-2)- f(2)=C(2)=0A f(2)=0.

But this case is not possible, because as we have shown in
Section I(a, b, ¢), the individual functions of f(z) cannot
be zero when z is a complex number.

2. For the second equation and for any real values

with Re z < 1 we apply

$(2)/¢A-2)=2Q2x) " Sin(z-z/2)T(1-z)=
={(z)=f(2)-{(1-z), where

f(z)=2Q2xn)" " Sin(z-z/2)['(1-z) but this also
means that two cases occur:

a). {(1—2z) ={(z), when z is a complex number.
This case is equivalent to 1.a, and therefore if

Z=X,+ y,0 then x, =1/2 inorder to verify the

equation £ (z) =0 we follow exactly the same process
algebraically.
b). (1 —z) #{(z) , where z is a complex number.

Similarly, the above case is equivalent to 1.b and

therefore it cannot be happening, as it has been proved.

#4.Forms of the Riemann { Functional Equations

The Riemann { function has three types of zeros: [7]

<C(l -5)=2-(2- n)_s -cos(m-s/2)-I'(s)- {(s),Res >0 (LI

{s)=2-(2- n)s_l -sin@@-s/2)- I'(1-s)-{(1-s),Res<1

Eq. Set And

I(—)
Ys)=m""” — 2 g1-s (I

Usually referred to as the trivial zeros, and non-trivial
complex zeros.Therefore has been proved that any
non-trivial zero lies in the open strip

{s € C :0 < Re(s) < 1} that is called the critical
Riemann Strip: And all complex zeros of the function
lie in the line {s € C : Re(s) = 1/2} which is called
the critical line.

Solving of the Riemann { Functional Equations.

To find the imaginary part we must solve the functional

8

equations (Eq. set), and for the cases which the real part

of the roots lies on the critical line. Cases #4.1 & #4.2
[6].

# 4.1: 1% type roots of the Riemann zeta functions (1%
equation from the Eq. set).

For the first category roots and by taking the logarithm of
two sides of the equations, and thus we get ... [5]
$(1-2)/¢(2)=22n) " Cos(m-z/ I (z) =

= Log[{(1-2)/¢(2)] = Log[2]—zLog[2x] +

+ Log[Cos(r - z/ 2)T'(2)] + 2k

and the total form from the theory of Lagrange inversion
theorem, [5] for the rootis p,(z)=s which means that

f(s)= p;'(s) =z, but with an initial value for s which is

Log[2] 2-k-m-i
. + >
" Log[27] LogQ2x)

by setting values for k we can simply calculate the roots

of the (1% equation from the Eq. set)...

Therefore, for the first six roots for z we take:
1st 0.377145562795

2nd 0.377145562795 +/— 3.41871903296 1

3rd 0.3771455627955 +/— 6.83743806592 |
4rth 0.3771455627955 +/— 10.2561570988 |

5th 0.3771455627955 +/— 13.67487613181

6th 0.3771455627955 +/— 17.0935951646 1

A simple program in mathematica is..

kx4;t:=(Log[2] +2+kl+m#1i)/Log[27];

Z=8S4 Z((-IILog[Q n]) ™ /Camma[w+1]) «D[(=s") * (Log[Cos[m+ (5) /2]] +

wel
+Log[Gamma[s]] - Log[Zeta[l -s] /Zeta[s]]) ™, (s, w=-1}];
FQ=N[z/.=s+t, 10]

With k£ =0,+1,42,...
But because the infinite sum approaching zero,
theoretically x gets the initial value
L K-m-i
N og|[2] N 2-k-m-i
Log[27z] Log(2r)

So we have in this case, in part, the consecutive intervals
with k = n and k = n+1 for any n >= 4 and for the

imaginary roots.

#4.2:2" type of roots of the Riemann zeta functional
equations (2" equation from the Eq. set).
Same as in the first category roots by taking the

logarithm of two sides of the equations, and thus we get:



$(2)/E(=-2)=2Qr) " Sin(n-z/2)T (1-z) =>
Log[¢(2)/ {(1—-z)] = Log[2]+(z—1)Log[27x]+

+ Log[Sin(z-z/2)T(A-2)]|+2-k-7-i

Now, we will have for total roots of 3 groups fields (but I
have interest for the first group), and therefore for our

case we will get p, (z) = s which means that:

f)=p(s)=z,

but with an initial value for s that is
2-k-m-i
Log(2r)

Log[7]
™ " Log|27]

the overall form from the Lagrange inverse theory
succeeds after replacing the above initial value and
therefore for the first six roots after calculating them

we quote the following table...

for z is:

15t 0.622854437204

2nd 0.622854437204 —/+ 3.418719032961
3rd 0.622854437204 —/+ 6.83743806592 |

4rth 0.622854437204 —/+ 10.2561570988 1
5th 0.622854437204 —/+ 13.67487613181

6th 0.622854437204 —/+ 17.0935951648 1

A simple program in mathematica is..
kzd;t:=(Log(n] +2+klsm+1)/Log[2n];

z= suZ{[-lfLog[Z n])" {Camma[w +1]) «D[ (s ') # (Log[Sin[n « (s) /2]] +
wal
tLog[Gamma[1-s]] - Log[Zeta[s] /Zeta[1-5]])", {5, w-1}];
FQ=N[z/.s=+t, 10]

Therefore, with f =0,+1,+2,...

