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Sustaining Wavefunction Coherence via Topological Impedance Matching:
Stable Polarized Muon Beams at 255 x 255 GeV/c?

Peter Cameron
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(Dated: January 1, 2020)

“What the Hell is Going On?” is Peter Woit’s ‘Not Even Wrong’ blog comment on Nima Arkani-
Hamed’s view of the barren state of LHC physics, the long-dreaded Desert[1].

Two essential indispensibles - geometric wavefunctions and quantized impedances of wavefunction
interactions - are absent from particle theory, the community oblivious, mired in the consequent four
decades of stagnation. Synthesis of the two offers a complementary Standard Model perspective,
examining not conservation of energy and its flow between kinetic and potential of Hamiltonian
and Lagrangian, but rather what governs amplitude and phase of that flow, quantum impedance
matching of geometric wavefunction interactions. Applied to muon decay, the model suggests that
translation gauge fields (RF cavities) of relativistic lifetime enhancement might be augmented by
introducing rotation gauge fields of carefully chosen topological impedances to an accelerator.

Introduction and Historical Perspective

Professor Rubbia calls for courage[2] in the desert revealed by the LHC - one Higgs, no SUSY, and the purported
death of naturalness[3–14]. The search is on for successors to protons at 14 TeV. While viable alternatives to 100
TeV LEP/LHC clones[15] are welcome, courage was indeed required for him to take the stand from which he speaks,
knowing full well the difficulty of the venture he advocates. Such daring inspires one to follow the bold lead, if only for
lack of common sense buttressed by almost total ignorance of muon physics. In beginner’s mind are many possibilities.

One possibility is to forestall decoherence[16, 17] by tuning accelerator impedances seen by muon wavefunctions to
minimize differential phase shifts between modes, phase shifts generated by muon excitation of vacuum wavefunction
impedances[18, 19]. Tuning an accelerator to minimize decoherence of spin is a classical example[20, 21]. This note
examines the possibility of regulating relative phase of coupled modes of a single muon wavefunction, as opposed to
regulating relative spin precession of two unentangled wavefunctions.

An absolutely essential component of the accelerator physicist’s toolkit, impedance got lost in particle physics with
the expert practice of setting fundamental constants (h, c,G, Z0, ...) to dimensionless unity. Arguably not a good
idea, particularly when ignoring concepts already unfamiliar, but if you’re Feynman you can wing it. He had an EE
student do a thesis on impedance matching to the maser[22], mentions matching in 1D in the path integral book[23],
but never figured out just how and where it fits in quantum mechanics. Almost everyone else forgot.

An exception was Bjorken, whose 1959 thesis[24] presented an approach summarized[25] as

“...an analogy between Feynman diagrams and electrical circuits, with Feynman parameters playing the role of
resistance, external momenta as current sources, and coordinate differences as voltage drops. Some of that found its
way into section 18.4 of...” the canonical text[26]. (bold emphasis added)

While analyzing dispersion relations, Bjorken discovered an analogy between the electrical engineer’s circuit com-
ponents and Feynman parameters of the regularization that precedes renormalization, and anticipated that

“This circuit analogy will be very valuable to us, because we can use intuitive understanding as well as the established
lore and theorems of circuit theory in analyzing a Feynman diagram.”[26]

As presented there, units of Feynman parameters are [sec/kg], units of mechanical conductance, not resistance[27].

He and those of similar interests (including the present author[28]) were thrown off by what appears to be a
topological inversion in our systems of units. Intuitively one might think more seconds per kilogram would mean less
mass flow, higher resistance. However [sec/kg] are units of conductance, not resistance. In SI units less time for the
same distance a unit mass travels means more resistance, not less. This electromechanical inversion sheds light on
how the anticipated intuitive advantage was lost, and remains so in particle physics.

Point being this: Bjorken’s Feynman parameters are the impedance mismatches that render QED finite[29].

That which governs amplitude and phase of energy transmission, of information communication in wavefunction
interactions, is absent from the particle theorist’s toolkit, not to be found in curriculum, textbooks, or journals. Given
that wavefunction fields of quantum field theory are quantized, it is unavoidable that impedances of wavefunction
interactions will likewise be quantized[30, 31].

