
ON THE ERDŐS-ULAM PROBLEM IN THE PLANE

T. AGAMA

Abstract. In this paper we apply the method of compression to construct

a dense set of points in the plane at rational distance from each other. We

provide a positive solution to the Erdős-Ulam problem.

1. Introduction and statement

The Erdős-Ulam problem is a question about the possible existence of dense set
of points in the plane at rational distances from each other. More formally, the
problem states

Problem 1. Is there a dense set of points in a plane at rational distances from each
other?

Albeit the Erdős-Ulam problem remained unsolved until now, there has been
various studies concerning the rational distances between pairs of points in a plane.
An important observation has been made in [1], which shows that the only algebraic
curves containing dense set of points at rational distances from each other are
circles and lines. In this paper however, we provide a positive solution to the
problem. We start by introducing and developing the topology of compression of
points in space.

2. Preliminary results

Definition 2.1. By the compression of scale m > 0 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective map. Suppose
Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(

m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.
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It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective.

2.1. The mass of compression.

Definition 2.3. By the mass of a compression of scale m > 0 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Remark 2.4. Next we prove upper and lower bounding the mass of the compression
of scale m > 0.

Proposition 2.1. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m

n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m

n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.5. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 −
m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣.
2.2. The ball induced by compression. In this section we introduce the notion
of the ball induced by a point (x1, x2, . . . , xn) ∈ Nn under compression of a given
scale. We launch more formally the following language.

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then by the ball induced by (x1, x2, . . . , xn) ∈ Nn under compression of scale m,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].
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A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality.

Remark 2.7. In the geometry of balls under compression of scale m > 0, we will
make use of the implicit assumption that

0 < m ≤ 1.

Next we prove that smaller balls induced by points should essentially be covered
by the bigger balls in which they are embedded. We state and prove this statement
in the following result.

For simplicity we will on occasion choose to write the ball induced by the point
~x = (x1, x2, . . . , xn) under compression as

B 1
2G◦Vm[~x][~x].

We adopt this notation to save enough work space in many circumstances. We first
prove a preparatory result in the following sequel. We find the following estimates
for the compression gap useful.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+ m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn

=

n∑
i=1

x2
i + m2

n∑
i=1

1

x2
i

− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
− 2mn

+ O

(
m2M◦ V1[(x2

1, . . . , x
2
n)]

)
for (x1, x2, . . . , xn) ∈ Nn.

Proposition 2.2 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] < G ◦ Vm[~y]

if and only if ||~x|| < ||~y|| for ~x, ~y ∈ Nn. This important transference principle will
be mostly put to use in obtaining our results.

Lemma 2.8 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 and
xi 6= xj for i 6= j, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2
j ) + m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn
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and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2
j ) + m2 log

(
1− n− 1

sup(x2
j )

)−1
− 2mn.

Theorem 2.9. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] < G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] ≥ G ◦ Vm[~y],

then it follows that ||~y|| ≤ ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] < G ◦ Vm[~y]

then it follows from Proposition 2.2 that ||~z|| < ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 2.10. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.9 that

G ◦ Vm[~z] ≥ G ◦ Vm[~x].

It follows that

G ◦ Vm[~y] > G ◦ Vm[~z]

≥ G ◦ Vm[~x]

> G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.11. Theorem 2.10 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.
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2.3. Interior points and the limit points of balls induced under compres-
sion. In this section we launch the notion of an interior and the limit point of
balls induced under compression. We study this notion in depth and explore some
connections.

Definition 2.12. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then a point ~z ∈ B 1

2G◦Vm[~y][~y] is an interior point of the ball if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for most ~x ∈ B 1
2G◦Vm[~y][~y]. An interior point ~z is then said to be a limit point of

the ball if

B 1
2G◦Vm[~z][~z] ⊆ B 1

2G◦Vm[~x][~x]

for all ~x ∈ B 1
2G◦Vm[~y][~y]

Remark 2.13. Next we prove that there must exists an interior and limit point in
any ball induced by points under compression of any scale in any dimension.

Theorem 2.14. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then the ball B 1

2G◦Vm[~x][~x] contains an interior point and a limit point.

Proof. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n and
suppose on the contrary that B 1

2G◦Vm[~x][~x] contains no limit point. Then pick

~z1 ∈ B 1
2G◦Vm[~x][~x].