But because the infinite sum approaches zero,
theoretically s gets initial value

2-k-m-i

Log(2r)

_, Log[7]
Log[27]

So we have in this case, in part, the consecutive intervals
with k =n and k = n+1
for any n >= 4 and for the imaginary roots. And for the
cases we have for Im(s) the relationship
m@z)=2"K rez

Log[2r]
For the 3™ functional equation, one has been previously
put on the (as in the other two in #4, page 7) and we take

as imaginary part

2-7m-k
Log[r]’

Re(z) =% Alm(z) =

Following to complete the roots of the two sets of the
functional equations Eq. Set, we solve the functions as
cosine or sin according to its Generalized theorem of

Lagrange [5]

#4.3: Transcendental equations for zeros of the
function (Explicit formula)

The main new results presented in the next few sections
are transcendental equations satisfied by individual zeros
of some L-functions. For simplicity, we first consider the
Riemann-function, which is the simplest Dirichlet
L-function.

* Asymptotic equation satisfied by the n-th zero on the
critical line. [9, 10, 11]

As above, let us define the function

Now consider the Stirling's approximation
[(2) = v2rzt 12 1+0 (:_1]]
where z = x + iy, which is valid for large y. Under this
condition, we also have
i ; T Ty L
* =exp (i (ylogy+ — ) +zlogy— — +z+0|; ;
r.xp( (_gljg,.r+ 2)+Jl)gy 5 +r+0(y j)
Therefore, using the polar representation
iarg

¢=Icle

and the above expansions, we can write

were

y (x—1)/2 s ) -
Alz,g) = Va2 (5) e +iy) (1+0 (7)),

Bz, u) = %1(2, (%) + 111,1 — 1) +argd(z +iy) + O (v7Y).

The final transactions we end up with




Establishing the convention that zeros are labeled by
positive integers,z, =1/2+1i-y,

wheren=1,2,34..., wemustreplace n—>n—2.
Therefore, the imaginary parts of these zeros satisty the
transcendental
equation

%l. o (;%) -+ 61_1351%3]:3; & (% +d+ity) =n— lb—l
eq. A

Let us recall the definition used in, namely:

1 1 ;
Slyl= lm —arg§ (% +d4ay) = dhl-}l; :S‘ [lr_-gg l:% +d+ x'-lc,fj]

d—0+ T
These points are easy to find, since they do not depend on

the uctuating S(y).
We have:

L:I:% = f:"*r) == H t% + F'E.TJ (:-:'fyj GI:y:I o eg”y':b]
The Riemann-Siegel # function is defined by
My) = argl’ I:% + 3u) — ylog v,

Since the real and imaginary parts are not both zero, at

y(+)n then G = 1,whereas at y(-)n then G = -1. Thus

[+ =0 for 9(ytH) = (n = 1),

RIC(L-+ k)] =0

=1

for H{yl ') = (n— %) .

they can be written in the form of Eq. b

_ 2min-—3/8)
-~ Wlei(n —3/3)]

S Ar(n— lfT.,-"-"":;l _ y
o Wile=tn—T7/8)" .

where above n =1, 2... and the Labert — Function W
denotes the principal branch W(0). The y(+)n are actually
the Gram points. From the previous relation, we can see
that these points (Fig. 5) are ordered in a regular

manner...[8,12]

{15 ol EEpmeny (o) SO £ o femumprny oo |
[ TR T A T

Refd(1/2+iy)]

- I
2317 2549 2767 2974 ° 1785 2066 2317 2549 2767 29074 °
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Fig,5 The y(+/-)n are actually the Gram points.
With this method, we are able to create intervals so as to
approximate the correct values of imaginary part of
non-trivial zeros. We did something similar in the cases
#4.2. What it has left, is to find a method that

approximates the values of imaginary part accurately.

CRITICAL
ﬂ Ly sTrip
(& —

L SN

NON-TRIVIAL
ZEROS

~

.
.
.
cuTIcAl

Fig.6
The black dots represent the zeros of {(s) function
including possible zeros which do not lie on the critical
line
The zeros of the Riemann Zeta function.
“PROGRAMMING”

#5.1The M Function — Bisection Method...
Knowing the time of the successive steps (k, k+1) of the
relationship of imaginary parts

Im(z) = 2%k
Log[2r]

Im(z) = = %K (EqL IL III, page 7) with k € N, we
Log[r]

can calculate the roots by solving the equation
{(1/2+4i-y)=0 using the Bisection Method.
Bisection is the division of a given curve, figure, or
interval into two equal parts (halves). A simple bisection
procedure for iteratively converging on a solution, which
is known to lie inside some interval [a,h] proceeds by

evaluating the function in question at the midpoint of the

original interval y = s and testing to see in which

of the subintervals [a,(a+b)/2] or [(a+b)/2],b] the
solution lies. The procedure is then repeated with the

new interval as often as needed to locate the solution to

the desired accuracy. Let ¢, ,b, be the endpoints at

the n th iteration (with g, =a and b, =5 ) and let



r, be the n th approximate solution. Then, the number
of iterations required to obtain an error smaller than & is

b—a

found by noting that...p —g =— and that 7, is
n n 2”,

1
defined by 7, :5 (a,+b,) Inorder for the error to be
smaller than ¢,
1 .
then... ‘rn —ﬂ Sa(bn —a,)=2"(b—a)<e& .Taking the

natural logarithm of both sides gives:
—nln2 <Iné&—1n(b—a).Therefore, we have for steps:

Inb-a)-Ing
n>——————.
In2
#5.2: M-function of the Bisection Method..
We define the functions M ;,M ; on
an interval (a,b) according to the scheme:

I. M, with M, theNearest largerof M, ,

%,dzz,wmzéz—z
+b

M =22 k=1
2

IL. M, with M, | the Nearest smaller of M,

%,dzz,dmm-z
M, =970 o
2

For calculating the roots on solving the equation

¢(1/2+i-y)=0 take the limit rjaccording to the

scheme:
szaig}M:zlggM;,seN with M+ and M,
belong in the interval (4,5),d € N and also

(a= 2-w-k b=2-7r-(k+l)

= , ),k e N k>=3 forthe
Log[27] Log[2r]

xof C(1/2+i-1)=0.