To explore interactions requires understanding vacuum wavefunctions in the geometric representation of Clifford
algebra, and manifestation via four fundamental constants that define the electromagnetic coupling constant α.
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1. Vacuum Wavefunction

The fundamental concept of impedance matching, of that which governs amplitude and phase of energy transmis-
sion, is one of two essential ingredients lost in quantum mechanics. The other is that which possess the property
of impedance quantization, the geometric wavefunction of Clifford algebra. The original intent of Grassman and
Clifford[32–34] was to develop a language not of numbers or symbols but rather of geometric objects. Clifford himself
called it Geometric Algebra. While it attracted considerable interest, with Clifford’s early death in 1879 the absence
of an advocate to balance the powerful Gibbs and Heaviside contributed to its eventual neglect. GA was

“...largely abandoned with the introduction of what people saw as a more straightforward and generally applicable
algebra, the vector algebra of Gibbs... This was effectively the end of the search for a unifying mathematical language
and the beginning of a proliferation of novel algebraic systems...[35].

It resurfaced in the 1920s with the unintuitive matrix representation of Pauli and Dirac, absent the original intent
and lacking conceptual simplicity and visualization of the geometric representation. It was recovered and extended by
David Hestenes in the 1960s[36, 37]. Another four decades passed before he was awarded the 2002 Oersted medal for
“Reforming the Mathematical Language of Physics” by the American Physical Society[38]. It remains for the most
part still lost in physics[39–46], like impedance quantization absent from the toolkit.

Naive realists[47] want vacuum wavefunctions visualized in physical space. GA is perfectly suited to the task.
Pauli σ matrices are the SU(2) representation of SO(3), the basis of space in the geometric representation, wherein
the vacuum wavefunction is modeled by fundamental geometric objects of Euclid - point, line, plane, and volume
elements. These comprise the eight components of a minimally complete Clifford algebra of space - one scalar, three
vectors (orientational degrees of freedom), three bivector area elements, and one trivector volume element[48], as
shown in figures 1 and 6. Dirac γ matrices are basis vectors of spacetime in the geometric representation.

FIG. 1: 3D algebra of space[51]

.

Wavefunction interactions are modeled by geometric products, mul-
tiplying not numbers or symbols but geometric objects, changing di-
mensionality, making geometric algebra unique in the ability to handle
geometric and topological dynamics in all dimensions. In GA the term
grade[49] is preferred over dimension, in hope of minimizing confusion
between physical dimensions and degrees-of-freedom.

Given two vectors a and b, the geometric product ab changes grades.
In the product ab = a · b + a ∧ b, two grade 1 vector bosons are trans-
formed into a grade 0 scalar boson and grade 2 bivector fermion. Taken
together, these comprise a minimally complete 2D Clifford algebra (per-
haps bringing to mind Higgs/W/Z/top[50]).

The product turns fermions into bosons, and bosons into fermions.
Dynamic supersymmetry emerges naturally, as does time in the grade
increase from 3D space to 6D phase space generated by wedge products of two wavefunctions (figures 1 and 6).
In flat 4D Minkowski spacetime there is but one time for the three orientational degrees of freedom. However,
wavefunctions require independent phases for all three[14]. The ‘natural’ space of quantum mechanics is the 6D phase
space so familiar to accelerator physicists, with wavefunction amplitude and phase substituted for beam position and
momentum. If one wants a relativistic quantum theory, it must be formulated not in 4D spacetime, but rather in
6D phase space. Implicit in this is quantum mechanics of 6D phase space is fundamental and special relativity of 4D
Minkowski spacetime emergent.

Wavefunction interactions are two-body[28], background independent[52], the two wavefunctions at top and left
of figure 6 interacting to generate the scattering matrix.

Special relativity is three-body, three two-body interactions, each with Mach’s third-body ‘observer’ in the back-
ground. Lorentz transform is Pythagorean theorem, the triangle. QM is fundamental, SR emergent. Relativistic
correlation between nodes of the impedance network of figure 4 and unstable particle lifetimes could not exist if this
were not true. Three body potential is inverse square, the potential of topological impedances. We seek to aug-
ment muon wavefunction lifetime enhancement of emergent SR, the relative slowing of differential phase shifts due to
self-excitation of the fundamental QM vacuum wavefunction[17], by introducing additional topological impedances.

