
A four circle problem and division by zero

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan

e-mail: hokmr@yandex.com

Abstract. We generalize a problem involving four circles and a triangle, and
consider some limiting cases of the problem by division by zero.
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1. Introduction

We generalize the following problem involving four circles and a triangle in [20].
The same sangaku problem was proposed in 1826 and cited in [19] and [1] with
no solution. Some limiting cases of the problem will be considered by division by
zero [6].
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Figure 1.

Problem 1. For a triangle EFG with incircle α, δ is the circle passing through
E and F and touching α, γ is the incircle of the curvilinear triangle made by δ
and the sides EF and GE, and β is the circle touching δ and FG at the midpoint
from the side opposite to α. Let a, b and c be the radii of α, β and γ, respectively.
Show a2 = 4bc.

A similar sangaku problem considering the case |EF | = |GE| can be found in
[2, p. 302].

2. Generalization

The problem assumes that α is the incircle of EFG, but we show that the condition
is inessential. We consider the following figure (see Figure 2): For a chord FG of
a circle δ, M is the midpoint of FG, β is a circle touching δ and FG at M , α is a
circle touching δ and the chord FG from the side opposite to β, f and g are the
tangents of α from the points F and G, respectively, γ is the circle lying on the
same side of FG as α and touching δ externally and f and g from the same side
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2 A four circle problem and division by zero

as α. Let a, b, c and d be the radii of α, β, γ and δ, respectively. We denote this
configuration by S.
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Figure 2: The configuration S.
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Figure 3: 4b = a = c

We use a rectangular coordinate system with origin M such that the center of
α has coordinate (xa, a) for a real number xa. Firstly we consider a special case
in which f and g are parallel (see Figure 3).

Theorem 1. The following statements are equivalent for S.
(i) The lines f and g are parallel.
(ii) The center of α lies on the circle of diameter FG.
(iii) a = 4b.

Proof. We may assume that the point G has coordinates (k, 0), and f and g have
equations x+m1y+ k = 0 and x+m2y− k = 0, respectively for real numbers m1

and m2. Since f and g touch α, we have

(1) m1 =
a2 − (k + xa)

2

2a(k + xa)
, m2 = −a2 − (k − xa)

2

2a(k − xa)
.

Notice that k2 − x2
a ̸= 0, since k2 − x2

a = 0 implies that α touches FG at F or G.
The lines f and g are parallel if and only if m1 = m2, which is equivalent to

(2) a2 + x2
a = k2.

This proves the equivalence of (i) and (ii), since the left side equals the square of
the distance between the center of α and M (see Figure 3). While the square of
the distance between the centers of δ and α equals

(3) x2
a + (d− 2b− a)2 = (d− a)2.

And the power of the origin with respect to δ equals

(4) − 2b(2d− 2b) = −k2.

Eliminating d from (3) and (4), we get xa2 + 4ab = k2, which implies

a2 + xa2 − k2 = a(a− 4b).

Hence (2) and a = 4b are equivalent, i.e., (i) and (iii) are equivalent. □
Corollary 1. One of the three relations 4b < a < c, 4b = a = c, 4b > a > c holds
for S.
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Figures 2, 3 and 4 show the cases 4b > a > c, 4b = a = c and 4b < a < c,
respectively. The next theorem is a generalization of Problem 1.

Theorem 2. The following statements hold.
(i) The relation a2 = 4bc holds.
(ii) One of the internal common tangents of α and γ is parallel to FG.

Proof. We use the same notation as in the proof of Theorem 1. If f and g are
parallel, we get a = c. Therefore we get a2 = 4bc by Theorem 1. We assume that
f and g intersect. We denote the point of intersection by E, which has coordinates

(5) (xe, ye) =

(
k(m1 +m2)

m1 −m2

,
−2k

m1 −m2

)
.

Substituting (1) in (5), we get

(6) (xe, ye) =

(
xa −

2a2xa

a2 − k2 + x2
a

, 2a− 2a3

a2 − k2 + x2
a

)
.