#5.3 Program in Mathematica for the Bisection
method of ((1/2+i-y)=0.

11

2-n-k

b= 2-m-(k+1), and
Log[2r]

Using the Intervals (a=
Log[2r]

successive steps, we can compute all the roots of
S(A/2+i-y)=0.
We can of course use three types such intervals more

specifically in generall than

4= 2.k ’b:2~7z-(k+l) or
Log[2r] Log[2r]
2.a—2'ﬂ'k b=2-77-(k+1) or

B Log[ﬁ]’ Log[r]

3. Were a=y,,b=y, .

_ Ir(n-3/8)
T Wlel(n—3/8)]

We always prefer an interval that is shorter, in order to

locate fewer non trivial zeros.

The most important is to calculate all the roots in each

successive interval and therefore only then we will have

the program for data {example: Integer k = 4, and

(a= 8- b= 10-7
Log[2r] Log[2r]

10"-6 and Trials n=22}..

and Error approximate tol =

“Programm for Bisection method”

A program relevant by dividing intervals...

Clear[""*"];

f[x_]:=Zeta[1/2+x*I];

k=Input["Epilogh k"|;

a=(2*k)*n/Log[2n];

b=2*(k+1)*n/Log[2n];

tol=Input[" Enter tolerance"];

n=Input["Enter total iteration"];

o=N][(-Log[tol]/Log[10]+4)];

If[Arg([f[c]]>0,{Print["" No solution exists"] }];

Print["n a b c¢ ... f(0)...."];

Do[{c=N] (a+b)/2,g];

If[Arg[f[c]]<0,a= c,b=c], Print[PaddedForm[i,10],PaddedForm[N[a],{7,7}],
IPaddedForm[N[b],{7,7}],PaddedForm[N[c],{7,7}],
IPaddedForm[N[f[c]],{7,7}]]If[Abs[a-b]<tol & & Abs[N[f[c]]]<tol*1000,
{Print["The solution is: ",N[c,g]] Exit[]}]},{i,1,n}];

[Print[" The maximum iteration failed,No solution exists"];

This program gives very good values as an approach to
the roots we ask if we know the interval. Selecting the
interval for the case
4= 2.7k b= 2-7w-(k+1)
Log|2r] Log{2r]

are given below..

). ke N Jk>=3 the results


http://mathworld.wolfram.com/Interval.html

Calculation 1st Zetazero z, =%+14.1347216...

a b c I
1| 136748761300 | 17.0935951600 | 13.6748761300 ||
2| 13.6748761300 | 15.3842356500 | 15.3842356500
3| 13.6748761300 | 14.5295558900 | 14.5295558900
4] 141022160100 | 14.5295558900 | 14.1022160100
5| 14.1022160100 | 14.3158859500 | 14.3158858500
6] 14.1022160100 | 14.2090509800 | 14.2090509800
7| 14.1022160100 | 14.1556335000 | 14.1556335000
8 14.1289247500 | 14.1556335000 | 14.1285247500
9] 14.1289247500 | 14.1422791200 | 14.1422791200 §|

10| 14.1289247500 | 14.1356019400 | 14.1356019400
11| 141322633500 | 14.1356019400 | 14.1322633500
12| 14.1339326400 | 14.1356019400 | 14.1339326400
13| 14.1339326400 | 14.1347672900 | 14.1347672900
14| 14.1343499700 | 14.1347672900 | 14.1343499700
15| 14.1345586300 | 14.1347672900 | 14.1345586300 ||
16|  14.1346629600 | 14.1347672900 | 14.1346629600
17| 14.1347151300 | 14.1347672900 | 14.1347151300
18| 14.1347151300 | 14.1347412100 | 14.1347412100
19| 14.1347151300 14.1347281700 | 14.1347281700
20| 14.1347216500 | 14.1347281700 14.1347215501_]’}]

With final value 14.1347216500 , error near of 10"-7.
This value is the approximate root of the
$(1/2+i-y)=0 by the nearest error <10"-7.
In the event that we have two or more uncommon roots
within the interval, we divide similar successive intervals
in the order of finding of the first root either above or
below. In such a case we have the k=13, and at the
interval (47.8620664 , 51.280785) the two roots are
48.0051088 and 49.7738324.
#5.4 Explicit formula and the Zeros of
S(1/2+i-y)=0

Consider its leading order approximation, or
equivalently its average since
<Argd(1/2+i-y)>=0.[11,12]
Then we have the transcendental equation
t—”log( L )=n—E
2 2re 8

Through the transformation

11
t,=2x(n——)x,'
8
this equation can be written a
11
X, -1
xe"=e (n——
, (n=-)

Comparing the previous results, we obtain

12

2r(n— E)
t = 8 wheren=1,2,3.....

n

S, 11
Wle (n=-]

# 5.5 Programm by Newton’s method, which finds the
Zerosof S(1/2+i-y)=0

Using Newton’s method we can reach the roots of the
equation {(1/2+i-y)=0 ata very good initial value

from ) —>f, by the explicit formula.

It follows a mathematica program for the first 50 roots by
the Newton’s method. This method determines and
detects the roots at the same time in order to verify the

relation  (z) = 0 and always according to the relation...

11
2x(n——
( 8)

RN
Wle ("—g)]

n

where n=1,2,3.... and W is the W-function.