Geometric algebra is unique in the ability to handle geometric and topological dynamics. However, it appears to
harbor a broken topological symmetry. The “...problem is that even though we can transform the line continuously
into a point, we cannot undo this transformation and have a function from the point back onto the line...” [53].

Grade increasing operations conserve topological symmetry of wedge and dot products, with the exception of wedge
products of scalars, as indicated by the red x-out of figure 1. Scalars are point objects having no spatial dimensionality,
cannot raise or lower grades, break topological grade-changing symmetry of the products. This is of particular interest
for the Higgs, the sole standard model scalar[3, 5–13], the first of several ways in which topology enters our search for
an approach to stable muon beams.



1s
t d
ra
ft

3

2. Physical Manifestation

FIG. 2: Topological inversion of
fundamental lengths by magnetic charge

.

Physical manifestation of vacuum wavefunction interactions follows
from introducing the dimensionless electromagnetic coupling constant α =
e2/4πε0~c. Combinations of the fundamental constants e, ε0, ~, and c
permits assignment of topologically appropriate quantized E and B fields
to the eight vacuum wavefunction components, and to calculate quantized
impedance networks of wavefunction interactions[30, 31], yielding the S-
matrix of figure 6 and impedance network of figure 4.

The photon is our fiducial in measurements of the properties of space.
Topological duality[54] arises from the difference in coupling to the photon
of magnetic and electric charge. If we take magnetic charge g to be defined
by the Dirac relation eg = ~, then e is proportional to

√
α whereas g varies

as 1/
√
α. The fundamental lengths of figure 2, precisely spaced in powers

of α, are inverted for magnetic charge[55]. The Compton wavelength λ =
h/mc is independent of charge.

With electric charge, fundamental lengths correspond to specific physical
mechanisms of photon emission or absorption, matched in both quantized
impedance and energy. Inversion results in mismatches in both.

Magnetic charge g is ‘dark’, cannot couple to the photon, not despite
but rather because of its great strength. The α-spaced lengths of figures
2-4 correspond to physical mechanisms of photon absorption and emission.
Bohr radius cannot be inside Compton wavelength in basic QED photon-charge coupling, Rydberg cannot be inside
Bohr,... specific physical mechanisms of photon emission and absorption no longer work[56].

This is the second way (more to come) in which topology enters our search for an approach to stable muon beams.

3. Generalized Quantum Impedances: the Unstable Particle Spectrum

Given that fields of quantum field theory are quantized, it is unavoidable that wavefunction interaction impedances
are quantized. Impedances are of two types - geometric and topological, scale dependent and scale invariant.

Geometric impedances are scale dependent, include those of monopole-monopole, scalar Lorentz, and dipole-dipole
interactions. They correspond to translation gauge fields[57–59]. Associated potentials are 1/r and 1/r3. They are
causal, communicate both amplitude and phase, can be shielded. They are channels of local entanglement.

FIG. 3: 13.6 eV photon impedance match to Hydrogen atom[61].

Topological impedances are scale invariant, as-
sociated with 1/r2 potentials of anomalies in
both classical and quantum mechanics[60]. They
include vector Lorentz of quantum Hall (green
in figure 3) and Aharonov-Bohm effects, chiral,
centrifugal, Coriolis, and three-body impedances.
They correspond to rotation gauge fields. They
can do no work - resulting motion is perpendicular
to applied force. They communicate only phase,
a relative property, not a single measurement ob-
servable, are acausal, cannot be shielded, are chan-
nels of both local and non-local entanglement.

The photon is apparently unique among elemen-
tary particles, having both the scale invariant 377
ohm far-field and scale dependent near-field induc-
tive dipole (blue) and capacitive monopole (red)
impedances shown in figures 3 and 4. In figure 3
the E and B flux quanta of the 13.6 eV imping-
ing photon decouple, their relative phase shifted

by the electron wavefunction electric dipole moment (not shown in figure 3, large blue diamonds in figure 4). The
photon near-field scale dependent impedances match photon energy to the scale invariant quantum Hall impedance
(numerically equal to the centrifugal impedance) at the Bohr radius, yielding dissociation. Topological impedances
present a third way (more to come) in which topology enters our search for an approach to stable muon beams.