Then by Theorem 2.10 and Theorem 2.9 It follows that

B 1
2G◦Vm[~z1][~z1] ⊂ B 1

2G◦Vm[~x][~x]

with G ◦ Vm[~z1] < G ◦ Vm[~x]. Again pick ~z2 ∈ B 1
2G◦Vm[~z1][~z1]. Then by employing

Theorem 2.10 and Theorem 2.9, we have

B 1
2G◦Vm[~z2][~z2] ⊂ B 1

2G◦Vm[~z1][~z1]

with G◦Vm[~z2] < G◦Vm[~z1]. By continuing the argument in this manner we obtain
the infinite descending sequence of the gap of compression

G ◦ Vm[~x] > G ◦ Vm[~z1] > G ◦ Vm[~z2] > · · · > G ◦ Vm[~zn] > · · ·
thereby ending the proof of the theorem. �

2.4. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.15. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.16. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.
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Theorem 2.17. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.9, we obtain the inequality

G ◦ Vm[~y] ≤ G ◦ Vm[~z] < G ◦ Vm[~x].

It follows from Proposition 2.2 that ||~y|| < ||~x||. This contradicts the fact that
the point ~y is an admissible point of the ball B 1

2G◦Vm[~x][~x] by joining ~x and ~y to

the origin. The latter equality follows from the requirement that the balls are
indistinguishable. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the indistinguishable balls and must satisfy the equality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

2.5. The dilation of the ball induced by compression. In this section we
introduce the notion of the dilation of balls induced by points under compression.
We study this in relation to other concepts of compression.

Definition 2.18. Let ~x = (x1, x2, . . . , xn) ∈ Nn and Vm : Rn −→ Rn be a com-
pression of scale m. Then by the dilation of the induced ball B 1

2G◦Vm[~x][~x] by a

scale factor of t > 0, we mean the map

B 1
2G◦Vm[~x][~x] −→ Bt1

2G◦Vm[~x][~x] = B 1
2G◦Vm[t~x][t~x].

Remark 2.19. Next we show that we can in practice embed all balls in their positive
dilation.

Proposition 2.3. Let ~x = (x1, x2, . . . , xn) ∈ Nn. For all t > 1, we have

B 1
2G◦Vm[~x][~x] ⊂ Bt1

2G◦Vm[~x][~x] = B 1
2G◦Vm[t~x][t~x].
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Proof. First let ~x = (x1, x2, . . . , xn) ∈ Nn and take t > 1. Suppose

B 1
2G◦Vm[~x][~x] 6⊂ Bt1

2G◦Vm[~x][~x] = B 1
2G◦Vm[t~x][t~x].

Then it follows that there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that ~z /∈ Bt1

2G◦Vm[~x]
[~x] =

B 1
2G◦Vm[t~x][t~x]. By Theorem 2.9, It follows that

G ◦ Vm[~x] > G ◦ Vm[~z]

≥ G ◦ Vm[t~x]

> tG ◦ Vm[~x].

This is absurd since t > 1, and the proof is complete. �

The result in Proposition 2.3 can be thought of as an analogue of most embedding
theorems. It tells us for the most part we can in principle cover all balls of various
sizes by their dilates. Next we show that dilation of balls and their sub-balls still
preserves an embedding in the ball. We formalize this assertion in the following
proposition.

Proposition 2.4. Let ~y ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x]. Then for any t > 1, we have

Bt1
2G◦Vm[~y][~y] ⊆ Bt1

2G◦Vm[~x][~x].

Proof. First suppose ~y ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x]. Then by Theorem 2.10, it

follows that

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x]

and it follows from Proposition 2.2 that ||~y|| < ||~x||. Now suppose on the contrary
that

Bt1
2G◦Vm[~y][~y] 6⊆ Bt1

2G◦Vm[~x][~x].

Then it follows that there exist some ~z ∈ Nn with ~z ∈ Bt
1
2G◦Vm[~y]

[~y] such that

~z /∈ Bt1
2G◦Vm[~x]

[~x]. By appealing to Theorem 2.9, it follows that

G ◦ Vm[t~y] > G ◦ Vm[~z]

≥ G ◦ Vm[t~x].

This certainly implies ||t~x|| < ||t~y|| for t > 1 by appealing to Proposition 2.2. This
is a contradiction, and the proof of the Proposition is complete. �

2.6. The order of points in the ball induced under compression. In this
section we introduce the notion of the order of points contained in balls induced
under compression on points in Nn. We launch the following formal language.