Table [FindRoot[Zeta[s] =0,

125]+1}], {n, 50}]

(s, 1/2+N[2+7+Exp[1] # (n-11/8) /Exp[1] / LambertW[ (n-11/8) /Exp[1]],

1] {s->0.5+52.97031} |21|{s->0.5+79.3374|

w

{s->0.5+14.13471 1 {5->05+103.7261} |41

{s->0.5+124.2571

{s->05+21.02201} |12]{s->0.5+56.44621} |22|{s->0.5+82.9104|

w

2| {s->0.5+105.4471

=~

2

{s->0.5+127.5171

{s->0.5+25.00091} |13 {s->0.5+59.34701} |23|{s->0.5+84.7355

~
w

3| {s->0.5+107.1691

~

3

{s->0.5+129.5791

{s->0.5+30.42491} |14] {s->0.5+60.83181} |24|{s->0.5+87.4253|

w

4 {s->0.5+111.8751

{s->0.5+131.0831

—

5

w

5

~

5

16/ {s->0.5+67.07981} | 26| {s->0.5+92.4919

~
w

{s->0.5+37.5862 6| {s->0.5+1143201

{s->0.5+134.7571

{s->05+40.91871} |17|{s->0.5+69.54641} |27|{s->0.5+94.6513I

w

7 {s->0.5+116.2271

=

7

{s->0.5+138.1161

{s->0.5+43.32711

—

8| {s->0.5+72.06721} |28]{s->0.5+95.8706

w

8 {s->0.5+118.7911} |48

{s->0.5+139.7361

{s->0.5+48.00521} |19 {s->0.5+75.70471} |29]{s->0.5+98.8312

~
w

9| {s->0.5+121.3701

=

9

{s->0.5+141.1241

1 }
2 }
3 }
4 }
5|§5->05+32.93511}
6 }
7 }
8 }
9 }

}

{ b2 }
{ b2 }
f JMEEIR }
{ R }
{s->05+65.11251) |25 {s->05+88.8091 1}
f b [26)|f }
{ Jaet }
{ b [28)f }
f EEEIR }
{ P30 }

{ }
{ }
{ }
{ }
{s->05+1118751}
{ }
{ }
{ }
{ }
{ i

—
S

{s->0.5+49.77381} |20] {s->0.5+77.14481} |30|{s->0.5+101.318I

w

40/ {s->0.5+122.9471} 150

}
}
}
}
{s->0.5+133.4981}
}
}
}
}
}

{s->0.5+143.1121

A very fast method that ends in the root very quickly and

very close to the roots of {(s) = 0 as shown..

#5.6 Directly (from Explicit form) with the solution of

this equation

8]

11

1 «
lim —arg¢ (1404t
ol el 8 i)

ty 1 %
— 1Oy
2 g 2re

ot

Using the initial value the relation

11
2z (n—g) the explicit formula..
;=

nT 11
Wle (”‘g)]




As already discussed, the

function 4rg{'(1/2+ & +i - y) oscillates around zero. At a
zero it can be well-defined by the limit, which is
generally not zero. For example, for the first Riemann
zero y1 = 14.1347..the limit >0+ has value as...
limArgd(1/2+0+i-y)=0.157873..

The arg( term plays an important role and indeed
improves the estimate of the n-th zero.

We can calculate by Newton’s method, and we locate the
first 30 imaginary part roots, of the

equation'(1/2 +i-y) = 0,0n the bottom of the

table...x=Im(1/2+yi)

Table|
FindRoot([x/ (2n) «Log[x/(2nwe)] +1/n+Arg(Zeta[l/2+x+I]] =n-11/8,
{x, 1/2+N[2+nm+Exp[1] # (n-11/8) /Exp[1] / LambertW[(n-11/8) /e], 20]}],

{n, 1, 50}]

{x->14.1347} | 11

w

X ->52.9703 1] {x ->103.726]

~

1] {x->79.3374} 41] {x ->124.257}

w

{x->21.0220} | 12| {x ->56.4462} | 22| {x ->82.9104} | 32| {x -> 105.447} | 42| {x -> 127.517}

w

{x ->25.010} | 13| {x ->59.3470 3

N

3| {x ->84.7355} x ->107.169} | 43| {x ->129.579}

w
B

{x->30.4249} | 14| {x ->60.8318} | 24| {x ->87.4253 x ->111.030} | 44| {x ->131.088}

w

{x->32.9351} | 15| {x ->65.1125} | 25| {x ->88.8091} | 35| {x ->111.875} |45 {x -> 133.498}

w

w

7| {x ->116.227} |47| {x -> 138.116}

w
oo

X ->43.3271} | 18| {x ->72.0672} | 28] {x ->95.8706

Wl |Vl |s|lw o -

w
©

19] {x ->75.7048} | 29| {x ->98.8312] X ->121.370} | 49| {x ->141.124}

{ } 21 { }

{ } 122/ { }

{ }23|{ { }

{ }124){ } (34§ }

{ } 25| }[35]f }
{x->37.5862} | 16| {x -> 67.0798} | 26| {x ->92.4919} | 36] {x ->114.320} |46} {x -> 134.757}
{x->40.9187} | 17| {x ->69.5464} | 27| {x ->94.6513} | 37 { }|47| €

{ } 28] } |38) {x->118.791} | 48] {x -> 139.736)

{ } 129/ } 139)§ }149| {

{ } 130/ } 140§ AEVR

KSR IS Rl )

{
{x->48.0052
{

x ->49.7738} | 20| {x ->77.1449} | 30| {x ->101.318 X ->122.947} | 50| {x ->143.112}

Epilogue...

This analysis has proved the Riemann Hypothesis is
correct,since the real part of the non-trivial zero-equation
functions is always constant and equals 1/2. This proven
by 3 independent methods. Theorems {Th 1.I-II-page 1-5,
Theorem 2-pages 5-6,Theorem 3-pages 5-7}. This
analysis has also demonstrated that the imaginary part of
the non-trivial zero zeta function accepts certain values
according to the intervals defined by the solution of the 3

based functional equations {#4-LILIII page 5}.
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Distribution of primes numbers and Zeros

#1.Indrotuction

The distribution of prime numbers is most simply
expressed as the (discontinuous) step function 7(x) ,

where 7(x)[Fig.] is the number of primes less than or

equal to x.
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sl

15

Fig 1.The function n(x) in relation to the random int. x.