Impedances of figures 3 and 4 are parametric [62–65], the nonlinear mechanism of noiseless frequency domain energy
translation essential in wavefunction interactions, and relentlessly problematic in quantum interpretations[66, 67].
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FIG. 4: Modes indicated by colored symbols in figure 6 are plotted in the impedance network at lower left. Phase correlation
of unstable particle causal lifetimes/light cone coherence lengths [68–70] with network impedance nodes, both structured in

powers of α, follows from the fact that impedances must be matched for the energy transmission essential in decay[71].
Quantum impedance matching offers beyond standard model explanations of particle lifetimes and branching ratios[13, 72]

.
To calculate quantized impedance networks of wavefunction interactions using Maxwell’s equations is a formidably

daunting prospect. However, every massive particle has Bjorken’s mechanical impedance[27], a straightforward
calculation[28], easily converted to electromagnetic via electromechanical oscillators[30]. This simple 1D model yields
the impedance network of figure 4, albeit lacking orientational information of the full 3D electromagnetic wavefunction.

The 377 ohm far-field .511 MeV photon of figure 4 encounters four quantized impedances at the electron Compton
wavelength - two inductive dipole impedances (diamonds) meeting capacitive Coulomb (squares) and scalar Lorentz
(triangles) impedances. Exact matching at the node permits reflectionless energy transfer to this quantum oscillator.
The lightest stable rest mass particle, the electron corresponds to the ‘mass gap’ of quantum field theory[73]. Absence
of mode-coupling invariant impedances at 377 ohms is remarkable, related to gauge property of photon.

Photon transition zone dipole impedance inversion of E and B fields in figures 3 and 4 is curious. Monopole mode
gives a smooth transition to near field, no inversion. Higher order expansions (tripole, quadrupole,...) are divergent
there (problematic for quantizing GR[74]), but identical in both near and far field.

FIG. 5: Topological Inversion of 3D Clifford algebra

Decoherence of unstable particles follows from dif-
fering impedances of the vacuum wavefunction modes
they excite[17–19]. Wavefunctions containing both
dark and visible components are unstable, decohere as
dark/visible differential phase shifts accumulate. Ex-
cepting the electron and constantly morphing three-
component neutrino, the proton is the only stable par-
ticle. Interaction modes containing only visible com-
ponents are those of the proton, highlighted in green

in figure 6. Unstable particles contain at least one dark component, the stable proton none. The possibility exists
that stable dark matter is comprised of dark modes only, which far outnumber the visible.
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FIG. 6: Impedance representation[75–77] of the S-matrix[78–81] generated by the geometric product of the two
eight-component wavefunctions shown at top and left, arranged by geometric grade. Eigenmodes have blue background,

transition modes yellow. Modes indicated by colored symbols (diamond, triangle,...) are plotted in figure 4.
Muon modes of figure 7 are indicated by rectangles, neutrino by ellipses.

4. Muon Wavefunction

A plausible analysis of proton structure and spin was presented to the 22nd International Spin Symposium in
Urbana-Champaign[82, 83]. The stable modes used in that analysis are highlighted in green in figure 6. Topological
inversion places the magnetic moment not with the vector electric dipole moments but rather with the axial bivectors,
and magnetic flux quantum with the dipoles, the topological poles being at infinity.

In the present analysis our interest is muon wavefunction components indicated by rectangles in figure 6, the
‘platform state’ transition modes[70] of proton topological mass generation[83]. There we find the two transition
modes eφB and φBµB and the vacuum modes φBφB and eµB that they excite, as shown in figure 7. These each
comprise a minimally complete 2D Clifford algebra - scalar electric charge e, two vector magnetic flux quanta φB ,
and a bivector magnetic moment µB . Electric charge and magnetic moment we know as components of the Dirac
spinor. What’s new in the muon wavefunction is completion of the algebra, completion of the group Cl(0, 2) by the
two vector bosons, the two identical magnetic flux quanta φB . One might suppose identity effects play a role in flux
coupling of the two muon wavefunction transition modes.

Here we have yet another example of topological symmetry breaking. By the Dirac relation eg = h/2, definition of
the magnetic flux quantum can be extended to φB = h/2e = g. In SI units magnetic flux quantum and charge are
numerically equal yet topologically distinct, one a vector and the other trivector, one visible and the other dark.