Definition 2.20. Let ~y = (y1, y2, . . . , yn) ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x]. Then we

say the point ~y is of order t > 0 in the ball if ~x ‖ ~y and there exist some t > 0 such
that

Bt1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x].

Otherwise we say the point ~y is free in the ball.
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Remark 2.21. Next we show that the existence of order of points in a ball induced
by points under compression is mostly in continuum. We formalize this claim in
the following proposition.

Proposition 2.5. Let ~x, ~y, ~z ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x] and B 1

2G◦Vm[~x][~x] ⊂
B 1

2G◦Vm[~z][~z]. If the point ~y ∈ B 1
2G◦Vm[~x][~x] is of order t > 1 and the point ~x ∈

B 1
2G◦Vm[~z][~z] is of order s > 1. Then the point

~y ∈ B 1
2G◦Vm[~z][~z]

is of order st > 1.

Proof. First suppose ~x, ~y, ~z ∈ Nn with ~y ∈ B 1
2G◦Vm[~x][~x] and B 1

2G◦Vm[~x][~x] ⊂ B 1
2G◦Vm[~z][~z].

Then by Theorem 2.10, we have the following chains of ball embedding

B 1
2G◦Vm[~y][~y] ⊂ B 1

2G◦Vm[~x][~x] ⊂ B 1
2G◦Vm[~z][~z].

Since ~y ∈ B 1
2G◦Vm[~x][~x] is of order t > 1, It follows that

Bt1
2G◦Vm[~y][~y] = B 1

2G◦Vm[t~y][t~y]

= B 1
2G◦Vm[~x][~x]

and by appealing to Theorem 2.9, G ◦ Vm[t~y] = G ◦ Vm[~x] and it follows that
||t~y|| = ||~x||, by Proposition 2.2. Again the point ~x ∈ B 1

2G◦Vm[~z][~z] is of order s > 1

and it follows that

Bs1
2G◦Vm[~x][~x] = B 1

2G◦Vm[s~x][s~x]

= B 1
2G◦Vm[~z][~z].

By appealing to Theorem 2.9, It follows that G◦Vm[s~x] = G◦Vm[~z] and ||s~x|| = ||~z||.
By combining the two relations, we have

st||~y|| = ||~z||

It follows that st~y = ~z and the result follows immediately. �

3. Application to the Erdős-Ulam problem

In this section we apply the topology to the Erdős-Ulam problem in the following
sequel. We first launch the following preparatory results.

Proposition 3.1. The point ~x = (x1, x2, . . . , xn) with xi = 1 for each 1 ≤ i ≤ n is
the limit point of the ball B 1

2G◦V1[~y][~y] for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1

for each 1 ≤ i ≤ n.

Proof. Applying the compression V1 : Rn −→ Rn on the point ~x = (x1, x2, . . . , xn)
with xi = 1 for each 1 ≤ i ≤ n, we obtain V1[~x] = (1, 1, . . . , 1) so that G ◦V1[~x] = 0
and the corresponding ball induced under compression B 1

2G◦V1[~x][~x] contains only

the point ~x. It follows by Definition 2.14 the point ~x must be the limit point of the
ball B 1

2G◦V1[~x][~x]. It follows that

B 1
2G◦V1[~x][~x] ⊆ B 1

2G◦V1[~y][~y]

for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for all 1 ≤ i ≤ n. For if the contrary

B 1
2G◦V1[~x][~x] 6⊆ B 1

2G◦V1[~y][~y]
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holds for some ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for each 1 ≤ i ≤ n, then there
must exists some point ~z ∈ B 1

2G◦V1[~x][~x] such that ~z 6∈ B 1
2G◦V1[~y][~y]. Since ~x is the

only point in the ball B 1
2G◦V1[~x][~x], it follows that

~x 6∈ B 1
2G◦V1[~y][~y].

Appealing to Theorem 2.9, we have the corresponding inequality of compression
gaps

G ◦ V1[~x] > G ◦ V1[~y]

so that by appealing to Proposition 2.2 and the ensuing remarks, we have the
inequality of their corresponding distance relative to the origin

||~x|| > ||~y||.

