A PROOF OF TWIN PRIME CONJECTURE

T. AGAMA

ABSTRACT. In this paper we prove the twin prime conjecture by showing that

> AmA(+2)>(1 +o() 3555

n<z

for some C := C(2) > 0. We start by developing a general method for estimat-
ing correlations of the form

> Gn)G(n+1)
n<x

for a fixed 1 <1 < z and where G : N — RT.

1. Introduction and statement

Consider the sum

Z G(n)G(x —n)

n<zx

and

> Gn)Gn+1)

n<lz

where 1 < [ < z. It is generally not easy to controll sums of these forms, and
unfortunately many of the open problems in number theory can be phrased in this
manner. The twin prime conjecture conjectured by De polignac, which is one of
the important open problems can be expressed in this form as

> A(m)A(n+2)

n<z

and it is the case that obtaining a non-trivial lower bound for this correlation solves
the twin prime conjecture. There are a good number of techniques in the literature
for studying such sums, like the circle method of Hardy and littlewood, the sieve
method and many others.

In this paper, we introduce the area method. This method can also be used to
control correlated sums of the form above. The novelty of this method is that it
allows us to write any of these correlated sums as a double sum, which is much
easier to estimate using existing tools such as the summation by part formula. As
an application we obtain the result:
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Theorem 1.1. There exist some constant C := C(2) > 0, such that

> A(m)A(n+2) > (1+0(1)) T

n<x

2. The area method

In this section we introduce and develop a fundamental method for solving prob-
lems related to correlations of arithmetic functions. This method is fundamental
in the sense that it uses the properties of four main geometric shapes, namely the
triangle, the trapezium, the rectangle and the square. The basic identity we will
derive is an outgrowth of exploiting the areas of these shapes and putting them
together in a unified manner.

Theorem 2.1. Let {r;}7_; and {h;}7_; be any sequence of real numbers, and let

n
h; =h, and
=1

n
r and h be any real numbers satisfying Y r; = r and
— ;

J:
(P + 122 =3 "(r + 022,

Jj=1

then

n n g J—1 n—1 n—j
> rihy = th‘(zﬂ' +ZW) =2 1) by
Jj=2 j=2 i=1 i=1 k=1

j=1

Proof. Consider a right angled triangle, say AABC in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not neccessarily
equal. Now, we link those partitions along the height to the hypothenus, with the
aid of a parallel line. At the point of contact of each line to the hypothenus, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say AA;B;C; with base
and height 1 and h; respectively. We remark that this triangle is covered by the
triangle AABC', with hypothenus constituting a proportion of the hypothenus of
triangle AABC. We continue this process until we obtain n right-angled triangles
AA;B;Cj, each with base and height r; and h; for j = 1,2,...n. This construction
satisfies

h:ihj andr:irj
j=1 j=1

and
(P +B2)V2 = (r + )2
j=1
Now, let us deform the original triangle AABC by removing the smaller triangles

AA;B;C; for j = 1,2,...n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
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and we observe that the total area of this portrait is given by the relation
Ar =riha+ (ri4+r2)hs+ - (ri+r24+ -+ rp2)hp1 +(r1+re+---+r_1)hy
= Tl(hQ + h& + - hn) + Tg(h;), + h4 + -+ hn) +--- 4+ rn72(hn71 + hn) + rnflhn

n—j
E hj+k.
k=1

On the other hand, we observe that the area of this portrait is the same as the
difference of the area of triangle AABC and the sum of the areas of triangles
AA;B;Cj for j =1,2,...,n. That is

1 1 —
./41 = 57"h - 527"]/1]
j=1

n—1
= ’r‘j
1

J

This completes the first part of the argument. For the second part, along the
hypothenus, let us construct small pieces of triangle, each of base and height (r;, h;)
(¢ =1,2...,n) so that the trapezoid and the one triangle formed by partitioning
becomes rectangles and squares. We observe also that this construction satisfies

the relation
n

(2 +12)12 = 3003 4 1),
i=1
Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A4, is given by

A:1/2<¥)(2_:h>

On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

n n—1 n—1 n—2
i=1 i=1 i=1 i=1

By comparing the area of the second argument, and linking this to the first argu-
ment, the result follows immediately. (I

Remark 2.2. Next we state a result for a general lower bound for any two-point
correlation that captures all real arithmetic function.

Theorem 2.3. Let f : N — R, a real-valued function. If

Zf(”)f(”+lo)>0

n<x
then there exist some constant C := C(lg) > 0 such that

S Hnt) > S ) S f(m).

n<z C(lo)x 2<n<z m<n—1

Proof. By Theorem 2.1, we obtain the identity by taking f(j) =r; = h;

oD fmftn+q)= Y f) > fim).

n<lzx—1j<z—n 2<n<zx m<n—1
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It follows that

Z Z fn)f(n+3) Z Zf f(n+7)

n<z—1j<z—n n<z—1j<z
=Y f)fn+1)+ Y f(n)f(n+2)
n<z n<z
o> f)f(ntlo) 4> fn)f(n+x)
n<w n<z
< [M(lo)| Z} Fn)f(n+1o)
NS s +10
+Z<:f f(n+1o)+ ~+|R(l0)|z<:f(n)f(n+lo)

- (|M<zo>| FIW @)+ 41

-+ [R(lo) )Zf n+1lp)

n<z
C(lo)x Z f(n)f(n+lo).
n<x
where max{|M(lo)|, N (lo)|,--.,|R(lo)|} = C(lp). By inverting this inequality, the
result follows immediately. (]

The nature of the implicit constant C(ly) could also depend on the structure of
the function we are being given. The von mangoldt function, contrary to many
class of arithmetic functions, has a relatively small such constant. This behaviour
stems from the fact that the Von-mangoldt function is defined on the prime powers.
Thus one would expect most terms of sums of the form

ST > AmAMn+)

n<lzr—1j<z—n
to fall off when j is odd for any prime power n = p* such that j + p* # 2%,

3. Proof of the twin prime conjecture

We are now ready to prove the twin prime conjecture. We assemble the tools we
have developed thus far to solve the problem.

Theorem 3.1. There exist some constant C := C(2) > 0, such that

x
ZA An+2)>1+0(1)——.
n<x 26(2)
Proof. By invoking Theorem 2.3, we can write

> A(m)A(n+2) ﬁ > An) A(m).

n<x
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Using the prime number theorem [1] of the form

ST AMm) = (1+o(1))a,

n<x
the result follows immediately by using partial summation. O
Remark 3.2. Tt is important to remark that with the lower bound in Theorem 3.1,
we have solved the twin prime conjecture. This method not only does it solve the

twin prime conjecture, but is good in terms of its generality, for it can be used to
obtain lower bounds for a general class of correlated sums of the form

Y fm)f(n+k)

for a uniform 1 < k < z.

4. Conclusion

The method adopted in this paper to prove the twin prime conjecture is simple
and very elegant. In the spirit of solving the Goldbach conjecture, this method can
also be exploited to develop an estimate for general sums of the form

Z G(n)G(x —n)
n<x
which we do not pursue in this paper. 1.
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