Muon lifetime/decoherence might then derive from the differing vacuum impedances and phase shifts of the nu-
merically equal but topologically distinct dark magnetic charge g and visible flux quantum φB , the subtle topological
distinction perhaps accounting for the exceptionally long muon and neutron[84, 85] lifetimes of figure 4.
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The first column of figure 7 shows four possible modes of the muon, the modes whose decoherence we seek to
delay. The first two rows correspond to green-highlighted transition modes of figure 6. Their components comprise a
minimally complete 2D Clifford algebra. The last two rows correspond to vacuum wavefunction eigenmodes excited
by those same transition modes, likewise a minimally complete 2D Clifford algebra.

FIG. 7: Wavefunction Fundamental Geometric Objects[83]

.

First row mode eφB is topological, associated with
the 1/r2 potential of quantum Hall and Aharonov-
Bohm effects. Resultant motion is perpendicular to ap-
plied force, can do no work, communicates only phase.

Second row mode φBµB is an old friend, first ex-
amined in the context of topological mass generation
of the nucleon[86], and presented in greater detail in
the analysis of proton structure and spin[82, 83]. The
vacuum wavefunction is the same at all scales, from
Planck length to Compton and deBroglie[96] in quan-
tum mechanics, and to the boundary of the observable

universe in quantum gravity[13]. What physics emerges when the vacuum wavefunction is excited depends on excita-
tion wavelength, on the energy. At any Compton wavelength, energy of the second row mode φBµB , of moment µB
in the field of flux quantum φB , is rest mass of the particle[30, 83, 86].

Third row mode φBφB is comprised of the two vector bosons that completed the 2D Clifford algebra of the muon
wavefunction relative to the electron spinor. Energy of the flux quantum φB when confined to the muon Compton
wavelength is again rest mass of the muon. This mode has no inherent dynamics, requires mode coupling to oscillate.

Fourth row mode eµB is the Dirac spinor.

5. Neutrino Wavefunctions

Muon decay µ→ e+ νµ + νe yields an electron, a muon neutrino, and an electron anti-neutrino. With decoherence,
what emerges from the interaction algebra is shown in the rightmost column of figure 7. Scalar and bivector of the
third row, highlighted in green in the table, can be taken to be electric charge e and magnetic moment µB of the
Dirac electron spinor. What remains in the rightmost column are neutrino wavefunction components.

FIG. 8: Neutrino Impedance Network

.

Given a muon model comprised of a two-component Dirac elec-
tron spinor plus two vectors, so might the three-component neutrino
be comprised of a two-component photon plus an additional com-
ponent. The two flux quanta φB and φE1 of the two photon spin
states (circled in figure 7) sit on the skew diagonal of the S-matrix
of figure 6, adjacent the main diagonal.

Neutrino lightspeed propagation requires absence of singularities,
crossing out scalars and geometric vectors in the rightmost column.
In addition to bivector φE , what remains are two vectors φB (sin-
gularities of the topological vector φB are at infinity) and one pseu-
doscalar g. Of these four, one possibility is a neutrino wavefunction
ψν = φBφE1g. Such a wavefunction ‘tumbles’ as it propagates,
longitudinal orientation of a given component determining the fla-
vor. Flavor oscillations are driven by the differing ‘dark’ vacuum
impedances excited by topological magnetic charge g of the gφB
and gφE1 modes and the consequent differential phase shifts.

The fourth component, the additional flux quantum φB , is re-
quired to differentiate muon neutrino from electron anti-neutrino,
to establish phase difference and opposite chirality. From figure 1
it can be seen that ψν is a fermion. However both spin 1/2 and
3/2 are possibilities, determined by the relative signs of spin 1/2
bivector φE1 and spin 1 trivector g.

The three two-body modes φE1φB (photon), gφB (scalar
Lorentz), and gφE1 (quantum Hall) are indicated by ellipses in fig-
ure 6, and represented by the symbols shown there in figures 4 and 8. Taking the impedance network to be that of
the vacuum wavefunction when excited by the neutrino modes, the photon mode φE1φB excites the vacuum at the
.511 MeV Compton frequency, decoupling the electric and magnetic flux quanta φE1 and φB , the one going to high
impedance and the other to low. Both excite nodes at Macgregor’s 70 MeV platform state[50] (large broken green
circles in figure 8), and beyond at the dominant ∼10 GeV bottomonium decay mode of the superheavies (smaller solid
circles), influence of the W manifesting there.
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It is perhaps here that can be found origins of chiral symmetry breaking, the solitary left-handed neutrino. The
octonion algebra of the eight-component geometric wavefunction is not three-body associative. No problem for the
two-body interactions thus far considered[28]. However, introducing the three-component neutrino manifests this
broken symmetry. In a big bang (or big bounce) model[13] this would seem to restrict the primordial photon to a
pure left-handed state, angular bivector and linear vector momenta antiparallel, perhaps respecting a principle of
total momentum conservation in that topological first instant, summing rotational and translational momenta, and
possibly accounting for antimatter’s absence.