The square of the distance between the centers of δ and γ equals

(7) x2
c + (d− 2b− yc)

2 = (c+ d)2,

where (xc, yc) are the coordinates of the center of γ. Since E is the external center
of similitude of α and γ, we get

(8)
−cxa + axc

a− c
= xe,

−ca+ ayc
a− c

= ye.

Eliminating xa, xc, yc, xe, ye and d from (3), (4), (6), (7), (8), we get

(a2 − 4bc)j(k) = 0,

where j(k) = 4(a− 4b)b2− (4b− c)k2. If j(k) = 0, we have k2 = 4(a− 4b)b2/(4b−
c) > 0. This implies a < 4b < c or c < 4b < a. However this contradicts Corollary
1. Therefore we get j(k) ̸= 0, which implies a2 = 4bc.

We prove (ii). If f and g are parallel, the centers of α, γ and M are collinear,
i.e., xa/a = xc/yc. Eliminating b, c, k, xa, xc from the equations xa/a = xc/yc,
a = c, a = 4b, (3), (4) and (7), we get

(3a− yc)((a+ 4d)a+ (4d− a)yc) = 0.

Therefore we get yc = 3a = 2a+ c, since (4d− a)yc > 0. If f and g intersect, we
eliminate b, k, xa, xc, xe, ye from (3), (4), (6), (7), (8). Then we get

(2a+ c− yc)((a+ 4d)c+ (4d− a)yc) = 0.

Therefore we get yc = 2a+ c. This proves (ii). □
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Figure 4: The configuration S in the case 4b < a < c.

There are several sangaku problems stating the next corollary [2, p. 312, p.
317, p. 419] (see Figure 5).

Corollary 2. For a semicircle δ with diameter FG, let α be the circle of radius a
touching δ and FG at the midpoint. If c is the inradius of the curvilinear triangle
made by δ and the tangents of α from the points E and F , then a = 4c.
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The next corollary can be found in the sangaku hung in 1830 [3, p. 40], which
is incorrectly cited in [1, p. 34] (see Figure 6).

Corollary 3. For the configuration S, let α′ be a circle of radius a′ touching
the circle δ and its chord FG from the side opposite to α. If the inradius of the
curvilinear triangle made by δ and the tangents of α′ from F and G equals c′, then
a2a′2 = cc′|FG|2.

Proof. Let b′ be the radius of the circle touching δ and FG at the midpoint from the
side opposite to α′. Then we have a′2 = 4b′c′, while |FG|2 = 16bb′ and a2 = 4bc.
Eliminating b and b′ from the three equations, we get a2a′2 = |FG|2cc′. □
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3. Limitimg cases with division by zero

In this section we fix the circle δ for S and consider the case where one of the
circles α and β has radius 0 with the definition of division by zero [6]:

(9)
z

0
= 0 for a complex number z.

Notice that the definition implies that lines have radius 0 as circles [17].

We now consider a simple case in which the centers of α, β and γ are collinear
for S and use a rectangular coordinate system with origin at the point of tangency
of β and δ such that the center of δ has coordinates (0, d). The point of tangency
of γ and δ and the tangent of δ at the point are denoted by D and t, respectively
(see Figure 7). Notice that d = a+ b.
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Figure 7.

3.1. The case b = 0. Firstly we consider the case b = 0. Then β is a point or a
line. The circle α has an equation x2+(y− (b+d))2 = (b−d)2, which is arranged
as

(10) fa(x, y) = (x2 + (y − d)2 − d2) + 2b(2d− y) = 0.

From fa = 0, we get x2 + (y − d)2 = d2 in the case b = 0. Also from fa/b = 0 we
get y = 2d in the case b = 0 by (9). Hence α coincides with the circle δ or the
line t in the case b = 0.

The circle β has an equation

fb(x, y) = (x2 + y2)− 2by = 0.

From fb = 0 we get x2 + y2 = 0 in the case b = 0. Also from fb/b = 0 we get
y = 0 in the case b = 0 by (9). Hence β coincides with the origin or the x-axis in
this case.