It turns out that 77(x) can be expressed exactly as the
limit of a sequence of smooth functions R, (x). To
define R,(x) we first introduce the logarithmic
integral function Li(x), which appears throughout the
analytical theory of the prime distribution:

_ iy
Hik) fzjup,'u

This is a smooth function which simply gives the area

under the curve of the function 1/log u in the interval
[2,x]. Don Zagier explains the reasoning behind the
function Li in his excellent introductory article

"The first 50 million prime numbers"from [2] , based on
his inaugural lecture held at Bonn University, May 5,
1975): "A good approximation to 7z(x) , which was
first given by Gauss is obtained by taking as starting
point the empirical fact that the frequency of prime
numbers near a very large number x is almost exactly

1/log x.
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From this, the number of prime numbers up to x should

be approximately given by the logarithmic sum...
Li(x) = 1/log 2 + 1/log 3 + - + 1/log x

or, what is essentially the same, by the logarithmic

integral.

: r dy
Hi) fz]up,'::

Using Li(x) we then define another smooth function,

R(x), first introduced by Riemann in his original
eight-page paper, and given by

_ R plm) = i
R(z) = 3 A2 ) L2ty

=1 L

Riemann's research on prime numbers suggests that the
probability for a large number x to be prime should be
even closer to 1/log x if one counted not only the prime
numbers but also the powers of primes, counting the
square of a prime as half a prime, the cube of a prime as

a third, etc. This leads to the approximation:

_ 1 1 ¥y ;
m(x:) + ;E[.r"-'z} + E'-'T':.I']"';:I + - = Lilx)
or, equivalently [by means of the Mébius inversion
formula]
: 1 L L. i
m(x) = Li(x) - ;L.ﬂ{.]’.""] - ELH{.{' 2y —

The function on the right side of this formula is denoted
by R(x), in honour of Riemann. It represents an
amazingly good approximation to 7z(x)..For those in
the audience who know a little function theory, perhaps I
might add that R(x) is an entire function of log x, given

by the rapidly converging power series:

© (na)*

R(z)=1+Y —
) ; KEIC(k + 1)
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where {(x +1) is the Riemann zeta
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Fig.2 The non-trivial zeros in the Critical Line

Here we see the zeros of the Riemann zeta function in
the complex plane. These fall into two

categories, trivial and nontrivialzeros [Fig.2].Here are
some tables on nontrivial zeros compliled by Andrew
Odlyzko[4].The trivial zeros are simply the negative
even integers. The nontrivial zeros are known to all lie in
the critical strip that is 0 < Re[s] < 1, and always come
in complex conjugate pairs. All known nontrivial zeros
lie on the critical line Re[s] = 1/2. The Riemann

Hypothesis states that they all lie on this line. The

difference between the prime counting function and its

"amazingly good approximation"
R(x), i.e. the fluctuations in the distribution of primes,

can be expressedin terms of the entire set of zeros of zeta,

which we shall represent by p©, via the function R itself:

R(x)=7(x) =D R(x")

Obviously some of the x” are complex values, so here R
is the analytic continuation of the real-valued function R

defined previously. This was mentioned above by Zagier,

and is known as the Gram Series expansion:

(Inx

1+Z M'q{!\+1

The sum over O separates into two sums, over the

trivial and nontrivial zeros, respectively. The former sum
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is of course just R(x?) + R(x*) + R(x®) + -, and the latter

can be written..
o0

3" [R(z**) + R(z*-+))
k=1
The contributions from the complex-conjugate

pairs p_and p_, = P, cancel each others' imaginary

parts, so
oo

m(z) = R(z) - Y.

m=

Rz + 3 Tyl
k=1

Where

Te(z) = —R(z™)

are real-valued.We can now define the sequence of

2 R[R;.ﬂ—k}

functions R,(x) which approximate 77(x) in limit:

Z H —'2m + Z Tk

m=1

R.(x) = R(z) -

1

flx) = ERELZEH{JL- lng{x]]] i J“ ["— dt
._I .r.

log(2)
" f|loglf)

where O, is the K " complex zero of the zeta function.

In this formula, Ei(z) (Mathematica's built-in

function Explntegral Ei(z))isthe  generalization of
the logarithmic integral to complex numbers. These
equations come from references [1], [2], and [3]. First,
let M be the smallest integer such that x'M <2

We need to add only the first M-1 terms (that is,
n=12,..M) in the sum in equation (1). For each of
these values of N, we use equation (2) to compute the
value of f(x'"").However, we will add only the first

N terms (thatis, x =12,...N ) in the sum in equation
(2). Because the purpose of this Demonstration is to
show how the jumps in the step function 77(x) can be
closely approximated by adding to R(x) a correction
term that involves zeta zeros, we ignore the integral and
thelog?2 in second equation; this speeds up the
computation and will not noticeably affect the graphs,
especially for x more than about 5.The more zeros we
use, the closer we can approximate (x). For larger x ,
the correction term must include more zeros in order to

accurately approximate 77(x)
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http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/ss-i.htm
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#2.The GUE hypothesis.

While many attempts to prove the RH had been made, a
few amount of work has been devoted to the study of the
distribution of zeros of the Zeta function. A major step
has been done toward a detailed study of the distribution
of zeros of the Zeta function by Hugh Montgomery [6],
with the Montgomery pair correlation conjecture.
Expressed in terms of the normalized spacing ..

log(yn/(2m7))

6” = lr_-}'r:-+1 = ’:Ir;-} 5

this conjecture is that, for M — o
%#{n N+1<n< N+ M, € o/}

sin 7u

~ [ p(O.u)du ~ [[1- 2 .