Accepted understanding in the particle physics community is that the neutrino must have rest mass for flavor
oscillations. Rationale is that different ‘masses’ yield different Compton frequencies for the lepton generations, hence
the accumulating differential phase shifts required for oscillations. Given that phase is relative, it is not possible
to measure directly absolute mass values from flavor oscillations, but rather only to calculate ‘mass’ differences, the
relative phase shifts. The model presented here offers a complementary perspective, one of phase shifts caused by
quantized interaction impedances, one that does not require rest mass.

6. Special Relativity and Terrell Rotation

Special relativity is formulated in flat 4D Minkowski spacetime. Only one degree of freedom is required to connect
time with space in SR, with the longitudinal axis of relative motion. Relativistic lifetime enhancement τ = γτ0 follows
from increasing impedance mismatches to decay modes of figure 4 as the muon Compton wavelength shortens due to
relativistic mass increase, due to compression of wavefunction fields whose energy is particle rest mass into smaller
volumes by translation gauge fields, longitudinal E fields of the accelerating cavities supplying the additional
energy. At rest we measure the muon mass to be 105 MeV, a factor of 3/2 greater than the 70 MeV coherence line
of figure 4[86]. Relativistic mass increase shifts the muon wavelength to the left, distancing it from impedance nodes
of muon decay modes at far right of figure 4, increasing the mismatch, thereby prolonging the lifetime.

FIG. 9: Lifetime enhancement of special relativity (blue diagonal)
and phase shifts of Terrell rotation (left axis) as a function of γ.

Terrell rotation [87–90] happens on the light cone
in the full 6D phase space. Three degrees of freedom
are required for relative phases of the three possible
orthogonal orientations of geometric wavefunction
modes[14]. Gauge field of Terrell rotation is the
rotation gauge field, that of the scale-invariant
topological impedances. The premise of this note
seeks to play upon the difference between the two
as a function of Lorentz γ, as shown in figure 9.

The family of phase curves tan (θ′/2) =

tan (θ/2)
√

(c− v)/(c+ v), where θ is orientation
in lab frame and θ′ in the particle frame[89], cor-
respond to the difference between relative orienta-
tions of two wavefunctions as a function of γ and
their separation (normalized to the impact param-
eter and therefore scale invariant). So for instance
the blue 90 degree phase curve corresponds to their
closest approach, such that a line joining their tra-
jectories is perpendicular to both. For point parti-
cle wavefunctions this phase shift has no meaning
beyond ascribing it to some ‘internal’ degree of freedom. For the full eight-component geometric vacuum wavefunction
it represents a rotation gauge field whose phase shift offers the possibility of muon lifetime topological enhancement.

Maximal phase shift of 90 degrees comes when γPlanck =∼ 1021, when muon wavelength is Planck length, trans-
forming muon into antimuon, Hawking’s particle-antiparticle pairs. Phase rotates opposite inside the event horizon.
This provides a meaningful scale for the blue diagonal of figure 9, which corresponds to lifetime enhancement of special
relativity. Scale of the diagonal relative to the δθ = θ−θ′ axis at left is arbitrary, was chosen to illustrate the contrast
between linear dependence of SR lifetime enhancement on γ vs the nonlinear phase dependence of Terrell rotation,
suggests different strategies/possibilities for low and high energies.

7. Lifetime Enhancement via Topological Impedance Matching?

At first blink[91] the prospects appear dismal. Strengths of wavefunction α-quantized E and B fields at the muon
Compton wavelength are of the order 1020 volts/m and 1011 Tesla. How can one begin to hope there exists a possibility
to significantly influence the dynamics with fields accessible to practical implementation?
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We have the muon wavefunction and the vacuum modes it excites in the leftmost column of figure 7, and the
neutrino wavefunction ψν = gφBφE1 from the rightmost column. Where to go from here? Do we seek to directly
delay decoherence of the muon wavefunction, or to block coherence of the virtual neutrino wavefunction before it fully
forms? Or search for some other strategy? Where and how in the decay process do we seek to intervene?