The circle γ has an equation x2 + (y− 2d− c)2 = c2, where c = (d− b)2/(4b),
which is arranged as.

fc(x, y) =
d2

2b
(2d− y) +

(
x2 +

(
y − 3d

2

)2

− d2

4

)
+

b

2
(2d− y) = 0.
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From fc = 0 we get x2 + (y − 3d/2)2 = (d/2)2 in the case b = 0. Also from each
of fcb = 0 and fc/b = 0 we get y = 2d in the case b = 0. Hence γ coincides with
the line t or the circle of radius d/2 touching δ at D in this case.

When β approaches to the origin, the circles α and γ approach to δ and
t, respectively. Therefore we can consider that α and γ coincide with δ and
t, respectively when β degenerates to the origin, (see Figure 8). The relation
a2 = 4bc does not holds in this case, but a2/b = 4c and a2/c = 4b hold by (9),
since the radius of t equals 0.

When β coincides with the x-axis, we can thereby consider that α and γ
coincides with t and the circle of radius d/2 touching δ at D, respectively as the
remaining case (see Figure 9). The relation a2 = 4bc holds in this case.
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case α β γ relation of the radii
1 δ origin t a2/b = 4c, a2/c = 4b
2 t x-axis circle of radius d/2 touching δ at D a2 = 4bc

Table 1: b = 0.

We summarize the results in Table 1. The case 1 described in Figure 8 is
supposable without (9). But (9) enable us to get the case by algebraic manipu-
lation. On the other hand, the case 2 described in Figure 9 can not be obtained
without (9). In this case d = a+ b does not hold, but still can be considered that
α and β touch. However we cannot attain a reasoned interpretation for this case
at the current moment. A similar phenomenon, in which a circle of half the radius
appears, can be found in [8].

3.2. The case a = 0. We now consider the case a = 0. Substituting b = d− a in
(10), we get

fa = (x2 + (y − 2d)2) + 2a(y − 2d) = 0.

Hence we get x2+(y−2d)2 = 0 or y = 2d in the case a = 0. Therefore α coincides
with D or t in this case. Similarly we have

fb = (x2 + (y − d)2 − d2) + 2ay = 0.

Therefore we get x2 +(y− d)2 = d2 or y = 0 in the case a = 0. Hence β coincides
with δ or the x-axis in the case a = 0. Also we have

fc = 2d(x2 + (y − 2d)2) + 2a(x2 + (y − 2d)2) + a2(2d− y) = 0.

Therefore we get x2+(y−2d)2 = 0 or y = 2d in the case a = 0. Hence γ coincides
with D or t in this case.
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When α approaches to D, β and γ approach to δ and D, respectively. Hence
we consider that β and γ coincide with δ and D, respectively when α coincides
with D (see Figure 10). As the remaining case β and γ coincide with the x-axis
and t, respectively when α coincides with t (see Figure 11).

We summarize the results in Table 2. The case 3 described in Figure 10 is
supposable without (9). On the other hand, the case 4 described in Figure 11 can
not be obtained without (9). However we cannot attain a reasoned interpretation
for this case at the current moment.

t
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Figure 10.
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Figure 11.

case α β γ relation of the radii
3 D δ D a2 = 4bc
4 t x-axis t a2 = 4bc

Table 2: a = 0.

For a brief introduction of division by zero with Wasan geometry see [14], and
its application to Wasan geometry see [4], [8], [9, 10, 11, 12, 13], [15]. For an
extensive reference of division by zero and division by zero calculus, see [17].

4. Incorrect sangaku problems

In [16] we have considered two incorrect sangaku problems in [5, p. 69, p. 123],
each of which can also be found in [7] and [21], respectively.

β
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Figure 12: The figures in [5], [21].
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Figure 13: The figure in [5].

The problems and the answers are almost the same as Problem 1, i.e., they
demand to show the relation a2 = 4bc for three circles α, β and γ of radii a, b and c,
respectively. However the figures are slightly different as shown in Figures 12 and
13. The figure in [21] is also the same as Figure 12. It seems that those problems
were correct and essentially the same as Problem 1 in the original context but the
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figures were incorrectly transcribed in [5] and [21]. While the figure in [7] is the
same as Figure 1, therefore the problem is correct.
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