In other words, the density of normalized spacing
between non-necessarily consecutive zeros

sin 7zu

is1—( )2 . It was first noted by the Freeman Dyson,

a quantum physicist, during a now-legendary short
teatime exchange with Hugh Montgomery[6], that this is
precisely the pair correlation function of eigenvalues of
random hermitian matrices with independent normal

[ In figure 3&4] of its coefficients. Such
random hermitian matrices are called the Gauss unitary
ensemble (GUE). As referred by Odlyzko in [4] for
example, this motivates the GUE hypothesis which is the

distribution

conjecture that the distribution of the normalized spacing
between zeros of the Zeta function is asymptotically
equal to the distribution of the GUE eigen values. Where
p(0, u) is a certain probability density function, quite
complicated to obtain for an expression of it). As
reported by Odlyzko in [4], we have the Taylor

expansion around zero..

2 4
7o /A

O,u)=—u"-2—u" +...

pO.0) 3 45

which under the GUE hypothesis entails that the

proportion of dn less than a given small value § is
2
asymptotic to Ly O(8”) .Thus very close pair
9

of zeros are rare.
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Density
o,

H
Normalized spacing

Fig3. Probability density of the normalized spacing
between non-necessarily consecutive zeros and the GUE

prediction[8]

051 ] %

024 /

Normalized spacing

Fig 4.Probability density of the normalized spacing dn and the
GUE prediction[8].

#3.Gaps between zeros..

The table below lists the minimum and maximal values
of normalized spacing between zeros dn and of on
+0n+1, and compares this with what is expected under
the GUE hypothesis. It can be proved that p(0, t) have

the following Taylor expansion around 0

p{(), 5] = ;Jr: —2
P 3

|
o e

.'_:rl

so in particular, for small delta

o i

p(0, u) du ~ —8&°

Prob(é. < 6) = / |

so that the probability that the smallest dn are less than o

for M consecutive values of on is about..

3 v A

] — (l = :—]ﬁ"') ~]— vx])(—j—]ﬁ'j.‘u)



This was the value used in the sixth column of the table.

The result can be also obtained for the én + dn+1..

Prob(s, + 8,4, < &) ~ mﬁ’“.

from which we deduce the value of the last column..

Height Mini 4, Maxi d,, | Mini Maxi Prob min | Prob min d,+

8u+041 | 6n+6n41 | 6, in GUE | 8,4, in GUE
10 | 0.0005330 | 4.127 0.1097 5.232 0.28 0.71
10" | 0.0009764 | 4.236 0.1213 5.349 0.87 0.94
10" | 0.0005171 | 4.154 0.1003 5.434 0.26 0.46
10'° [ 0.0005202 | 4.202 0.1029 5.433 0.27 0.53
10'7 | 0.0006583 | 4.183 0.0966 5.395 0.47 0.36
10" | 0.0004390 | 4.194 0.1080 5.511 017 0.67
10 | 0.0004969 | 4.200 0.0874 5.341 0.24 0.18
10°° | 0.0004351 | 4.268 0.1067 5717 0.17 0.63
10%' | 0.0004934 | 4.316 0.1019 5.421 0.23 0.50
102 | 0.0008161 | 4.347 0.1060 5.332 0.70 0.61
10% | 0.0004249 | 4.304 0.1112 5.478 0.15 0.75
1024 | 0.0002799 | 4.158 0.0877 5.526 0.05 0.19

For very large spacing in the GUE, as reported by
Odlyzko in [4], des Cloizeaux and Mehta [5] have
proved that

3

log p(0,t) ~ —7?t%/8 [t — oo),

which suggests that

) (8log ar)ti?
max Dy T —
N4lsnsN+M ™

Statistics of False zetazeros, o-intervals and count of
primes.

#4.General equations.

With this statistic we find the crowd of individual parts
intervals defined by consecutive Zetazeros in a fixed
integer interval. Here we use & = 1000. We have the
general Equation 6 + Zetazero (kin) -Zetazero (kf) =0
and after given initial value in kin, i calculate the kf
usually by the Newton method. From the initial and
final value of kin, kf and by performing the process of
successive intervals, i calculate the number(count) of the
primes ones that are within the intervals.In this way

1 will have consecutive intervals..

S, = {Zetazero(k +1) < p < Zetazero(k),k < (kin,kf)}
from where resulting the number of the primes in the
given consecutive interval. The sum of the primes in

the given interval & = 1000 will be obvious..
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k/
S, =Js,
i=k,
The False intervals will be in a normalized form

F; =1000-S; over N>=4000.

#5. The statistics

The Statistic looking for ways to show us which function
is the most ideal to get closer the points of interest, uses
the NonlinearModelFit method of the function
y=(a+b-x)/(Log(d+c-x)

and therefore after determining the variables{a, b, c, d}
we are able to make statistical and probable prediction at
higher levels of numbers .

This function is directly related to the function n(X)
=x / logx which was reportedin the introduction that is,
defining the number of primes numbers relative to x.
We will do a double statistic of the intervals

{0, False intervals} and {6, number of primes} that we
are ultimately interested in the statistics mainly the count

of the primes inside at -intervals.