This is a contradiction, since by our earlier assumption ~y = (y1, y2, . . . , yn) ∈ Rn

with yi > 1 for each 1 ≤ i ≤ n. Thus the point ~x = (x1, x2, . . . , xn) with xi = 1 for
each 1 ≤ i ≤ n must be the limit point of any ball of the form

B 1
2G◦V1[~y][~y]

for any ~y = (y1, y2, . . . , yn) ∈ Rn with yi > 1 for each 1 ≤ i ≤ n. �

Lemma 3.1. Let ~x ∈ Nn with m ∈ N. Then G ◦ Vm[~x]× G ◦ Vm[~x] ∈ Q. That is,
the square of compression gap induced on the point ~y ∈ Nn is always rational.

Proof. Suppose ~x = (x1, x2, . . . , xn) ∈ Nn and let m ∈ N, then by invoking Propo-
sition 2.2, we have

G ◦ Vm[~x]× G ◦ Vm[~x] =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+ m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn.

The result follows since

M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
, m2M◦ V1[(x2

1, . . . , x
2
n)], 2mn ∈ Q

thereby proving the Lemma. �

Lemma 3.2. Let ~x ∈ Nn with G ◦ Vm[~x] > 1 , then

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ B 1

2G◦Vm[G◦Vm[~x]~x][G ◦ Vm[~x]~x].

Proof. Suppose ~x ∈ Nn and let G ◦ Vm[~x] > 1. First, we notice that the two balls
so constructed

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] and B 1

2G◦Vm[G◦Vm[~x]~x][G ◦ Vm[~x]~x]

are centered at the same point. Thus it suffices to show that

(G ◦ Vm[~x])2 ≤ G ◦ Vm[G ◦ Vm[~x]~x].

Now let us set t = G ◦ Vm[~x] > 1. Then we obtain

G ◦ Vm[t~x] > tG ◦ Vm[~x]

and the result follows by substitution. �

Remark 3.3. We are now ready to prove the Erdős-Ulam conjecture. We assemble
the tools we have developed thus far to solve the problem.
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3.1. Main result. In this section we assemble the tools we have developed thus far
to solve the Erdős-Ulam problem. We provide a positive solution to the problem
as espoused in the following result.

Theorem 3.4. There exists a dense set of points in R2 at rational distances from
each other.

Proof. Pick arbitrarily ~x ∈ N2 and apply the compression Vm[~x] for m ∈ N. Con-
sider the ball induced under compression B 1

2G◦Vm[~x][~x]. Now dilate the ball with

the scale factor t = G ◦Vm[~x] > 1, then by Lemma 3.2 we obtain the embedding of
balls

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ B 1

2G◦Vm[G◦Vm[~x]~x][G ◦ Vm[~x]~x].

Let us now consider the inner ball, centered at the same point as the outer ball,
but of rational radius by Lemma 3.1

1

2
(G ◦ Vm[~x])2.

For each admissible point ~z of B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x] we join with a line to the

admissible point exactly opposite. These two points are at rational distances

1

2
(G ◦ Vm[~x])2 +

1

2
(G ◦ Vm[~x])2 = (G ◦ Vm[~x])2

from each other. We remark that the point ~z ∈ R2 is an arbitrary admissible point
and are dense on the ball. Since there exist dense set of points on circles of this
form at rational distance from each other there are arbitrarily and infinitely many
rational distance chords at all directions and lines sufficiently close to each other
and of rational distances joining admissible points of the ball

B 1
2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x].

We construct sequence of embedding of balls in the following manner

B 1
2n (G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ · · · ⊂ B 1

2 (G◦Vm[~x])2 [G ◦ Vm[~x]~x]

for n ≥ 2. The upshot is concentric balls all centered at the same point with
successively smaller radius

1

2n
(G ◦ Vm[~x])2

for n ≥ 2. We remark that the lines drawn joining points on the bigger ball will
also join points on the smaller balls at rational distance. The distance of points on
different balls on the same line are also at rational distance from each other. That
is, if ~s1 ∈ B 1

2 (G◦Vm[~x])2 [G ◦Vm[~x]~x] and ~s2 ∈ B 1
4 (G◦Vm[~x])2 [G ◦Vm[~x]~x] and ~s1 and ~s2

sit on the same line, then they must be of rational distance

1

2
(G ◦ Vm[~x])2 − 1

4
(G ◦ Vm[~x])2 =

1

2
(G ◦ Vm[~x])2

by Lemma 3.1. In general, the radius of the annular region of successive balls so
constructed is rational given by