Given that the neutrino is present in all weak decays, in the interest of generality to start there seems to be the
best choice. The numerically identical yet topologically distinct magnetic flux quantum φB and magnetic charge g
excite slightly different vacuum wavefunction quantized impedances, the differential phase shift responsible for the
‘tumbling’ mentioned earlier, the neutrino oscillations.

Such an approach, to block coherence of the virtual neutrino wavefunction before it fully forms, might seek to
introduce invariant impedances to modify that differential phase shift, to rotate the yet-cohering neutrino wavefunc-
tion away from eigenstates permitted by lepton number conservation. The obvious choice is solenoids, longitudinal
magnetic field to differentiate between linear superposition of vector flux quantum φB and virtual acceleration of dark
topological trivector magnetic charge g. How much relative phase shift of virtual neutrino wavefunction components
is required to measureably forestall coherence? How much field integral is required to accomplish this? What does
the experiment look like that seeks to measure it? Does the data already exist, in solenoidal detector fields at collider
intersections? Solenoidal fields of muon cooling experiments? Cosmic ray interactions with the earth’s magnetic field?
Muon g-2 experiments? What can be said about enhancement as a function of muon energy? Of polarization[92, 93]?
Of DC solenoid fields vs cavity TE modes?

Impedances of figures 3, 4, and 8 are parametric[62–65], providing the nonlinear mechanism of noiseless frequency
domain energy translation essential in wavefunction interactions. If it proves to be that fields achievable in the lab
are not adequate, is it possible to take advantage of parametric amplification in providing fields to counter the phase
shifts responsible for decoherence? In figures 4 and 8, might the neutrino W nodes at 10 GeV generate phase shifts via
excitation at the 13.6 eV nodes at 0.1 ohm and/or 10 megohms, for instance by synchrotron oscillations modulating
the intersection with the scale dependent impedances, low impedance nodes at 13.6 eV coupling to high impedance
at 10 GeV via the inductive dipole impedances, and/or high impedance at 13.6 eV to low impedance 10 GeV via the
capacitive monopole and scalar Lorentz impedances.

Given that figure 9 phase shifts of Terrell rotation are most pronounced at low γ [94], and that wavefunction fields
are their weakest there, it would seem the best strategy would be to shift the phase distribution of a collection of
muons (and their superposed virtual neutrinos) as much as possible as early as possible, resulting in early decay of
some and sustained coherence of others, a broadening of the distribution.

8. Claims for Geometric Algebra and the Geometric Wavefunction Interaction Model

It’s obvious in a quick browse by a reader even vaguely familiar with the Standard Model that the model presented
here is different, quite different. To be so different is a great weakness, makes the model appear irrelevant and easily
dismissed. If a valid model, then to be so different will also prove to be its greatest strength, as that permits it to
offer a compatible complementary unique perspective in mainstream areas presently regarded as most confounding
and paradoxical.

For the purpose of encouraging the reader to invest the modest time and effort needed to properly appraise the
model as applied to muon colliders, the following claims are put forth, in the hope that their scope might inspire a
hard critical look.

Claims for Geometric Algebra

In the preface to the newly published second edition of his seminal text[36], Professor Hestenes makes four “bold and
explicit... claims for innovation” in SpaceTime Algebra, the Pauli and Dirac algebras of 3D space and 4D spacetime:

• STA enables a unified, co-ordinate free formulation for all of relativistic physics, including the Dirac equation,
Maxwell’s equation, and General Relativity. STA is background independent.

• Pauli and Dirac matrices are represented in STA as basis vectors in space and spacetime respectively, with no
necessary connection to spin.

• STA reveals that the unit imaginary in quantum mechanics has its origin in spacetime geometry.

• STA reduces the mathematical divide between classical, quantum, and relativistic physics, especially in the use
of rotors for rotational dynamics and gauge transformations.