#6.The first statistic is about count of False intervals

and the count of the primes that corresponding in

them. The table below gives it in aggregate until the
count of primes equal p, =29 corresponding to the

count of False F, =971 and the Total range Integers for
a interval D=1000 to 2-10"* + 1000.

datal = {{499, 162}, {735, 129}, {825, 121}, {885, 114},
{887, 113}, {892, 108}, {895, 105}, {894, 106},
{900, 100}, {903, 97}, {897, 103}, {891, 99}, {904, 96},
{898, 102}, {908, 92}, {902, 98}, {912, 88}, {902, 98},
{908, 92}, {902, 98}, {906, 94}, {902, 98}, {912, 88},
{908, 92}, {905, 95}, {912, BB}, {908, 92}, {914, 86},
{900, %0}, {908, 92}, {912, BB}, {925, 75}, {932, 68},
{936, 64}, {930, 70}, {937, 63}, {934, 66}, {945, 55},
{925, 75}, {940, €0}, {939, 61}, {930, 70}, {938, 62},
{946, 54}, {949, 51}, {946, 54}, {945, 55}, {955, 45},
{944, 56}, {942, 58}, {951, 49}, {956, 44}, {962, 38},
{953, 47}, {956, 44}, {955, 45}, {961, 39}, {953, 47},
{960, 40}, {955, 45}, {966, 34}, {963, 37}, {961, 39},
{971, 29}, {974, 26}, {963, 37}, {965, 35}, {962, 38},
{965, 35}, {970, 30}, {966, 34}, {964, 36}, {970, 30},
{976, 24}, {973, 27}, {971, 29}};

The diagram given below[Fig.5] shows the arrangement

of the points at the level (x, y) according to the datal[7]..
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Fig 5.The depiction of the intervals False and the primes ones

(file:datal) contained in the intervals N+6-N = 1000.

Even more macroscopically [Fig.6] the points are shown
by the line y = 988.709 - 0.988372*x, which, as they

appear, are stacked on its lower right..

1000

20 400 600 800 1000

Fig.6  Graphic depiction of the line y = 988.709 -
0.988372*x  with the archive(datal) points.

It is obvious that for {x =999, y = 1.32} and for {y =
1000, x = 0.33}, a value located below the unit and
means that it can in such a interval, and we are talking
about this is for high order integers intervals so there is
not one prime within the interval 8 = 1000, chosen at

random.

#7..The second statistic refers to the count of the primes
ones that located in the intervals [N,N+ 8] with N = 1000
upto 2-10", range & = 1000 and the count of the
primes within successive ZetaZeros .After we found
the roots kf of general Equation o + Zetazero (kin)
-Zetazero (kf) = 0 of given initial value

by the Newton method. The data[7] that we have met

kin, usually

with the above method are..
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data = {{1000, 162}, {2000, 129}, {3000, 121},
{4000, 114}, {5000, 113}, {6000, 108},
{8000, 105}, {9000, 106}, {10000, 106},
{11000, 100}, {12000, 97}, {13000, 103},
{14000, 99}, {15000, 96}, {16000, 102},
{17000, 92}, {18000, 98}, {19000, 88},
{20000, 98}, {21000, 92}, {22000, 98},
{23000, 94}, {24000, 98}, {25000, 88},
{26000, 92}, {27000, 95}, {28000, 88},
{29000, 92}, {30000, 86}, {40000, S0},
{50000, 92}, {60000, 88}, {1001000, 75},
{2001 000, 68}, {3001000, 64}, {4001 000, 70},
{5001 000, 63}, {6001000, 66}, {7001000, 55},
{8001000, 75}, {3001000, 60}, {10001 000, 61},
{20001 000, 70}, {40001 000, 62}, {60001 000, 54},
{80001 000, 51}, {100001 000, 54},
{200001 000, 55}, {400001 000, 45},
{600001 000, 56}, {800001 000, 58},
{1000 001000, 49}, {10000 001000, 44},
{20000 001000, 38}, {30000001000, 47},
{40000 001000, 44}, {60000 001000, 45},
{60000 001000, 39}, {100000 001000, 47},
{200 000 001000, 40}, {400000 001000, 45},
{600 000 001000, 34}, {1000 000001000, 37},
{2000 000001 000, 39}, {3000 000001000, 29},
{4000 000001 000, 26}, {5000 000001000, 37},
{6000 000001 000, 35}, {7000 000001000, 38},
{8000 000001 000, 35}, {9000 000001000, 30},
{10000 000001 000, 34}, {20000 000001 000, 36},
{40000 000 001 000, 36}, {70000 000001000, 30},
{90000 000 001 000, 24}, {110000 000001 000, 27},
{200 000 000001 000, 29}};

Using the NonlinearModelFit[7] method of the function
y = (a+c+x)/(Log[d+b#x] and after specifying the
variables {a, b, c, d} the following result the function
will be..

_ 1108.254246288494 —1.116325646187134 % 1012y
Log[—4503.90336177023+5.425635171403081x]

with very good approach and value performance in each
pairing.The diagram [Fig.7] of the above equation is
shown in more detail below with gravity in the latest

data.

i3 14 = 14 14
ERTILE 1.0%10M 1.5%10

=1

Fig 7.The graphic depiction of the function

y = (a+c*x)/(Log[d+b+x] .Thus a test value for x
=2-.10" gives us y = 25.6, close to 29 we took with the

analysis.



They follow statistics ANOVA and t-Statistic[7,8] and
we get the tables ...

Analysis -ANOVA...

DF S5 MS

MModel 4 441724, 110431,
Error 74 1329.65 17.9683
Uncorrected Total | 78 443054,
Corrected Total 77 711438

Analysis - T-statistic...

Estimate Standard Error  t- Statistic P-Value
a | 110825 2.79256 126044  4.12076% 10758
b | -1.11633x107"2 5.63866% 1072 —1.97842 0.0514887
c | 542564 0186181 291417 268171x107%
d | -4503.9 0.153555 -29330.8 3.51117% 107252

As we can see from the results, we have an important
Standard Error only for the variable a. The other
variables are observed to have a low statistical error and
have good compatibility. By adapting the method as we
see, we associate two lists of results of the number of
primes and long intervals, which although
disproportionately, work together with impeccable and
good contact.

Ronald Fisher introduced the term variance and proposed
its formal analysis in a 1918 article The Correlation

Between Relatives on the Supposition of Mendelian

Inheritance. His first application of the analysis of
variance was published in 1921. Analysis of variance
became widely known after being included in Fisher's
1925 book Statistical Methods for Research Workers.
One of the attributes of ANOVA that ensured its early

popularity was computational elegance. The structure of

the additive model allows solution for the additive
coefficients by simple algebra rather than by matrix
calculations. In the era of mechanical calculators this
simplicity was critical. The determination of statistical
significance also required access to tables of the F

function which were supplied by early statistics texts.