1

2n
(G ◦ Vm[~x])2 − 1

2(n + 1)
(G ◦ Vm[~x])2 =

1

2n(n + 1)
(G ◦ Vm[~x])2
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for n ∈ N for all n ≥ 1. Again we construct sequence of embedding of balls centered
at the same point as before below

B 1+2n
4n(n+1)

(G◦Vm[~x])2 [G ◦ Vm[~x]~x] ⊂ · · · ⊂ B 3
8 (G◦Vm[~x])2 [G ◦ Vm[~x]~x]

for n ∈ N with n ≥ 2. Admissible points of each of these balls are at rational
distances away from the admissible point exactly opposite. That is, they are

1 + 2n

2n(n + 1)

for n ≥ 1. It is not difficult to see that we can embed this sequence of ball embedding
into the a priori sequence of ball embedding. By carrying out the argument in this
manner repeatedly, we then generate a dense set of points ~sn ∈ R2 as admissible
points of infinitely many embedding that are at rational distance from each point
on same line as radii of the annular regions induced by concentric balls. Now for
the largest ball so constructed, let us locate the center and chop into sectors of
equal area, so that each sector subtends an angle of 120o at the center. We remark
that this configuration is propagated on all the concentric balls constructed, so that
it suffices to analyse the situation in only one ball. Let us choose arbitrarily a ball
contained in any of the constructed embedding

Bl(G◦Vm[~x])2 [G ◦ Vm[~x]~x].

Next let us pick an admissible point ~y ∈ Bl(G◦Vm[~x])2 [G ◦ Vm[~x]~x] and on one of
the sectors constructed and join to the admissible point on a different sector by a
straight line. Let us locate dense set of admissible points of embedded concentric
balls that are contained in the ball Bl(G◦Vm[~x])2 [G ◦ Vm[~x]~x] and on the same line
and at rational distance with the admissible point ~y and join them to corresponding
admissible points on the different sector - as before - with a straight line so that
it is parallel with the chord above. It follows from this construction a portrait of
piled up isosceles trapezoid and one isosceles triangle with one vertex as the center
of the ball. This is the consequence of chopping the sector of the bigger ball by
mutually parallel lines.
Let us now consider the isosceles triangle produced with one vertex at the center
and denote the length of the lateral sides to be T units, where T is rational. Then
it follows that the base length - which is also the length of the shorter side of a
parallel side of the next trapezoid is given by

2T
√

3 units.

Next we construct the intersecting diagonals in each of the isosceles trapezoid. It
is important to note that the diagonals of are equal length and their intersections
produce two equilateral triangles below and above and inside the trapezoid, with
the base of the triangle becoming the base of the smaller triangle induced. Let K
units denotes the length of the longer lateral side of the isosceles triangle whose
base is the longest chord in the ball Bl(G◦Vm[~x])2 [G ◦ Vm[~x]~x] of rational length by
virtue of our construction, we obtain the length of each diagonal as

2T
√

3 + 2S
√

3 = (2T + 2S)
√

3 units.

Next let us apply the reduction map by a scale factor
√

3 to the parallel sides of
the trapezoid given as

R√3 : Trap −→ Trap√3
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while keeping the length of the legs unchanged. Then the length of the diagonals
of the new trapezoid are now rational and is given by

|DiagTrap| = (2T + 2S) units

since S, T ∈ R. By shrinking the old isosceles trapezoid by a fixed rational scale
factor and throwing away vertices of the old isosceles trapezoid to obtain another
new isosceles trapezoid covered by the a prior old one and subsequently applying
the reduction map to the parallel sides

R√3 : Trap −→ Trap√3

while keeping the length of the legs unchanged, we obtain a new isosceles trape-
zoid covered by the a prori newly reduced version of scale factor

√
3. Next let us

throw away the reduced isosceles trapezoid of the old one of rational scale factor.
By repeating the process, we generate a dense set of points as vertices of the new
isosceles trapezoid which are at rational distance from each other and remaining
vertices of all other reduced isosceles trapezoid of scale factor

√
3 from the construc-

tion and covering this new one. That is each vertex of the new isosceles trapezoid
is at rational distance from the remaining vertices of the isosceles and all other
isosceles trapezoid in the sector. This completes the proof, since the radius of the
ball is determined by the point ~x ∈ N2 under compression and this point can be
chosen arbitrarily in space and the trapezoid in our construction are dense in the
sector by virtue of our construction. That is, we can cover the entire plane with
this construction by arbitrarily taking points far away from the origin. �
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