The preface encourages making such claims, lest the innovations be overlooked. “Modestly presenting evidence and
arguing a case is seldom sufficient.”[36] In this spirit, the following “bold and explicit” claims are made for the model
of geometric wavefunction interactions, for the GWI model.
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Claims for the GWI Model

• photon-electron interaction - Dirac spoke to the core of the model in asserting that

“Until we have a really satisfactory explanation of how electrons and photons interact, it will hardly be possible
to go on and explain the other particles.”[95]

Synthesis of geometric wavefunctions and impedance quantization provides “a really satisfactory explanation”.

• natural - The model is arguably maximally natural, satisfies the commonly accepted criteria - simplicity,
small dimensionless numbers, absence of fine-tuning, scale invariance, robustness, emergence,... most desireable
properties given discovery of the desert at the LHC[3–14].

• gauge invariant - Impedances shift phases, provide a coherent alternative formulation of the effect of the
covariant derivative. GWI is naturally gauge invariant.

• finiteness - Impedance mismatches provide natural QED cutoffs. Both singularity and the boundary at infinity
are decoupled by the infinite quantum impedance mismatches. No renormalization. GWI is naturally finite.

• confinement - Confinement is the flip side of finiteness. Energy is reflected from mismatches, back to matched
impedance nodes at the wavefunction wavelength, be it Planck, Compton, deBroglie[96],... GWI contains the
strong and weak nuclear forces, is naturally confined.

• asymptotic freedom follows from exact matching at wavefunction impedance network nodes.

• background independence - In STA, motion is described with respect to the object in question. Similarly,
in the two body problem motion is with respect to one of the two. There is no background. GWI is naturally
background independent, a requirement for calculating impedances from Mach’s principle[28]

• gravitation - Matching quantized impedances at the Planck scale reveals an exact identity between electro-
magnetism and gravity[59].

• origin of mass is found in electromagnetic energy of wavefunction fields.

• all scales - The model is effective at all scales. Mis-interpretation of the measured running of α results from
overlooking impedance quantization, from conflating running and mismatching.[97]

• heirarchy - Absence of renormalization and presence of inert vacuum wavefunction in flat space of Pauli and
Dirac algebras resolve the heirarchy problems of both Higgs mass and cosmological constant.

• string theory - Assignment of E and B fields to the octonion vacuum wavefunction yields a representation of
ten ‘dimensional’ string theory in the ten degrees of freedom of the GWI model in flat 4D Minkowski spacetime.

• quantum interpretation - GWI wavefunctions exist as electromagnetic fields configured as geometric objects
in 3D space, interacting via Maxwell’s equations in a network of quantized impedances.

Wavefunctions and their interactions can be visualized. This permits resolution of many if not all paradoxes
found in proliferating worlds of quantum interpretations[66, 67, 82, 85].

9. Summary

In the Introduction, Professor Rubbia’s call for courage set the stage. In response came the conjecture that there
might exist a source of phase in rotation gauge fields of well-chosen accelerator impedances to complement the muon
lifetime enhancement of the Lorentz transform’s translation gauge fields. It was followed by an abbreviated historical
persective on the absence of impedance quantization from quantum field theory.

The first section introduced the reader to the vacuum wavefunction of the geometric representation of Clifford
algebra - one scalar, three vectors, three bivectors, and one trivector.

The second section assigned topologically appropriate quantized E and B fields to the eight wavefunction components
via combinations of the four fundamental constants that define the electromagnetic coupling constant α.

Impedance matching to the hydrogen atom was introduced in the third section and generalized to the unstable
particle spectrum, providing beyond Standard Model explanations of lifetimes and branching ratios.

The fourth section employed geometric algebra of muon wavefunction modes (previously identified in an analysis
of proton structure and spin) to determine geometric grades of the emerging decay products.

This permitted identification of neutrino wavefunction components in the fifth section.

The differing energy dependencies of muon lifetime enhancement via special relativity (translation gauge field)
and topological impedance matching (rotation gauge field) suggested the scheme outlined in sections six and seven,
followed by a series of claims for GA and the GWI model.
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Conclusion

Hestenes said be bold. Rubbia said have courage. It suffices to be neither bold nor courageous, only tenaciously
curious. This draft is highly speculative, surely contains much that is wrong, with many branch points in the
perspective outlined here. However, it contains much that is right. Proton stabilizes neutron...

Dedication

Many heartfelt thanks to Professors Alan Krisch and Kent Terwilliger, consummate experimentalists and first-class
accelerator physicists, gentlemen kind and true.
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