19

#.8. Standar —Error and Confidence —Interval

Part-1.
Where we observe, apart from 1-2 initial measurements,
the Standar —Error as well and the Confidence

Interval is stabilized at good and acceptable values..

Ohaserved Predicted 5tandard Eror Confidence Interval

162 162352 41790 {154.025, 170679}
129 126574 0.851191 {124.878, 128.27]

121 118232 0759511 {116.719, 119.745}
114 113637 0729151 {112184, 115,09

113 110528 0.711538 {108,112, 111.847}
108 10821 0.689052 {106.817, 108,602}
105 104861 0.68137 {103,503, 106219}
100 Wa5E 0eMME {102.237, 104,926
106 102476 0.668765 {101.143, 103.808}
100 101504  0.6636 {100.182, 102.826}
a7 10064 0.658882 {99.3365, 101,953}
103 99,862 065481 {588.5573. 101.167}
»a 99,1563  0.651008 {57.8393, 100.454}
%5 98,5114 0647517 {97.2212, 99,5016}
102 979178 0644293 {96.6341, 99,2017}
%2 97,3687 0.6413 {96.0%09, 98.6465)
a5 96,858 0.638507 {95.5858. 98.1303}
85 96,3812 0.6358M {95.1142, 97.6482}
a5 959342  0.633431 (94.6721, 97.1964)
a2 95.5138 0631112 {94.2563, 96.7T13}
B 95,1171 0.628918 {93.864, 95,3703}

a4 94,7418 0.626837 133.4928, 95,5908}
9B 94,3858 0.624859 193, 1408, 95,6305
83 94,0474 0.622974 {52.80a1, 95.2887}
a2 937249 0621176 {92.4872, 949627}
a5 934171 0619455 {92.1829, 94.6514)
&5 931228  0.617807 {91.8918, 943538}
92 92,6406 (0.616220 {91.613, 94.0687]

a8 92,5703 0.614706 {91.3455, 93,7951}
] 90,3456 0602126 {89.1461, 91.545€)
) BETONT 0592736 {87.5206, B9, 5328}
&5 87.4066  0.585287 {86.2403, §5.5728}
75 71,4688 0.490798 {70.4509, T2.4468)
68 684113 047218 {67.4704, 69.3521}
o 56,7409 0461946 {65.8205, 67.6614)
0 G004 0458857 (64,6579, 66,5109}
63 84,7492 0449683 {63.8531, 656452}
&5 684.0667  0.445487 {63.1791, 64,9544}


https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
https://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
https://en.wikipedia.org/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance
https://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers

Part-2.

55 63.5009  0.441964 {62.6202, 64.3815}
75 63.0187  0.438976 {62.1441, 63.8934}
60 62.5995 0.436374 {61.73, 63.469}

61 62.2291  0.434073 {61.3642, 63.0941}
70 59.8979  0.419533 {59.062, 60.7338}
62 57.735  0.405955 {56.9261, 58.5439}
54 56.5407  0.398419 {55.7468, 57.3346}
51 55.7229  0.393243 {54.9393, 56.5064}
54 55.1046  0.389322 {54.3289, 55.8804}
55 53.2687  0.377631 {52.5163, 54.0212}
45 51.5512  0.366632 {50.8207, 52.2817}
56 50.5969  0.360493 {49.8786, 51.3152}
58 49.941  0.356262 {49.2311, 50.6509}
49 49,4438  0.353049 {48.7403, 50.1473}
4 44.8373  0.32299 {44.1937, 45.4809}
38 43.6138 0314912 {42.9863, 44.2413}
47 42.9283 0310357 {42.3099, 43.5467}
44 424548  0.307197 {41.8427, 43.0669)
45 41.8046  0.302835 {41.2012, 42.408}
39 41355  0.299799 {40.7576, 41.9523}
47 41.0126  0.297474 {40.4199, 41.6053}
40 39.9828  0.290385 {39.4042, 40.5614}
45 38.9993  0.283419 {38.4345, 39.564}
34 38.4427  0.279364 {37.886, 38.9993}
37 37.7577  0.274288 {37.2112, 38.3043}
39 36.8486  0.267924 {36.3147, 37.3824}
29 36.3208  0.265411 {35.7919, 36.8496}

#9. Statistical comparison.

With statistical comparison it appears that as long as we
moving to a higher order of integer-size that are within a
6= 1000, the count

of the primes diminishes to disappear or to there are 1-2

given interval, we have chosen

primes at high order intervals of more than 10%° . This

also agrees with of Gram's law. In particular, the

—t

problem of distribution of the differences f,,, — £,

(that is of difference of ZetaZeros) is considered [9].
If we accept Gram's law then the order of this difference

does not exceed the quantity ...
2z
In(n)

~
~

—>0,n—>

ntl ~ bn

for much larger integers [9,8] then mean and their
mean value is close to,,
. _Inin(n)

1 — 1L —>0,n—> o
In(n)

20

And as the above analysis of - False intervals- as we
have shown, it is compatible with this result of law

Gram’s.

#.10. From above analysis they arise 3 big

conclusions:

1%t . The number(Count) of primes located within &
intervals is gradually decreasing with a higher order
sizenof 10" .

2" The distribution of the number(Count) of the
primes, within interval J follows a Nonlinear
correlation is expressed by the function
y=(a+b-x)/(Log(d +c-x) similar to the number
(Count) of the primes 7(x) = x/ Log(x), which is
apply approximating for large numbers.

3" The measurement(Count) of false intervals and the
count of the primes follows a linear correlation and it
increases if the order of magnitude size of the integer
increases.
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